mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-25 13:49:26 +00:00
330 lines
11 KiB
C++
330 lines
11 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2015 ZeroTier, Inc.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
|
|
#include <map>
|
|
#include <set>
|
|
#include <string>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "../osdep/Phy.hpp"
|
|
|
|
#define ZT_TCP_PROXY_UDP_POOL_SIZE 1024
|
|
#define ZT_TCP_PROXY_UDP_POOL_START_PORT 10000
|
|
#define ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS 300
|
|
|
|
using namespace ZeroTier;
|
|
|
|
/*
|
|
* ZeroTier TCP Proxy Server
|
|
*
|
|
* This implements a simple packet encapsulation that is designed to look like
|
|
* a TLS connection. It's not a TLS connection, but it sends TLS format record
|
|
* headers. It could be extended in the future to implement a fake TLS
|
|
* handshake.
|
|
*
|
|
* At the moment, each packet is just made to look like TLS application data:
|
|
* <[1] TLS content type> - currently 0x17 for "application data"
|
|
* <[1] TLS major version> - currently 0x03 for TLS 1.2
|
|
* <[1] TLS minor version> - currently 0x03 for TLS 1.2
|
|
* <[2] payload length> - 16-bit length of payload in bytes
|
|
* <[...] payload> - Message payload
|
|
*
|
|
* TCP is inherently inefficient for encapsulating Ethernet, since TCP and TCP
|
|
* like protocols over TCP lead to double-ACKs. So this transport is only used
|
|
* to enable access when UDP or other datagram protocols are not available.
|
|
*
|
|
* Clients send a greeting, which is a four-byte message that contains:
|
|
* <[1] ZeroTier major version>
|
|
* <[1] minor version>
|
|
* <[2] revision>
|
|
*
|
|
* If a client has sent a greeting, it uses the new version of this protocol
|
|
* in which every encapsulated ZT packet is prepended by an IP address where
|
|
* it should be forwarded (or where it came from for replies). This causes
|
|
* this proxy to act as a remote UDP socket similar to a socks proxy, which
|
|
* will allow us to move this function off the supernodes and onto dedicated
|
|
* proxy nodes.
|
|
*
|
|
* Older ZT clients that do not send this message get their packets relayed
|
|
* to/from 127.0.0.1:9993, which will allow them to talk to and relay via
|
|
* the ZT node on the same machine as the proxy. We'll only support this for
|
|
* as long as such nodes appear to be in the wild.
|
|
*/
|
|
|
|
struct TcpProxyService;
|
|
struct TcpProxyService
|
|
{
|
|
Phy<TcpProxyService *> *phy;
|
|
PhySocket *udpPool[ZT_TCP_PROXY_UDP_POOL_SIZE];
|
|
|
|
struct Client
|
|
{
|
|
char tcpReadBuf[131072];
|
|
char tcpWriteBuf[131072];
|
|
unsigned long tcpWritePtr;
|
|
unsigned long tcpReadPtr;
|
|
PhySocket *tcp;
|
|
PhySocket *assignedUdp;
|
|
time_t lastActivity;
|
|
bool newVersion;
|
|
};
|
|
|
|
std::map< PhySocket *,Client > clients;
|
|
|
|
struct ReverseMappingKey
|
|
{
|
|
uint64_t sourceZTAddress;
|
|
PhySocket *sendingUdpSocket;
|
|
uint32_t destIp;
|
|
unsigned int destPort;
|
|
|
|
ReverseMappingKey() {}
|
|
ReverseMappingKey(uint64_t zt,PhySocket *s,uint32_t ip,unsigned int port) : sourceZTAddress(zt),sendingUdpSocket(s),destIp(ip),destPort(port) {}
|
|
inline bool operator<(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) < 0); }
|
|
inline bool operator==(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) == 0); }
|
|
};
|
|
|
|
std::map< ReverseMappingKey,Client * > reverseMappings;
|
|
|
|
void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
|
|
{
|
|
if ((from->sa_family == AF_INET)&&(len > 16)&&(len < 2048)) {
|
|
const uint64_t destZt = (
|
|
(((uint64_t)(((const unsigned char *)data)[8])) << 32) |
|
|
(((uint64_t)(((const unsigned char *)data)[9])) << 24) |
|
|
(((uint64_t)(((const unsigned char *)data)[10])) << 16) |
|
|
(((uint64_t)(((const unsigned char *)data)[11])) << 8) |
|
|
((uint64_t)(((const unsigned char *)data)[12])) );
|
|
const uint32_t fromIp = ((const struct sockaddr_in *)from)->sin_addr.s_addr;
|
|
const unsigned int fromPort = ntohs(((const struct sockaddr_in *)from)->sin_port);
|
|
|
|
std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.find(ReverseMappingKey(destZt,sock,fromIp,fromPort)));
|
|
if (rm != reverseMappings.end()) {
|
|
Client &c = *(rm->second);
|
|
|
|
unsigned long mlen = len;
|
|
if (c.newVersion)
|
|
mlen += 7; // new clients get IP info
|
|
|
|
if ((c.tcpWritePtr + 5 + mlen) <= sizeof(c.tcpWriteBuf)) {
|
|
if (!c.tcpWritePtr)
|
|
phy->tcpSetNotifyWritable(c.tcp,true);
|
|
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = 0x17; // look like TLS data
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
|
|
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = (char)((mlen >> 8) & 0xff);
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = (char)(mlen & 0xff);
|
|
|
|
if (c.newVersion) {
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = (char)4; // IPv4
|
|
*((uint32_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = fromIp;
|
|
c.tcpWritePtr += 4;
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = (char)((fromPort >> 8) & 0xff);
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = (char)(fromPort & 0xff);
|
|
}
|
|
|
|
for(unsigned long i=0;i<len;++i)
|
|
c.tcpWriteBuf[c.tcpWritePtr++] = ((const char *)data)[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
|
|
{
|
|
// unused, we don't initiate
|
|
}
|
|
|
|
void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
|
|
{
|
|
Client &c = clients[sockN];
|
|
c.tcpWritePtr = 0;
|
|
c.tcpReadPtr = 0;
|
|
c.tcp = sockN;
|
|
c.assignedUdp = udpPool[rand() % ZT_TCP_PROXY_UDP_POOL_SIZE];
|
|
c.lastActivity = time((time_t *)0);
|
|
c.newVersion = false;
|
|
*uptrN = (void *)&c;
|
|
}
|
|
|
|
void phyOnTcpClose(PhySocket *sock,void **uptr)
|
|
{
|
|
for(std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.begin());rm!=reverseMappings.end();) {
|
|
if (rm->second == (Client *)*uptr)
|
|
reverseMappings.erase(rm++);
|
|
else ++rm;
|
|
}
|
|
clients.erase(sock);
|
|
}
|
|
|
|
void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
|
|
{
|
|
Client &c = *((Client *)*uptr);
|
|
c.lastActivity = time((time_t *)0);
|
|
|
|
for(unsigned long i=0;i<len;++i) {
|
|
if (c.tcpReadPtr >= sizeof(c.tcpReadBuf)) {
|
|
phy->close(sock);
|
|
return;
|
|
}
|
|
c.tcpReadBuf[c.tcpReadPtr++] = ((const char *)data)[i];
|
|
|
|
if (c.tcpReadPtr >= 5) {
|
|
unsigned long mlen = ( ((((unsigned long)c.tcpReadBuf[3]) & 0xff) << 8) | (((unsigned long)c.tcpReadBuf[4]) & 0xff) );
|
|
if (c.tcpReadPtr >= (mlen + 5)) {
|
|
if (mlen == 4) {
|
|
// Right now just sending this means the client is 'new enough' for the IP header
|
|
c.newVersion = true;
|
|
} else if (mlen >= 7) {
|
|
char *payload = c.tcpReadBuf + 5;
|
|
unsigned long payloadLen = mlen;
|
|
|
|
struct sockaddr_in dest;
|
|
memset(&dest,0,sizeof(dest));
|
|
if (c.newVersion) {
|
|
if (*payload == (char)4) {
|
|
// New clients tell us where their packets go.
|
|
++payload;
|
|
dest.sin_family = AF_INET;
|
|
dest.sin_addr.s_addr = *((uint32_t *)payload);
|
|
payload += 4;
|
|
dest.sin_port = *((uint16_t *)payload); // will be in network byte order already
|
|
payload += 2;
|
|
payloadLen -= 7;
|
|
}
|
|
} else {
|
|
// For old clients we will just proxy everything to a local ZT instance. The
|
|
// fact that this will come from 127.0.0.1 will in turn prevent that instance
|
|
// from doing unite() with us. It'll just forward. There will not be many of
|
|
// these.
|
|
dest.sin_family = AF_INET;
|
|
dest.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1
|
|
dest.sin_port = htons(9993);
|
|
}
|
|
|
|
// Note: we do not relay to privileged ports... just an abuse prevention rule.
|
|
if ((ntohs(dest.sin_port) > 1024)&&(payloadLen >= 16)) {
|
|
if ((payloadLen >= 28)&&(payload[13] != (char)0xff)) {
|
|
// Learn reverse mappings -- we will route replies to these packets
|
|
// back to their sending TCP socket. They're on a first come first
|
|
// served basis.
|
|
const uint64_t sourceZt = (
|
|
(((uint64_t)(((const unsigned char *)payload)[13])) << 32) |
|
|
(((uint64_t)(((const unsigned char *)payload)[14])) << 24) |
|
|
(((uint64_t)(((const unsigned char *)payload)[15])) << 16) |
|
|
(((uint64_t)(((const unsigned char *)payload)[16])) << 8) |
|
|
((uint64_t)(((const unsigned char *)payload)[17])) );
|
|
ReverseMappingKey k(sourceZt,c.assignedUdp,dest.sin_addr.s_addr,ntohl(dest.sin_port));
|
|
if (reverseMappings.count(k) == 0)
|
|
reverseMappings[k] = &c;
|
|
}
|
|
|
|
phy->udpSend(c.assignedUdp,(const struct sockaddr *)&dest,payload,payloadLen);
|
|
}
|
|
}
|
|
|
|
memmove(c.tcpReadBuf,c.tcpReadBuf + (mlen + 5),c.tcpReadPtr -= (mlen + 5));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void phyOnTcpWritable(PhySocket *sock,void **uptr)
|
|
{
|
|
Client &c = *((Client *)*uptr);
|
|
if (c.tcpWritePtr) {
|
|
long n = phy->tcpSend(sock,c.tcpWriteBuf,c.tcpWritePtr);
|
|
if (n > 0) {
|
|
memmove(c.tcpWriteBuf,c.tcpWriteBuf + n,c.tcpWritePtr -= (unsigned long)n);
|
|
if (!c.tcpWritePtr)
|
|
phy->tcpSetNotifyWritable(sock,false);
|
|
}
|
|
} else phy->tcpSetNotifyWritable(sock,false);
|
|
}
|
|
|
|
void doHousekeeping()
|
|
{
|
|
std::vector<PhySocket *> toClose;
|
|
time_t now = time((time_t *)0);
|
|
for(std::map< PhySocket *,Client >::iterator c(clients.begin());c!=clients.end();++c) {
|
|
if ((now - c->second.lastActivity) >= ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS)
|
|
toClose.push_back(c->first);
|
|
}
|
|
for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)
|
|
phy->close(*s); // will call phyOnTcpClose() which does cleanup
|
|
}
|
|
};
|
|
|
|
int main(int argc,char **argv)
|
|
{
|
|
signal(SIGPIPE,SIG_IGN);
|
|
signal(SIGHUP,SIG_IGN);
|
|
srand(time((time_t *)0));
|
|
|
|
TcpProxyService svc;
|
|
Phy<TcpProxyService *> phy(&svc,true);
|
|
svc.phy = &phy;
|
|
|
|
{
|
|
int poolSize = 0;
|
|
for(unsigned int p=ZT_TCP_PROXY_UDP_POOL_START_PORT;((poolSize<ZT_TCP_PROXY_UDP_POOL_SIZE)&&(p<=65535));++p) {
|
|
struct sockaddr_in laddr;
|
|
memset(&laddr,0,sizeof(laddr));
|
|
laddr.sin_family = AF_INET;
|
|
laddr.sin_port = htons((uint16_t)p);
|
|
PhySocket *s = phy.udpBind((const struct sockaddr *)&laddr);
|
|
if (s)
|
|
svc.udpPool[poolSize++] = s;
|
|
}
|
|
if (poolSize < ZT_TCP_PROXY_UDP_POOL_SIZE) {
|
|
fprintf(stderr,"%s: fatal error: cannot bind %d UDP ports\n",argv[0],ZT_TCP_PROXY_UDP_POOL_SIZE);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
time_t lastDidHousekeeping = time((time_t *)0);
|
|
for(;;) {
|
|
phy.poll(120000);
|
|
time_t now = time((time_t *)0);
|
|
if ((now - lastDidHousekeeping) > 120) {
|
|
lastDidHousekeeping = now;
|
|
svc.doHousekeeping();
|
|
}
|
|
}
|
|
}
|