ZeroTierOne/root/root.cpp

1198 lines
41 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
/*
* This is a high-throughput minimal root server. It implements only
* those functions of a ZT node that a root must perform and does so
* using highly efficient multithreaded I/O code. It's only been
* thoroughly tested on Linux but should also run on BSDs.
*
* Root configuration file format (JSON):
*
* {
* "name": Name of this root for documentation/UI purposes (string)
* "port": UDP port (int)
* "httpPort": Local HTTP port for basic stats (int)
* "relayMaxHops": Max hops (up to 7)
* "planetFile": Location of planet file for pre-2.x peers (string)
* "statsRoot": If present, path to periodically save stats files (string)
* "siblings": [
* {
* "name": Sibling name for UI/documentation purposes (string)
* "id": Full public identity of subling (string)
* "ip": IP address of sibling (string)
* "port": port of subling (for ZeroTier UDP) (int)
* }, ...
* ]
* }
*
* The only required field is port. If statsRoot is present then files
* are periodically written there containing the root's current state.
* It should be a memory filesystem like /dev/shm on Linux as these
* files are large and rewritten frequently and do not need to be
* persisted.
*
* Siblings are other root servers that should receive packets to peers
* that we can't find. This can occur due to e.g. network topology
* hiccups, IP blockages, etc. Siblings are used in the order in which
* they appear with the first alive sibling being used.
*/
#include <Constants.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <json.hpp>
#include <httplib.h>
#include <Packet.hpp>
#include <Utils.hpp>
#include <Address.hpp>
#include <Identity.hpp>
#include <InetAddress.hpp>
#include <Mutex.hpp>
#include <SharedPtr.hpp>
#include <MulticastGroup.hpp>
#include <CertificateOfMembership.hpp>
#include <OSUtils.hpp>
#include <Meter.hpp>
#include <string>
#include <thread>
#include <map>
#include <set>
#include <vector>
#include <iostream>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <atomic>
#include <mutex>
#include <sstream>
using namespace ZeroTier;
using json = nlohmann::json;
#ifdef MSG_DONTWAIT
#define SENDTO_FLAGS MSG_DONTWAIT
#else
#define SENDTO_FLAGS 0
#endif
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// Hashers for std::unordered_map
struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } };
struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } };
struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } };
struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } };
// An ordered tuple key representing an introduction of one peer to another
struct RendezvousKey
{
RendezvousKey(const Address &aa,const Address &bb)
{
if (aa > bb) {
a = aa;
b = bb;
} else {
a = bb;
b = aa;
}
}
Address a,b;
ZT_ALWAYS_INLINE bool operator==(const RendezvousKey &k) const { return ((a == k.a)&&(b == k.b)); }
ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey &k) const { return ((a != k.a)||(b != k.b)); }
struct Hasher { ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey &k) const { return (std::size_t)(k.a.toInt() ^ k.b.toInt()); } };
};
/**
* RootPeer is a normal peer known to this root
*
* This can also be a sibling root, which is itself a peer. Sibling roots
* are sent HELLO while for other peers we only listen for HELLO.
*/
struct RootPeer
{
ZT_ALWAYS_INLINE RootPeer() : lastSend(0),lastReceive(0),lastSync(0),lastEcho(0),lastHello(0),vProto(-1),vMajor(-1),vMinor(-1),vRev(-1),sibling(false) {}
ZT_ALWAYS_INLINE ~RootPeer() { Utils::burn(key,sizeof(key)); }
Identity id; // Identity
uint8_t key[32]; // Shared secret key
InetAddress ip4,ip6; // IPv4 and IPv6 addresses
int64_t lastSend; // Time of last send (any packet)
int64_t lastReceive; // Time of last receive (any packet)
int64_t lastSync; // Time of last data synchronization with LF or other root state backend (currently unused)
int64_t lastEcho; // Time of last received ECHO
int64_t lastHello; // Time of last received HELLO
int vProto; // Protocol version
int vMajor,vMinor,vRev; // Peer version or -1,-1,-1 if unknown
bool sibling; // If true, this is a sibling root that will get forwards we don't know where to send
std::mutex lock;
AtomicCounter __refCount;
};
static int64_t s_startTime; // Time service was started
static std::vector<int> s_ports; // Ports to bind for UDP traffic
static int s_relayMaxHops = 0; // Max relay hops
static Identity s_self; // My identity (including secret)
static std::atomic_bool s_run; // Remains true until shutdown is ordered
static json s_config; // JSON config file contents
static std::string s_statsRoot; // Root to write stats, peers, etc.
static std::string s_planet; // Planet file contents to distribute with OK(HELLO) if any
static Meter inputRate;
static Meter outputRate;
static Meter forwardRate;
static Meter siblingForwardRate;
static Meter discardedForwardRate;
static std::vector< SharedPtr<RootPeer> > siblings;
static std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,std::unordered_map< Address,int64_t,AddressHasher >,MulticastGroupHasher > > multicastSubscriptions;
static std::unordered_map< Identity,SharedPtr<RootPeer>,IdentityHasher > peersByIdentity;
static std::unordered_map< Address,std::set< SharedPtr<RootPeer> >,AddressHasher > peersByVirtAddr;
static std::unordered_map< InetAddress,std::set< SharedPtr<RootPeer> >,InetAddressHasher > peersByPhysAddr;
static std::unordered_map< RendezvousKey,int64_t,RendezvousKey::Hasher > lastRendezvous;
static std::mutex s_planet_l;
static std::mutex siblings_l;
static std::mutex multicastSubscriptions_l;
static std::mutex peersByIdentity_l;
static std::mutex peersByVirtAddr_l;
static std::mutex peersByPhysAddr_l;
static std::mutex lastRendezvous_l;
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
static void handlePacket(const int v4s,const int v6s,const InetAddress *const ip,Packet &pkt)
{
char ipstr[128],ipstr2[128],astr[32],astr2[32],tmpstr[256];
const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR;
const Address source(pkt.source());
const Address dest(pkt.destination());
const int64_t now = OSUtils::now();
inputRate.log(now,pkt.size());
if ((!fragment)&&(!pkt.fragmented())&&(dest == s_self.address())) {
SharedPtr<RootPeer> peer;
// If this is an un-encrypted HELLO, either learn a new peer or verify
// that this is a peer we already know.
if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) {
std::lock_guard<std::mutex> pbi_l(peersByIdentity_l);
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
Identity id;
if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) {
{
auto pById = peersByIdentity.find(id);
if (pById != peersByIdentity.end()) {
peer = pById->second;
//printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr));
}
}
if (peer) {
if (!pkt.dearmor(peer->key)) {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
} else {
peer.set(new RootPeer);
if (s_self.agree(id,peer->key)) {
if (pkt.dearmor(peer->key)) {
if (!pkt.uncompress()) {
printf("%s HELLO rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
peer->id = id;
peer->lastReceive = now;
peersByIdentity.emplace(id,peer);
peersByVirtAddr[id.address()].emplace(peer);
} else {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
} else {
printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
}
}
}
// If it wasn't a HELLO, check to see if any known identities for the sender's
// short ZT address successfully decrypt the packet.
if (!peer) {
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
auto peers = peersByVirtAddr.find(source);
if (peers != peersByVirtAddr.end()) {
for(auto p=peers->second.begin();p!=peers->second.end();++p) {
if (pkt.dearmor((*p)->key)) {
if (!pkt.uncompress()) {
printf("%s packet rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
peer = (*p);
//printf("%s has %s (known (2))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr));
break;
}
}
}
}
// If we found the peer, update IP and/or time and handle certain key packet types that the
// root must concern itself with.
if (peer) {
std::lock_guard<std::mutex> pl(peer->lock);
InetAddress *const peerIp = ip->isV4() ? &(peer->ip4) : &(peer->ip6);
if (*peerIp != ip) {
std::lock_guard<std::mutex> pbp_l(peersByPhysAddr_l);
if (*peerIp) {
auto prev = peersByPhysAddr.find(*peerIp);
if (prev != peersByPhysAddr.end()) {
prev->second.erase(peer);
if (prev->second.empty())
peersByPhysAddr.erase(prev);
}
}
*peerIp = ip;
peersByPhysAddr[ip].emplace(peer);
}
const int64_t now = OSUtils::now();
peer->lastReceive = now;
switch(pkt.verb()) {
case Packet::VERB_HELLO:
try {
if ((now - peer->lastHello) > 1000) {
peer->lastHello = now;
peer->vProto = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
peer->vRev = (int)pkt.template at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const uint64_t origId = pkt.packetId();
const uint64_t ts = pkt.template at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
pkt.reset(source,s_self.address(),Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_HELLO);
pkt.append(origId);
pkt.append(ts);
pkt.append((uint8_t)ZT_PROTO_VERSION);
pkt.append((uint8_t)0);
pkt.append((uint8_t)0);
pkt.append((uint16_t)0);
ip->serialize(pkt);
if (peer->vProto < 11) { // send planet file for pre-2.x peers
std::lock_guard<std::mutex> pl(s_planet_l);
if (s_planet.length() > 0) {
pkt.append((uint16_t)s_planet.size());
pkt.append((const uint8_t *)s_planet.data(),s_planet.size());
}
}
pkt.armor(peer->key,true);
sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
outputRate.log(now,pkt.size());
peer->lastSend = now;
}
} catch ( ... ) {
printf("* unexpected exception handling HELLO from %s" ZT_EOL_S,ip->toString(ipstr));
}
break;
case Packet::VERB_ECHO:
try {
if ((now - peer->lastEcho) > 1000) {
peer->lastEcho = now;
Packet outp(source,s_self.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_ECHO);
outp.append(pkt.packetId());
outp.append(((const uint8_t *)pkt.data()) + ZT_PACKET_IDX_PAYLOAD,pkt.size() - ZT_PACKET_IDX_PAYLOAD);
outp.compress();
outp.armor(peer->key,true);
sendto(ip->isV4() ? v4s : v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
outputRate.log(now,outp.size());
peer->lastSend = now;
}
} catch ( ... ) {
printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
}
case Packet::VERB_WHOIS:
try {
std::vector< SharedPtr<RootPeer> > results;
{
std::lock_guard<std::mutex> l(peersByVirtAddr_l);
for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+ZT_ADDRESS_LENGTH)<=pkt.size();ptr+=ZT_ADDRESS_LENGTH) {
auto peers = peersByVirtAddr.find(Address(pkt.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH));
if (peers != peersByVirtAddr.end()) {
for(auto p=peers->second.begin();p!=peers->second.end();++p)
results.push_back(*p);
}
}
}
if (!results.empty()) {
const uint64_t origId = pkt.packetId();
pkt.reset(source,s_self.address(),Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_WHOIS);
pkt.append(origId);
for(auto p=results.begin();p!=results.end();++p)
(*p)->id.serialize(pkt,false);
pkt.armor(peer->key,true);
sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
outputRate.log(now,pkt.size());
peer->lastSend = now;
}
} catch ( ... ) {
printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
}
case Packet::VERB_MULTICAST_LIKE:
try {
std::lock_guard<std::mutex> l(multicastSubscriptions_l);
for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=pkt.size();ptr+=18) {
const uint64_t nwid = pkt.template at<uint64_t>(ptr);
const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at<uint32_t>(ptr + 14));
multicastSubscriptions[nwid][mg][source] = now;
//printf("%s %s subscribes to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid);
}
} catch ( ... ) {
printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S,ip->toString(ipstr));
}
break;
case Packet::VERB_MULTICAST_GATHER:
try {
const uint64_t nwid = pkt.template at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
//const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
unsigned int gatherLimit = pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
if (gatherLimit > 255)
gatherLimit = 255;
const uint64_t origId = pkt.packetId();
pkt.reset(source,s_self.address(),Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
pkt.append(origId);
pkt.append(nwid);
mg.mac().appendTo(pkt);
pkt.append((uint32_t)mg.adi());
{
std::lock_guard<std::mutex> l(multicastSubscriptions_l);
auto forNet = multicastSubscriptions.find(nwid);
if (forNet != multicastSubscriptions.end()) {
auto forGroup = forNet->second.find(mg);
if (forGroup != forNet->second.end()) {
pkt.append((uint32_t)forGroup->second.size());
const unsigned int countAt = pkt.size();
pkt.addSize(2);
unsigned int l = 0;
for(auto g=forGroup->second.begin();((l<gatherLimit)&&(g!=forGroup->second.end()));++g) {
if (g->first != source) {
++l;
g->first.appendTo(pkt);
}
}
if (l > 0) {
pkt.setAt<uint16_t>(countAt,(uint16_t)l);
pkt.armor(peer->key,true);
sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
outputRate.log(now,pkt.size());
peer->lastSend = now;
//printf("%s %s gathered %u subscribers to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),l,mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid);
}
}
}
}
} catch ( ... ) {
printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S,ip->toString(ipstr));
}
break;
default:
break;
}
return;
}
}
// If we made it here, we are forwarding this packet to someone else and also possibly
// sending a RENDEZVOUS message.
int hops = 0;
bool introduce = false;
if (fragment) {
if ((hops = (int)reinterpret_cast<Packet::Fragment *>(&pkt)->incrementHops()) > s_relayMaxHops) {
//printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
discardedForwardRate.log(now,pkt.size());
return;
}
} else {
if ((hops = (int)pkt.incrementHops()) > s_relayMaxHops) {
//printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
discardedForwardRate.log(now,pkt.size());
return;
}
if (hops == 1) {
RendezvousKey rk(source,dest);
std::lock_guard<std::mutex> l(lastRendezvous_l);
int64_t &lr = lastRendezvous[rk];
if ((now - lr) >= 45000) {
lr = now;
introduce = true;
}
}
}
std::vector< std::pair< InetAddress *,SharedPtr<RootPeer> > > toAddrs;
{
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
auto peers = peersByVirtAddr.find(dest);
if (peers != peersByVirtAddr.end()) {
for(auto p=peers->second.begin();p!=peers->second.end();++p) {
if ((*p)->ip4) {
toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip4),*p));
} else if ((*p)->ip6) {
toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip6),*p));
}
}
}
}
if (toAddrs.empty()) {
std::lock_guard<std::mutex> sib_l(siblings_l);
for(auto s=siblings.begin();s!=siblings.end();++s) {
if (((now - (*s)->lastReceive) < (ZT_PEER_PING_PERIOD * 2))&&((*s)->sibling)) {
if ((*s)->ip4) {
toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*s)->ip4),*s));
} else if ((*s)->ip6) {
toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*s)->ip6),*s));
}
}
}
}
if (toAddrs.empty()) {
discardedForwardRate.log(now,pkt.size());
return;
}
if (introduce) {
std::lock_guard<std::mutex> l(peersByVirtAddr_l);
auto sources = peersByVirtAddr.find(source);
if (sources != peersByVirtAddr.end()) {
for(auto a=sources->second.begin();a!=sources->second.end();++a) {
for(auto b=toAddrs.begin();b!=toAddrs.end();++b) {
if (((*a)->ip6)&&(b->second->ip6)) {
//printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip6.toString(ipstr2),dest.toString(astr2));
// Introduce source to destination (V6)
Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
dest.appendTo(outp);
outp.append((uint16_t)b->second->ip6.port());
outp.append((uint8_t)16);
outp.append((const uint8_t *)b->second->ip6.rawIpData(),16);
outp.armor((*a)->key,true);
sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip6),(socklen_t)sizeof(struct sockaddr_in6));
outputRate.log(now,outp.size());
(*a)->lastSend = now;
// Introduce destination to source (V6)
outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
source.appendTo(outp);
outp.append((uint16_t)ip->port());
outp.append((uint8_t)16);
outp.append((const uint8_t *)ip->rawIpData(),16);
outp.armor(b->second->key,true);
sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip6),(socklen_t)sizeof(struct sockaddr_in6));
outputRate.log(now,outp.size());
b->second->lastSend = now;
}
if (((*a)->ip4)&&(b->second->ip4)) {
//printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip4.toString(ipstr2),dest.toString(astr2));
// Introduce source to destination (V4)
Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
dest.appendTo(outp);
outp.append((uint16_t)b->second->ip4.port());
outp.append((uint8_t)4);
outp.append((const uint8_t *)b->second->ip4.rawIpData(),4);
outp.armor((*a)->key,true);
sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip4),(socklen_t)sizeof(struct sockaddr_in));
outputRate.log(now,outp.size());
(*a)->lastSend = now;
// Introduce destination to source (V4)
outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
source.appendTo(outp);
outp.append((uint16_t)ip->port());
outp.append((uint8_t)4);
outp.append((const uint8_t *)ip->rawIpData(),4);
outp.armor(b->second->key,true);
sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip4),(socklen_t)sizeof(struct sockaddr_in));
outputRate.log(now,outp.size());
b->second->lastSend = now;
}
}
}
}
}
for(auto i=toAddrs.begin();i!=toAddrs.end();++i) {
//printf("%s -> %s for %s -> %s (%u bytes)" ZT_EOL_S,ip->toString(ipstr),i->first->toString(ipstr2),source.toString(astr),dest.toString(astr2),pkt.size());
if (sendto(i->first->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)i->first,(socklen_t)(i->first->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) > 0) {
outputRate.log(now,pkt.size());
forwardRate.log(now,pkt.size());
if (i->second->sibling)
siblingForwardRate.log(now,pkt.size());
i->second->lastSend = now;
}
}
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
static int bindSocket(struct sockaddr *const bindAddr)
{
const int s = socket(bindAddr->sa_family,SOCK_DGRAM,0);
if (s < 0) {
close(s);
return -1;
}
int f = 1048576;
while (f > 16384) {
if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f)) == 0)
break;
f -= 16384;
}
f = 1048576;
while (f > 16384) {
if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f)) == 0)
break;
f -= 16384;
}
if (bindAddr->sa_family == AF_INET6) {
f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
#ifdef IPV6_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef IPV6_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
#endif
}
#ifdef IP_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
#endif
#ifdef IP_MTU_DISCOVER
f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef SO_NO_CHECK
if (bindAddr->sa_family == AF_INET) {
f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
}
#endif
#if defined(SO_REUSEPORT)
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f));
#endif
#ifndef __LINUX__ // linux wants just SO_REUSEPORT
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
#endif
if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
close(s);
//printf("%s\n",strerror(errno));
return -1;
}
return s;
}
static void shutdownSigHandler(int sig) { s_run = false; }
int main(int argc,char **argv)
{
signal(SIGTERM,shutdownSigHandler);
signal(SIGINT,shutdownSigHandler);
signal(SIGQUIT,shutdownSigHandler);
signal(SIGPIPE,SIG_IGN);
signal(SIGUSR1,SIG_IGN);
signal(SIGUSR2,SIG_IGN);
signal(SIGCHLD,SIG_IGN);
s_startTime = OSUtils::now();
if (argc < 3) {
printf("Usage: zerotier-root <identity.secret> <config path>" ZT_EOL_S);
return 1;
}
{
std::string myIdStr;
if (!OSUtils::readFile(argv[1],myIdStr)) {
printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]);
return 1;
}
if (!s_self.fromString(myIdStr.c_str())) {
printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]);
return 1;
}
if (!s_self.hasPrivate()) {
printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]);
return 1;
}
}
{
std::string configStr;
if (!OSUtils::readFile(argv[2],configStr)) {
printf("FATAL: cannot read config file at %s" ZT_EOL_S,argv[2]);
return 1;
}
try {
s_config = json::parse(configStr);
} catch (std::exception &exc) {
printf("FATAL: config file at %s invalid: %s" ZT_EOL_S,argv[2],exc.what());
return 1;
} catch ( ... ) {
printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S,argv[2]);
return 1;
}
if (!s_config.is_object()) {
printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S,argv[2]);
return 1;
}
}
try {
auto jport = s_config["port"];
if (jport.is_array()) {
for(long i=0;i<(long)jport.size();++i) {
int port = jport[i];
if ((port <= 0)||(port > 65535)) {
printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
return 1;
}
s_ports.push_back(port);
}
} else {
int port = jport;
if ((port <= 0)||(port > 65535)) {
printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
return 1;
}
s_ports.push_back(port);
}
} catch ( ... ) {}
if (s_ports.empty())
s_ports.push_back(ZT_DEFAULT_PORT);
std::sort(s_ports.begin(),s_ports.end());
int httpPort = ZT_DEFAULT_PORT;
try {
httpPort = s_config["httpPort"];
if ((httpPort <= 0)||(httpPort > 65535)) {
printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S,httpPort);
return 1;
}
} catch ( ... ) {
httpPort = ZT_DEFAULT_PORT;
}
std::string planetFilePath;
try {
planetFilePath = s_config["planetFile"];
} catch ( ... ) {
planetFilePath = "";
}
try {
s_statsRoot = s_config["statsRoot"];
while ((s_statsRoot.length() > 0)&&(s_statsRoot[s_statsRoot.length()-1] == ZT_PATH_SEPARATOR))
s_statsRoot = s_statsRoot.substr(0,s_statsRoot.length()-1);
if (s_statsRoot.length() > 0)
OSUtils::mkdir(s_statsRoot);
} catch ( ... ) {
s_statsRoot = "";
}
s_relayMaxHops = ZT_RELAY_MAX_HOPS;
try {
s_relayMaxHops = s_config["s_relayMaxHops"];
if (s_relayMaxHops > ZT_PROTO_MAX_HOPS)
s_relayMaxHops = ZT_PROTO_MAX_HOPS;
else if (s_relayMaxHops < 0)
s_relayMaxHops = 0;
} catch ( ... ) {
s_relayMaxHops = ZT_RELAY_MAX_HOPS;
}
try {
auto sibs = s_config["siblings"];
if (sibs.is_array()) {
for(long i=0;i<(long)sibs.size();++i) {
auto sib = sibs[i];
if (sib.is_object()) {
std::string idStr = sib["id"];
std::string ipStr = sib["ip"];
Identity id;
if (!id.fromString(idStr.c_str())) {
printf("FATAL: invalid JSON while parsing siblings section in config file: invalid identity in sibling entry" ZT_EOL_S);
return 1;
}
InetAddress ip;
if (!ip.fromString(ipStr.c_str())) {
printf("FATAL: invalid JSON while parsing siblings section in config file: invalid IP address in sibling entry" ZT_EOL_S);
return 1;
}
ip.setPort((unsigned int)sib["port"]);
SharedPtr<RootPeer> rp(new RootPeer);
rp->id = id;
if (!s_self.agree(id,rp->key)) {
printf("FATAL: invalid JSON while parsing siblings section in config file: invalid identity in sibling entry (unable to execute key agreement)" ZT_EOL_S);
return 1;
}
if (ip.isV4()) {
rp->ip4 = ip;
} else if (ip.isV6()) {
rp->ip6 = ip;
} else {
printf("FATAL: invalid JSON while parsing siblings section in config file: invalid IP address in sibling entry" ZT_EOL_S);
return 1;
}
rp->sibling = true;
siblings.push_back(rp);
peersByIdentity[id] = rp;
peersByVirtAddr[id.address()].insert(rp);
peersByPhysAddr[ip].insert(rp);
} else {
printf("FATAL: invalid JSON while parsing siblings section in config file: sibling entry is not a JSON object" ZT_EOL_S);
return 1;
}
}
} else {
printf("FATAL: invalid JSON while parsing siblings section in config file: siblings is not a JSON array" ZT_EOL_S);
return 1;
}
} catch ( ... ) {
printf("FATAL: invalid JSON while parsing siblings section in config file: parse error" ZT_EOL_S);
return 1;
}
unsigned int ncores = std::thread::hardware_concurrency();
if (ncores == 0) ncores = 1;
s_run = true;
std::vector<std::thread> threads;
std::vector<int> sockets;
int v4Sock = -1,v6Sock = -1;
for(auto port=s_ports.begin();port!=s_ports.end();++port) {
for(unsigned int tn=0;tn<ncores;++tn) {
struct sockaddr_in6 in6;
memset(&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = htons((uint16_t)*port);
const int s6 = bindSocket((struct sockaddr *)&in6);
if (s6 < 0) {
std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
exit(1);
}
struct sockaddr_in in4;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = htons((uint16_t)*port);
const int s4 = bindSocket((struct sockaddr *)&in4);
if (s4 < 0) {
std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
exit(1);
}
sockets.push_back(s6);
sockets.push_back(s4);
if (v4Sock < 0) v4Sock = s4;
if (v6Sock < 0) v6Sock = s6;
threads.push_back(std::thread([s6,s4]() {
struct sockaddr_in6 in6;
Packet pkt;
memset(&in6,0,sizeof(in6));
for(;;) {
socklen_t sl = sizeof(in6);
const int pl = (int)recvfrom(s6,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in6,&sl);
if (pl > 0) {
if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) {
try {
pkt.setSize((unsigned int)pl);
handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in6),pkt);
} catch ( ... ) {
char ipstr[128];
printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in6)->toString(ipstr));
}
}
} else {
break;
}
}
}));
threads.push_back(std::thread([s6,s4]() {
struct sockaddr_in in4;
Packet pkt;
memset(&in4,0,sizeof(in4));
for(;;) {
socklen_t sl = sizeof(in4);
const int pl = (int)recvfrom(s4,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in4,&sl);
if (pl > 0) {
if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) {
try {
pkt.setSize((unsigned int)pl);
handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in4),pkt);
} catch ( ... ) {
char ipstr[128];
printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in4)->toString(ipstr));
}
}
} else {
break;
}
}
}));
}
}
// Minimal local API for use with monitoring clients, etc.
httplib::Server apiServ;
threads.push_back(std::thread([&apiServ,httpPort]() {
apiServ.Get("/",[](const httplib::Request &req,httplib::Response &res) {
std::ostringstream o;
std::lock_guard<std::mutex> l0(peersByIdentity_l);
std::lock_guard<std::mutex> l1(peersByPhysAddr_l);
o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S;
o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S;
o << "Peers Online: " << peersByIdentity.size() << ZT_EOL_S;
o << "Physical Addresses: " << peersByPhysAddr.size() << ZT_EOL_S;
res.set_content(o.str(),"text/plain");
});
apiServ.Get("/peer",[](const httplib::Request &req,httplib::Response &res) {
char tmp[256];
std::ostringstream o;
o << '[';
{
bool first = true;
std::lock_guard<std::mutex> l(peersByIdentity_l);
for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();++p) {
if (first)
first = false;
else o << ',';
o <<
"{\"address\":\"" << p->first.address().toString(tmp) << "\""
",\"latency\":-1"
",\"paths\":[";
if (p->second->ip4) {
o <<
"{\"active\":true"
",\"address\":\"" << p->second->ip4.toIpString(tmp) << "\\/" << p->second->ip4.port() << "\""
",\"expired\":false"
",\"lastReceive\":" << p->second->lastReceive <<
",\"lastSend\":" << p->second->lastSend <<
",\"preferred\":true"
",\"trustedPathId\":0}";
}
if (p->second->ip6) {
if (p->second->ip4)
o << ',';
o <<
"{\"active\":true"
",\"address\":\"" << p->second->ip6.toIpString(tmp) << "\\/" << p->second->ip6.port() << "\""
",\"expired\":false"
",\"lastReceive\":" << p->second->lastReceive <<
",\"lastSend\":" << p->second->lastSend <<
",\"preferred\":" << ((p->second->ip4) ? "false" : "true") <<
",\"trustedPathId\":0}";
}
o << "]"
",\"role\":\"LEAF\""
",\"version\":\"" << p->second->vMajor << '.' << p->second->vMinor << '.' << p->second->vRev << "\""
",\"versionMajor\":" << p->second->vMajor <<
",\"versionMinor\":" << p->second->vMinor <<
",\"versionRev\":" << p->second->vRev << "}";
}
}
o << ']';
res.set_content(o.str(),"application/json");
});
apiServ.listen("127.0.0.1",httpPort,0);
}));
// In the main thread periodically clean stuff up
int64_t lastCleaned = 0;
int64_t lastWroteStats = 0;
int64_t lastPingedSiblings = 0;
while (s_run) {
//peersByIdentity_l.lock();
//peersByPhysAddr_l.lock();
//printf("*** have %lu peers at %lu physical endpoints" ZT_EOL_S,(unsigned long)peersByIdentity.size(),(unsigned long)peersByPhysAddr.size());
//peersByPhysAddr_l.unlock();
//peersByIdentity_l.unlock();
sleep(1);
const int64_t now = OSUtils::now();
// Send HELLO to sibling roots
if ((now - lastPingedSiblings) >= ZT_PEER_PING_PERIOD) {
lastPingedSiblings = now;
std::lock_guard<std::mutex> l(siblings_l);
for(auto s=siblings.begin();s!=siblings.end();++s) {
const InetAddress *ip = nullptr;
socklen_t sl = 0;
Packet outp((*s)->id.address(),s_self.address(),Packet::VERB_HELLO);
outp.append((uint8_t)ZT_PROTO_VERSION);
outp.append((uint8_t)0);
outp.append((uint8_t)0);
outp.append((uint16_t)0);
outp.append((uint64_t)now);
s_self.serialize(outp,false);
if ((*s)->ip4) {
(*s)->ip4.serialize(outp);
ip = &((*s)->ip4);
sl = sizeof(struct sockaddr_in);
} else if ((*s)->ip6) {
(*s)->ip6.serialize(outp);
ip = &((*s)->ip6);
sl = sizeof(struct sockaddr_in6);
}
if (ip) {
outp.armor((*s)->key,false);
sendto(ip->isV4() ? v4Sock : v6Sock,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,sl);
}
}
}
if ((now - lastCleaned) > 120000) {
lastCleaned = now;
// Old multicast subscription cleanup
{
std::lock_guard<std::mutex> l(multicastSubscriptions_l);
for(auto a=multicastSubscriptions.begin();a!=multicastSubscriptions.end();) {
for(auto b=a->second.begin();b!=a->second.end();) {
for(auto c=b->second.begin();c!=b->second.end();) {
if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE)
b->second.erase(c++);
else ++c;
}
if (b->second.empty())
a->second.erase(b++);
else ++b;
}
if (a->second.empty())
multicastSubscriptions.erase(a++);
else ++a;
}
}
// Remove expired peers
{
std::lock_guard<std::mutex> pbi_l(peersByIdentity_l);
for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();) {
if (((now - p->second->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT)&&(!p->second->sibling)) {
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
std::lock_guard<std::mutex> pbp_l(peersByPhysAddr_l);
auto pbv = peersByVirtAddr.find(p->second->id.address());
if (pbv != peersByVirtAddr.end()) {
pbv->second.erase(p->second);
if (pbv->second.empty())
peersByVirtAddr.erase(pbv);
}
if (p->second->ip4) {
auto pbp = peersByPhysAddr.find(p->second->ip4);
if (pbp != peersByPhysAddr.end()) {
pbp->second.erase(p->second);
if (pbp->second.empty())
peersByPhysAddr.erase(pbp);
}
}
if (p->second->ip6) {
auto pbp = peersByPhysAddr.find(p->second->ip6);
if (pbp != peersByPhysAddr.end()) {
pbp->second.erase(p->second);
if (pbp->second.empty())
peersByPhysAddr.erase(pbp);
}
}
peersByIdentity.erase(p++);
} else ++p;
}
}
// Remove old rendezvous tracking entries
{
std::lock_guard<std::mutex> l(lastRendezvous_l);
for(auto lr=lastRendezvous.begin();lr!=lastRendezvous.end();) {
if ((now - lr->second) > ZT_PEER_ACTIVITY_TIMEOUT)
lastRendezvous.erase(lr++);
else ++lr;
}
}
}
// Write stats if configured to do so, and periodically refresh planet file (if any)
if (((now - lastWroteStats) > 15000)&&(s_statsRoot.length() > 0)) {
lastWroteStats = now;
try {
if (planetFilePath.length() > 0) {
std::string planetData;
if ((OSUtils::readFile(planetFilePath.c_str(),planetData))&&(planetData.length() > 0)) {
std::lock_guard<std::mutex> pl(s_planet_l);
s_planet = planetData;
}
}
} catch ( ... ) {
std::lock_guard<std::mutex> pl(s_planet_l);
s_planet.clear();
}
std::string peersFilePath(s_statsRoot);
peersFilePath.append("/.peers.tmp");
FILE *pf = fopen(peersFilePath.c_str(),"wb");
if (pf) {
std::vector< SharedPtr<RootPeer> > sp;
{
std::lock_guard<std::mutex> pbi_l(peersByIdentity_l);
sp.reserve(peersByIdentity.size());
for(auto p=peersByIdentity.begin();p!=peersByIdentity.end();++p) {
sp.push_back(p->second);
}
}
std::sort(sp.begin(),sp.end(),[](const SharedPtr<RootPeer> &a,const SharedPtr<RootPeer> &b) { return (a->id < b->id); });
char ip4[128],ip6[128];
for(auto p=sp.begin();p!=sp.end();++p) {
if ((*p)->ip4) {
(*p)->ip4.toString(ip4);
} else {
ip4[0] = '-';
ip4[1] = 0;
}
if ((*p)->ip6) {
(*p)->ip6.toString(ip6);
} else {
ip6[0] = '-';
ip6[1] = 0;
}
fprintf(pf,"%.10llx %21s %45s %5.4f %d.%d.%d" ZT_EOL_S,(unsigned long long)(*p)->id.address().toInt(),ip4,ip6,fabs((double)(now - (*p)->lastReceive) / 1000.0),(*p)->vMajor,(*p)->vMinor,(*p)->vRev);
}
fclose(pf);
std::string peersFilePath2(s_statsRoot);
peersFilePath2.append("/peers");
OSUtils::rm(peersFilePath2);
OSUtils::rename(peersFilePath.c_str(),peersFilePath2.c_str());
}
std::string statsFilePath(s_statsRoot);
statsFilePath.append("/.stats.tmp");
FILE *sf = fopen(statsFilePath.c_str(),"wb");
if (sf) {
fprintf(sf,"Uptime (seconds) : %ld" ZT_EOL_S,(long)((now - s_startTime) / 1000));
peersByIdentity_l.lock();
fprintf(sf,"Peers : %llu" ZT_EOL_S,(unsigned long long)peersByIdentity.size());
peersByVirtAddr_l.lock();
fprintf(sf,"Virtual Address Collisions : %llu" ZT_EOL_S,(unsigned long long)(peersByIdentity.size() - peersByVirtAddr.size()));
peersByVirtAddr_l.unlock();
peersByIdentity_l.unlock();
peersByPhysAddr_l.lock();
fprintf(sf,"Physical Endpoints : %llu" ZT_EOL_S,(unsigned long long)peersByPhysAddr.size());
peersByPhysAddr_l.unlock();
lastRendezvous_l.lock();
fprintf(sf,"Recent P2P Graph Edges : %llu" ZT_EOL_S,(unsigned long long)lastRendezvous.size());
lastRendezvous_l.unlock();
fprintf(sf,"Input BPS : %.4f" ZT_EOL_S,inputRate.perSecond(now));
fprintf(sf,"Output BPS : %.4f" ZT_EOL_S,outputRate.perSecond(now));
fprintf(sf,"Forwarded BPS : %.4f" ZT_EOL_S,forwardRate.perSecond(now));
fprintf(sf,"Sibling Forwarded BPS : %.4f" ZT_EOL_S,siblingForwardRate.perSecond(now));
fprintf(sf,"Discarded Forward BPS : %.4f" ZT_EOL_S,discardedForwardRate.perSecond(now));
fclose(sf);
std::string statsFilePath2(s_statsRoot);
statsFilePath2.append("/stats");
OSUtils::rm(statsFilePath2);
OSUtils::rename(statsFilePath.c_str(),statsFilePath2.c_str());
}
}
}
// If we received a kill signal, close everything and wait
// for threads to die before exiting.
apiServ.stop();
for(auto s=sockets.begin();s!=sockets.end();++s) {
shutdown(*s,SHUT_RDWR);
close(*s);
}
for(auto t=threads.begin();t!=threads.end();++t)
t->join();
return 0;
}