mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-18 02:40:13 +00:00
674 lines
25 KiB
C++
674 lines
25 KiB
C++
/*
|
|
* Copyright (c)2013-2020 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2025-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#include "Constants.hpp"
|
|
#include "AES.hpp"
|
|
|
|
#ifdef ZT_AES_AESNI
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
|
|
#endif
|
|
|
|
namespace ZeroTier {
|
|
|
|
namespace {
|
|
|
|
const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
|
|
#endif
|
|
__m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
|
|
{
|
|
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
|
|
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
|
|
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
|
|
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
|
|
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
|
|
t2 = _mm_xor_si128(t2, t3);
|
|
t3 = _mm_slli_si128(t2, 8);
|
|
t2 = _mm_srli_si128(t2, 8);
|
|
t1 = _mm_xor_si128(t1, t3);
|
|
t4 = _mm_xor_si128(t4, t2);
|
|
__m128i t5 = _mm_srli_epi32(t1, 31);
|
|
t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
|
|
t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
|
|
t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
|
|
t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
|
|
t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
|
|
return _mm_shuffle_epi8(t4, s_sseSwapBytes);
|
|
}
|
|
|
|
/* Disable VAES stuff on compilers too old to compile these intrinsics,
|
|
* and MinGW64 also seems not to support them so disable on Windows.
|
|
* The performance gain can be significant but regular SSE is already so
|
|
* fast it's highly unlikely to be a rate limiting factor except on massive
|
|
* servers and network infrastructure stuff. */
|
|
#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
|
|
|
|
#define ZT_AES_VAES512 1
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
|
|
#endif
|
|
void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
|
|
{
|
|
const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
|
|
const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
|
|
const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
|
|
const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
|
|
const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
|
|
const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
|
|
const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
|
|
const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
|
|
const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
|
|
const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
|
|
const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
|
|
const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
|
|
const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
|
|
const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
|
|
const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
|
|
do {
|
|
__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
|
|
__m512i d0 = _mm512_set_epi64(
|
|
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
|
|
(long long)Utils::hton(c1 + 2ULL), (long long)c0,
|
|
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
|
|
(long long)Utils::hton(c1), (long long)c0);
|
|
c1 += 4;
|
|
in += 64;
|
|
len -= 64;
|
|
d0 = _mm512_xor_si512(d0, kk0);
|
|
d0 = _mm512_aesenc_epi128(d0, kk1);
|
|
d0 = _mm512_aesenc_epi128(d0, kk2);
|
|
d0 = _mm512_aesenc_epi128(d0, kk3);
|
|
d0 = _mm512_aesenc_epi128(d0, kk4);
|
|
d0 = _mm512_aesenc_epi128(d0, kk5);
|
|
d0 = _mm512_aesenc_epi128(d0, kk6);
|
|
d0 = _mm512_aesenc_epi128(d0, kk7);
|
|
d0 = _mm512_aesenc_epi128(d0, kk8);
|
|
d0 = _mm512_aesenc_epi128(d0, kk9);
|
|
d0 = _mm512_aesenc_epi128(d0, kk10);
|
|
d0 = _mm512_aesenc_epi128(d0, kk11);
|
|
d0 = _mm512_aesenc_epi128(d0, kk12);
|
|
d0 = _mm512_aesenc_epi128(d0, kk13);
|
|
d0 = _mm512_aesenclast_epi128(d0, kk14);
|
|
_mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
|
|
out += 64;
|
|
} while (likely(len >= 64));
|
|
}
|
|
|
|
#define ZT_AES_VAES256 1
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("sse4,aes,avx,avx2,vaes")))
|
|
#endif
|
|
void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
|
|
{
|
|
const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
|
|
const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
|
|
const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
|
|
const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
|
|
const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
|
|
const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
|
|
const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
|
|
const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
|
|
const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
|
|
const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
|
|
const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
|
|
const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
|
|
const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
|
|
const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
|
|
const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
|
|
do {
|
|
__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
|
|
__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
|
|
__m256i d0 = _mm256_set_epi64x(
|
|
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
|
|
(long long)Utils::hton(c1), (long long)c0);
|
|
__m256i d1 = _mm256_set_epi64x(
|
|
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
|
|
(long long)Utils::hton(c1 + 2ULL), (long long)c0);
|
|
c1 += 4;
|
|
in += 64;
|
|
len -= 64;
|
|
d0 = _mm256_xor_si256(d0, kk0);
|
|
d1 = _mm256_xor_si256(d1, kk0);
|
|
d0 = _mm256_aesenc_epi128(d0, kk1);
|
|
d1 = _mm256_aesenc_epi128(d1, kk1);
|
|
d0 = _mm256_aesenc_epi128(d0, kk2);
|
|
d1 = _mm256_aesenc_epi128(d1, kk2);
|
|
d0 = _mm256_aesenc_epi128(d0, kk3);
|
|
d1 = _mm256_aesenc_epi128(d1, kk3);
|
|
d0 = _mm256_aesenc_epi128(d0, kk4);
|
|
d1 = _mm256_aesenc_epi128(d1, kk4);
|
|
d0 = _mm256_aesenc_epi128(d0, kk5);
|
|
d1 = _mm256_aesenc_epi128(d1, kk5);
|
|
d0 = _mm256_aesenc_epi128(d0, kk6);
|
|
d1 = _mm256_aesenc_epi128(d1, kk6);
|
|
d0 = _mm256_aesenc_epi128(d0, kk7);
|
|
d1 = _mm256_aesenc_epi128(d1, kk7);
|
|
d0 = _mm256_aesenc_epi128(d0, kk8);
|
|
d1 = _mm256_aesenc_epi128(d1, kk8);
|
|
d0 = _mm256_aesenc_epi128(d0, kk9);
|
|
d1 = _mm256_aesenc_epi128(d1, kk9);
|
|
d0 = _mm256_aesenc_epi128(d0, kk10);
|
|
d1 = _mm256_aesenc_epi128(d1, kk10);
|
|
d0 = _mm256_aesenc_epi128(d0, kk11);
|
|
d1 = _mm256_aesenc_epi128(d1, kk11);
|
|
d0 = _mm256_aesenc_epi128(d0, kk12);
|
|
d1 = _mm256_aesenc_epi128(d1, kk12);
|
|
d0 = _mm256_aesenc_epi128(d0, kk13);
|
|
d1 = _mm256_aesenc_epi128(d1, kk13);
|
|
d0 = _mm256_aesenclast_epi128(d0, kk14);
|
|
d1 = _mm256_aesenclast_epi128(d1, kk14);
|
|
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
|
|
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
|
|
out += 64;
|
|
} while (likely(len >= 64));
|
|
}
|
|
|
|
#endif // does compiler support AVX2 and AVX512 AES intrinsics?
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
|
|
#endif
|
|
__m128i p_init256_1_aesni(__m128i a, __m128i b) noexcept
|
|
{
|
|
__m128i x, y;
|
|
b = _mm_shuffle_epi32(b, 0xff);
|
|
y = _mm_slli_si128(a, 0x04);
|
|
x = _mm_xor_si128(a, y);
|
|
y = _mm_slli_si128(y, 0x04);
|
|
x = _mm_xor_si128(x, y);
|
|
y = _mm_slli_si128(y, 0x04);
|
|
x = _mm_xor_si128(x, y);
|
|
x = _mm_xor_si128(x, b);
|
|
return x;
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
|
|
#endif
|
|
__m128i p_init256_2_aesni(__m128i a, __m128i b) noexcept
|
|
{
|
|
__m128i x, y, z;
|
|
y = _mm_aeskeygenassist_si128(a, 0x00);
|
|
z = _mm_shuffle_epi32(y, 0xaa);
|
|
y = _mm_slli_si128(b, 0x04);
|
|
x = _mm_xor_si128(b, y);
|
|
y = _mm_slli_si128(y, 0x04);
|
|
x = _mm_xor_si128(x, y);
|
|
y = _mm_slli_si128(y, 0x04);
|
|
x = _mm_xor_si128(x, y);
|
|
x = _mm_xor_si128(x, z);
|
|
return x;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
|
|
#endif
|
|
void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
|
|
{
|
|
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
|
|
|
|
// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
|
|
if (_rp) {
|
|
for (;;) {
|
|
if (!len)
|
|
return;
|
|
--len;
|
|
_r[_rp++] = *(in++);
|
|
if (_rp == 16) {
|
|
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (likely(len >= 64)) {
|
|
const __m128i sb = s_sseSwapBytes;
|
|
const __m128i h = _aes.p_k.ni.h[0];
|
|
const __m128i hh = _aes.p_k.ni.h[1];
|
|
const __m128i hhh = _aes.p_k.ni.h[2];
|
|
const __m128i hhhh = _aes.p_k.ni.h[3];
|
|
const __m128i h2 = _aes.p_k.ni.h2[0];
|
|
const __m128i hh2 = _aes.p_k.ni.h2[1];
|
|
const __m128i hhh2 = _aes.p_k.ni.h2[2];
|
|
const __m128i hhhh2 = _aes.p_k.ni.h2[3];
|
|
const uint8_t *const end64 = in + (len & ~((unsigned int)63));
|
|
len &= 63U;
|
|
do {
|
|
__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
|
|
__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
|
|
__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
|
|
__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
|
|
in += 64;
|
|
__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
|
|
__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
|
|
__m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
|
|
a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
|
|
b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
|
|
c = _mm_srli_epi32(a, 31);
|
|
a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
|
|
b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
|
|
c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
|
|
a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
|
|
b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
|
|
y = _mm_shuffle_epi8(b, sb);
|
|
} while (likely(in != end64));
|
|
}
|
|
|
|
while (len >= 16) {
|
|
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
|
|
|
|
// Any overflow is cached for a later run or finish().
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
_r[i] = in[i];
|
|
_rp = len; // len is always less than 16 here
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
|
|
#endif
|
|
void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
|
|
{
|
|
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
|
|
|
|
// Handle any remaining bytes, padding the last block with zeroes.
|
|
if (_rp) {
|
|
while (_rp < 16)
|
|
_r[_rp++] = 0;
|
|
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
|
|
}
|
|
|
|
// Interleave encryption of IV with the final GHASH of y XOR (length * 8).
|
|
// Then XOR these together to get the final tag.
|
|
const __m128i *const k = _aes.p_k.ni.k;
|
|
const __m128i h = _aes.p_k.ni.h[0];
|
|
y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
|
|
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
|
|
__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
|
|
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
|
|
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
|
|
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
|
|
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
|
|
encIV = _mm_aesenc_si128(encIV, k[1]);
|
|
t2 = _mm_xor_si128(t2, t3);
|
|
t3 = _mm_slli_si128(t2, 8);
|
|
encIV = _mm_aesenc_si128(encIV, k[2]);
|
|
t2 = _mm_srli_si128(t2, 8);
|
|
t1 = _mm_xor_si128(t1, t3);
|
|
encIV = _mm_aesenc_si128(encIV, k[3]);
|
|
t4 = _mm_xor_si128(t4, t2);
|
|
__m128i t5 = _mm_srli_epi32(t1, 31);
|
|
t1 = _mm_slli_epi32(t1, 1);
|
|
__m128i t6 = _mm_srli_epi32(t4, 31);
|
|
encIV = _mm_aesenc_si128(encIV, k[4]);
|
|
t4 = _mm_slli_epi32(t4, 1);
|
|
t3 = _mm_srli_si128(t5, 12);
|
|
encIV = _mm_aesenc_si128(encIV, k[5]);
|
|
t6 = _mm_slli_si128(t6, 4);
|
|
t5 = _mm_slli_si128(t5, 4);
|
|
encIV = _mm_aesenc_si128(encIV, k[6]);
|
|
t1 = _mm_or_si128(t1, t5);
|
|
t4 = _mm_or_si128(t4, t6);
|
|
encIV = _mm_aesenc_si128(encIV, k[7]);
|
|
t4 = _mm_or_si128(t4, t3);
|
|
t5 = _mm_slli_epi32(t1, 31);
|
|
encIV = _mm_aesenc_si128(encIV, k[8]);
|
|
t6 = _mm_slli_epi32(t1, 30);
|
|
t3 = _mm_slli_epi32(t1, 25);
|
|
encIV = _mm_aesenc_si128(encIV, k[9]);
|
|
t5 = _mm_xor_si128(t5, t6);
|
|
t5 = _mm_xor_si128(t5, t3);
|
|
encIV = _mm_aesenc_si128(encIV, k[10]);
|
|
t6 = _mm_srli_si128(t5, 4);
|
|
t4 = _mm_xor_si128(t4, t6);
|
|
encIV = _mm_aesenc_si128(encIV, k[11]);
|
|
t5 = _mm_slli_si128(t5, 12);
|
|
t1 = _mm_xor_si128(t1, t5);
|
|
t4 = _mm_xor_si128(t4, t1);
|
|
t5 = _mm_srli_epi32(t1, 1);
|
|
encIV = _mm_aesenc_si128(encIV, k[12]);
|
|
t2 = _mm_srli_epi32(t1, 2);
|
|
t3 = _mm_srli_epi32(t1, 7);
|
|
encIV = _mm_aesenc_si128(encIV, k[13]);
|
|
t4 = _mm_xor_si128(t4, t2);
|
|
t4 = _mm_xor_si128(t4, t3);
|
|
encIV = _mm_aesenclast_si128(encIV, k[14]);
|
|
t4 = _mm_xor_si128(t4, t5);
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
|
|
#endif
|
|
void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
|
|
{
|
|
const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
|
|
uint64_t c1 = Utils::ntoh(_ctr[1]);
|
|
|
|
const __m128i *const k = _aes.p_k.ni.k;
|
|
const __m128i k0 = k[0];
|
|
const __m128i k1 = k[1];
|
|
const __m128i k2 = k[2];
|
|
const __m128i k3 = k[3];
|
|
const __m128i k4 = k[4];
|
|
const __m128i k5 = k[5];
|
|
const __m128i k6 = k[6];
|
|
const __m128i k7 = k[7];
|
|
const __m128i k8 = k[8];
|
|
const __m128i k9 = k[9];
|
|
const __m128i k10 = k[10];
|
|
const __m128i k11 = k[11];
|
|
const __m128i k12 = k[12];
|
|
const __m128i k13 = k[13];
|
|
const __m128i k14 = k[14];
|
|
|
|
// Complete any unfinished blocks from previous calls to crypt().
|
|
unsigned int totalLen = _len;
|
|
if ((totalLen & 15U)) {
|
|
for (;;) {
|
|
if (unlikely(!len)) {
|
|
_ctr[1] = Utils::hton(c1);
|
|
_len = totalLen;
|
|
return;
|
|
}
|
|
--len;
|
|
out[totalLen++] = *(in++);
|
|
if (!(totalLen & 15U)) {
|
|
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
|
|
d0 = _mm_xor_si128(d0, k0);
|
|
d0 = _mm_aesenc_si128(d0, k1);
|
|
d0 = _mm_aesenc_si128(d0, k2);
|
|
d0 = _mm_aesenc_si128(d0, k3);
|
|
d0 = _mm_aesenc_si128(d0, k4);
|
|
d0 = _mm_aesenc_si128(d0, k5);
|
|
d0 = _mm_aesenc_si128(d0, k6);
|
|
d0 = _mm_aesenc_si128(d0, k7);
|
|
d0 = _mm_aesenc_si128(d0, k8);
|
|
d0 = _mm_aesenc_si128(d0, k9);
|
|
d0 = _mm_aesenc_si128(d0, k10);
|
|
__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
|
|
d0 = _mm_aesenc_si128(d0, k11);
|
|
const __m128i p0 = _mm_loadu_si128(outblk);
|
|
d0 = _mm_aesenc_si128(d0, k12);
|
|
d0 = _mm_aesenc_si128(d0, k13);
|
|
d0 = _mm_aesenclast_si128(d0, k14);
|
|
_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
out += totalLen;
|
|
_len = totalLen + len;
|
|
|
|
if (likely(len >= 64)) {
|
|
|
|
#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
|
|
if (Utils::CPUID.vaes && (len >= 256)) {
|
|
if (Utils::CPUID.avx512f) {
|
|
p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
|
|
} else {
|
|
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
|
|
}
|
|
goto skip_conventional_aesni_64;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
|
|
if (Utils::CPUID.vaes && (len >= 256)) {
|
|
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
|
|
goto skip_conventional_aesni_64;
|
|
}
|
|
#endif
|
|
|
|
const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
|
|
len &= 63;
|
|
__m128i d0, d1, d2, d3;
|
|
do {
|
|
const uint64_t c10 = Utils::hton(c1);
|
|
const uint64_t c11 = Utils::hton(c1 + 1ULL);
|
|
const uint64_t c12 = Utils::hton(c1 + 2ULL);
|
|
const uint64_t c13 = Utils::hton(c1 + 3ULL);
|
|
d0 = _mm_insert_epi64(dd, (long long)c10, 1);
|
|
d1 = _mm_insert_epi64(dd, (long long)c11, 1);
|
|
d2 = _mm_insert_epi64(dd, (long long)c12, 1);
|
|
d3 = _mm_insert_epi64(dd, (long long)c13, 1);
|
|
c1 += 4;
|
|
d0 = _mm_xor_si128(d0, k0);
|
|
d1 = _mm_xor_si128(d1, k0);
|
|
d2 = _mm_xor_si128(d2, k0);
|
|
d3 = _mm_xor_si128(d3, k0);
|
|
d0 = _mm_aesenc_si128(d0, k1);
|
|
d1 = _mm_aesenc_si128(d1, k1);
|
|
d2 = _mm_aesenc_si128(d2, k1);
|
|
d3 = _mm_aesenc_si128(d3, k1);
|
|
d0 = _mm_aesenc_si128(d0, k2);
|
|
d1 = _mm_aesenc_si128(d1, k2);
|
|
d2 = _mm_aesenc_si128(d2, k2);
|
|
d3 = _mm_aesenc_si128(d3, k2);
|
|
d0 = _mm_aesenc_si128(d0, k3);
|
|
d1 = _mm_aesenc_si128(d1, k3);
|
|
d2 = _mm_aesenc_si128(d2, k3);
|
|
d3 = _mm_aesenc_si128(d3, k3);
|
|
d0 = _mm_aesenc_si128(d0, k4);
|
|
d1 = _mm_aesenc_si128(d1, k4);
|
|
d2 = _mm_aesenc_si128(d2, k4);
|
|
d3 = _mm_aesenc_si128(d3, k4);
|
|
d0 = _mm_aesenc_si128(d0, k5);
|
|
d1 = _mm_aesenc_si128(d1, k5);
|
|
d2 = _mm_aesenc_si128(d2, k5);
|
|
d3 = _mm_aesenc_si128(d3, k5);
|
|
d0 = _mm_aesenc_si128(d0, k6);
|
|
d1 = _mm_aesenc_si128(d1, k6);
|
|
d2 = _mm_aesenc_si128(d2, k6);
|
|
d3 = _mm_aesenc_si128(d3, k6);
|
|
d0 = _mm_aesenc_si128(d0, k7);
|
|
d1 = _mm_aesenc_si128(d1, k7);
|
|
d2 = _mm_aesenc_si128(d2, k7);
|
|
d3 = _mm_aesenc_si128(d3, k7);
|
|
d0 = _mm_aesenc_si128(d0, k8);
|
|
d1 = _mm_aesenc_si128(d1, k8);
|
|
d2 = _mm_aesenc_si128(d2, k8);
|
|
d3 = _mm_aesenc_si128(d3, k8);
|
|
d0 = _mm_aesenc_si128(d0, k9);
|
|
d1 = _mm_aesenc_si128(d1, k9);
|
|
d2 = _mm_aesenc_si128(d2, k9);
|
|
d3 = _mm_aesenc_si128(d3, k9);
|
|
d0 = _mm_aesenc_si128(d0, k10);
|
|
d1 = _mm_aesenc_si128(d1, k10);
|
|
d2 = _mm_aesenc_si128(d2, k10);
|
|
d3 = _mm_aesenc_si128(d3, k10);
|
|
d0 = _mm_aesenc_si128(d0, k11);
|
|
d1 = _mm_aesenc_si128(d1, k11);
|
|
d2 = _mm_aesenc_si128(d2, k11);
|
|
d3 = _mm_aesenc_si128(d3, k11);
|
|
d0 = _mm_aesenc_si128(d0, k12);
|
|
d1 = _mm_aesenc_si128(d1, k12);
|
|
d2 = _mm_aesenc_si128(d2, k12);
|
|
d3 = _mm_aesenc_si128(d3, k12);
|
|
d0 = _mm_aesenc_si128(d0, k13);
|
|
d1 = _mm_aesenc_si128(d1, k13);
|
|
d2 = _mm_aesenc_si128(d2, k13);
|
|
d3 = _mm_aesenc_si128(d3, k13);
|
|
d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
|
|
d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
|
|
d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
|
|
d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
|
|
in += 64;
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
|
|
out += 64;
|
|
} while (likely(in != eof64));
|
|
|
|
}
|
|
|
|
skip_conventional_aesni_64:
|
|
while (len >= 16) {
|
|
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
|
|
d0 = _mm_xor_si128(d0, k0);
|
|
d0 = _mm_aesenc_si128(d0, k1);
|
|
d0 = _mm_aesenc_si128(d0, k2);
|
|
d0 = _mm_aesenc_si128(d0, k3);
|
|
d0 = _mm_aesenc_si128(d0, k4);
|
|
d0 = _mm_aesenc_si128(d0, k5);
|
|
d0 = _mm_aesenc_si128(d0, k6);
|
|
d0 = _mm_aesenc_si128(d0, k7);
|
|
d0 = _mm_aesenc_si128(d0, k8);
|
|
d0 = _mm_aesenc_si128(d0, k9);
|
|
d0 = _mm_aesenc_si128(d0, k10);
|
|
d0 = _mm_aesenc_si128(d0, k11);
|
|
d0 = _mm_aesenc_si128(d0, k12);
|
|
d0 = _mm_aesenc_si128(d0, k13);
|
|
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
|
|
in += 16;
|
|
len -= 16;
|
|
out += 16;
|
|
}
|
|
|
|
// Any remaining input is placed in _out. This will be picked up and crypted
|
|
// on subsequent calls to crypt() or finish() as it'll mean _len will not be
|
|
// an even multiple of 16.
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
out[i] = in[i];
|
|
|
|
_ctr[1] = Utils::hton(c1);
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
|
|
#endif
|
|
void AES::p_init_aesni(const uint8_t *key) noexcept
|
|
{
|
|
__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
|
|
p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
|
|
p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
|
|
p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
|
|
p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
|
|
p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
|
|
p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
|
|
p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
|
|
p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
|
|
p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
|
|
p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
|
|
p_k.ni.k[15] = _mm_aesimc_si128(k13);
|
|
p_k.ni.k[16] = _mm_aesimc_si128(k12);
|
|
p_k.ni.k[17] = _mm_aesimc_si128(k11);
|
|
p_k.ni.k[18] = _mm_aesimc_si128(k10);
|
|
p_k.ni.k[19] = _mm_aesimc_si128(k9);
|
|
p_k.ni.k[20] = _mm_aesimc_si128(k8);
|
|
p_k.ni.k[21] = _mm_aesimc_si128(k7);
|
|
p_k.ni.k[22] = _mm_aesimc_si128(k6);
|
|
p_k.ni.k[23] = _mm_aesimc_si128(k5);
|
|
p_k.ni.k[24] = _mm_aesimc_si128(k4);
|
|
p_k.ni.k[25] = _mm_aesimc_si128(k3);
|
|
p_k.ni.k[26] = _mm_aesimc_si128(k2);
|
|
p_k.ni.k[27] = _mm_aesimc_si128(k1);
|
|
|
|
__m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
|
|
h = _mm_aesenc_si128(h, k1);
|
|
h = _mm_aesenc_si128(h, k2);
|
|
h = _mm_aesenc_si128(h, k3);
|
|
h = _mm_aesenc_si128(h, k4);
|
|
h = _mm_aesenc_si128(h, k5);
|
|
h = _mm_aesenc_si128(h, k6);
|
|
h = _mm_aesenc_si128(h, k7);
|
|
h = _mm_aesenc_si128(h, k8);
|
|
h = _mm_aesenc_si128(h, k9);
|
|
h = _mm_aesenc_si128(h, k10);
|
|
h = _mm_aesenc_si128(h, k11);
|
|
h = _mm_aesenc_si128(h, k12);
|
|
h = _mm_aesenc_si128(h, k13);
|
|
h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
|
|
__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
|
|
__m128i hh = p_gmacPCLMUL128(hswap, h);
|
|
__m128i hhh = p_gmacPCLMUL128(hswap, hh);
|
|
__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
|
|
p_k.ni.h[0] = hswap;
|
|
p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
|
|
p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
|
|
p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
|
|
p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
|
|
p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
|
|
p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
|
|
p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
|
|
#endif
|
|
void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
|
|
{
|
|
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
|
|
tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
|
|
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
|
|
_mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
|
|
#endif
|
|
void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
|
|
{
|
|
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
|
|
tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
|
|
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
|
|
_mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
|
|
}
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif // ZT_AES_AESNI
|