ZeroTierOne/controller/EmbeddedNetworkController.cpp
2016-08-22 14:25:59 -07:00

1484 lines
52 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <algorithm>
#include <utility>
#include <stdexcept>
#include <set>
#include <map>
#include "../include/ZeroTierOne.h"
#include "../node/Constants.hpp"
#include "EmbeddedNetworkController.hpp"
#include "../node/Node.hpp"
#include "../node/Utils.hpp"
#include "../node/CertificateOfMembership.hpp"
#include "../node/NetworkConfig.hpp"
#include "../node/Dictionary.hpp"
#include "../node/InetAddress.hpp"
#include "../node/MAC.hpp"
#include "../node/Address.hpp"
using json = nlohmann::json;
// API version reported via JSON control plane
#define ZT_NETCONF_CONTROLLER_API_VERSION 3
// Number of requests to remember in member history
#define ZT_NETCONF_DB_MEMBER_HISTORY_LENGTH 16
// Min duration between requests for an address/nwid combo to prevent floods
#define ZT_NETCONF_MIN_REQUEST_PERIOD 1000
// Nodes are considered active if they've queried in less than this long
#define ZT_NETCONF_NODE_ACTIVE_THRESHOLD ((ZT_NETWORK_AUTOCONF_DELAY * 2) + 5000)
namespace ZeroTier {
// Get JSON values as unsigned integers, strings, or booleans, doing type conversion if possible
static uint64_t _jI(const json &jv,const uint64_t dfl)
{
if (jv.is_number()) {
return (uint64_t)jv;
} else if (jv.is_string()) {
std::string s = jv;
return Utils::strToU64(s.c_str());
} else if (jv.is_boolean()) {
return ((bool)jv ? 1ULL : 0ULL);
}
return dfl;
}
static bool _jB(const json &jv,const bool dfl)
{
if (jv.is_boolean()) {
return (bool)jv;
} else if (jv.is_number()) {
return ((uint64_t)jv > 0ULL);
} else if (jv.is_string()) {
std::string s = jv;
if (s.length() > 0) {
switch(s[0]) {
case 't':
case 'T':
case '1':
return true;
}
}
return false;
}
return dfl;
}
static std::string _jS(const json &jv,const char *dfl)
{
if (jv.is_string()) {
return jv;
} else if (jv.is_number()) {
char tmp[64];
Utils::snprintf(tmp,sizeof(tmp),"%llu",(uint64_t)jv);
return tmp;
} else if (jv.is_boolean()) {
return ((bool)jv ? std::string("1") : std::string("0"));
}
return std::string((dfl) ? dfl : "");
}
static json _renderRule(ZT_VirtualNetworkRule &rule)
{
char tmp[128];
json r = json::object();
r["not"] = ((rule.t & 0x80) != 0);
switch((rule.t) & 0x7f) {
case ZT_NETWORK_RULE_ACTION_DROP:
r["type"] = "ACTION_DROP";
break;
case ZT_NETWORK_RULE_ACTION_ACCEPT:
r["type"] = "ACTION_ACCEPT";
break;
case ZT_NETWORK_RULE_ACTION_TEE:
r["type"] = "ACTION_TEE";
r["zt"] = Address(rule.v.zt).toString();
break;
case ZT_NETWORK_RULE_ACTION_REDIRECT:
r["type"] = "ACTION_REDIRECT";
r["zt"] = Address(rule.v.zt).toString();
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
r["type"] = "MATCH_SOURCE_ZEROTIER_ADDRESS";
r["zt"] = Address(rule.v.zt).toString();
break;
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
r["type"] = "MATCH_DEST_ZEROTIER_ADDRESS";
r["zt"] = Address(rule.v.zt).toString();
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
r["type"] = "MATCH_VLAN_ID";
r["vlanId"] = (uint64_t)rule.v.vlanId;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
r["type"] = "MATCH_VLAN_PCP";
r["vlanPcp"] = (uint64_t)rule.v.vlanPcp;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
r["type"] = "MATCH_VLAN_DEI";
r["vlanDei"] = (uint64_t)rule.v.vlanDei;
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
r["type"] = "MATCH_ETHERTYPE";
r["etherType"] = (uint64_t)rule.v.etherType;
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
r["type"] = "MATCH_MAC_SOURCE";
Utils::snprintf(tmp,sizeof(tmp),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(unsigned int)rule.v.mac[0],(unsigned int)rule.v.mac[1],(unsigned int)rule.v.mac[2],(unsigned int)rule.v.mac[3],(unsigned int)rule.v.mac[4],(unsigned int)rule.v.mac[5]);
r["mac"] = tmp;
break;
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
r["type"] = "MATCH_MAC_DEST";
Utils::snprintf(tmp,sizeof(tmp),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(unsigned int)rule.v.mac[0],(unsigned int)rule.v.mac[1],(unsigned int)rule.v.mac[2],(unsigned int)rule.v.mac[3],(unsigned int)rule.v.mac[4],(unsigned int)rule.v.mac[5]);
r["mac"] = tmp;
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
r["type"] = "MATCH_IPV4_SOURCE";
r["ip"] = InetAddress(&(rule.v.ipv4.ip),4,(unsigned int)rule.v.ipv4.mask).toString();
break;
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
r["type"] = "MATCH_IPV4_DEST";
r["ip"] = InetAddress(&(rule.v.ipv4.ip),4,(unsigned int)rule.v.ipv4.mask).toString();
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
r["type"] = "MATCH_IPV6_SOURCE";
r["ip"] = InetAddress(rule.v.ipv6.ip,16,(unsigned int)rule.v.ipv6.mask).toString();
break;
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
r["type"] = "MATCH_IPV6_DEST";
r["ip"] = InetAddress(rule.v.ipv6.ip,16,(unsigned int)rule.v.ipv6.mask).toString();
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
r["type"] = "MATCH_IP_TOS";
r["ipTos"] = (uint64_t)rule.v.ipTos;
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
r["type"] = "MATCH_IP_PROTOCOL";
r["ipProtocol"] = (uint64_t)rule.v.ipProtocol;
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
r["type"] = "MATCH_IP_SOURCE_PORT_RANGE";
r["start"] = (uint64_t)rule.v.port[0];
r["end"] = (uint64_t)rule.v.port[1];
break;
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
r["type"] = "MATCH_IP_DEST_PORT_RANGE";
r["start"] = (uint64_t)rule.v.port[0];
r["end"] = (uint64_t)rule.v.port[1];
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
r["type"] = "MATCH_CHARACTERISTICS";
Utils::snprintf(tmp,sizeof(tmp),"%.16llx",rule.v.characteristics[0]);
r["mask"] = tmp;
Utils::snprintf(tmp,sizeof(tmp),"%.16llx",rule.v.characteristics[1]);
r["value"] = tmp;
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
r["type"] = "MATCH_FRAME_SIZE_RANGE";
r["start"] = (uint64_t)rule.v.frameSize[0];
r["end"] = (uint64_t)rule.v.frameSize[1];
break;
case ZT_NETWORK_RULE_MATCH_TAGS_SAMENESS:
r["type"] = "MATCH_TAGS_SAMENESS";
r["id"] = (uint64_t)rule.v.tag.id;
r["value"] = (uint64_t)rule.v.tag.value;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
r["type"] = "MATCH_TAGS_BITWISE_AND";
r["id"] = (uint64_t)rule.v.tag.id;
r["value"] = (uint64_t)rule.v.tag.value;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
r["type"] = "MATCH_TAGS_BITWISE_OR";
r["id"] = (uint64_t)rule.v.tag.id;
r["value"] = (uint64_t)rule.v.tag.value;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
r["type"] = "MATCH_TAGS_BITWISE_XOR";
r["id"] = (uint64_t)rule.v.tag.id;
r["value"] = (uint64_t)rule.v.tag.value;
break;
}
return r;
}
static bool _parseRule(const json &r,ZT_VirtualNetworkRule &rule)
{
if (r.is_object())
return false;
std::string t = r["type"];
memset(&rule,0,sizeof(ZT_VirtualNetworkRule));
if (_jB(r["not"],false))
rule.t = 0x80;
else rule.t = 0x00;
if (t == "ACTION_DROP") {
rule.t |= ZT_NETWORK_RULE_ACTION_DROP;
return true;
} else if (t == "ACTION_ACCEPT") {
rule.t |= ZT_NETWORK_RULE_ACTION_ACCEPT;
return true;
} else if (t == "ACTION_TEE") {
rule.t |= ZT_NETWORK_RULE_ACTION_TEE;
rule.v.zt = Utils::hexStrToU64(_jS(r["zt"],"0").c_str()) & 0xffffffffffULL;
return true;
} else if (t == "ACTION_REDIRECT") {
rule.t |= ZT_NETWORK_RULE_ACTION_REDIRECT;
rule.v.zt = Utils::hexStrToU64(_jS(r["zt"],"0").c_str()) & 0xffffffffffULL;
return true;
} else if (t == "MATCH_SOURCE_ZEROTIER_ADDRESS") {
rule.t |= ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS;
rule.v.zt = Utils::hexStrToU64(_jS(r["zt"],"0").c_str()) & 0xffffffffffULL;
return true;
} else if (t == "MATCH_DEST_ZEROTIER_ADDRESS") {
rule.t |= ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS;
rule.v.zt = Utils::hexStrToU64(_jS(r["zt"],"0").c_str()) & 0xffffffffffULL;
return true;
} else if (t == "MATCH_VLAN_ID") {
rule.t |= ZT_NETWORK_RULE_MATCH_VLAN_ID;
rule.v.vlanId = (uint16_t)(_jI(r["vlanId"],0ULL) & 0xffffULL);
return true;
} else if (t == "MATCH_VLAN_PCP") {
rule.t |= ZT_NETWORK_RULE_MATCH_VLAN_PCP;
rule.v.vlanPcp = (uint8_t)(_jI(r["vlanPcp"],0ULL) & 0xffULL);
return true;
} else if (t == "MATCH_VLAN_DEI") {
rule.t |= ZT_NETWORK_RULE_MATCH_VLAN_DEI;
rule.v.vlanDei = (uint8_t)(_jI(r["vlanDei"],0ULL) & 0xffULL);
return true;
} else if (t == "MATCH_ETHERTYPE") {
rule.t |= ZT_NETWORK_RULE_MATCH_ETHERTYPE;
rule.v.etherType = (uint16_t)(_jI(r["etherType"],0ULL) & 0xffffULL);
return true;
} else if (t == "MATCH_MAC_SOURCE") {
rule.t |= ZT_NETWORK_RULE_MATCH_MAC_SOURCE;
const std::string mac(_jS(r["mac"],"0"));
Utils::unhex(mac.c_str(),(unsigned int)mac.length(),rule.v.mac,6);
return true;
} else if (t == "MATCH_MAC_DEST") {
rule.t |= ZT_NETWORK_RULE_MATCH_MAC_DEST;
const std::string mac(_jS(r["mac"],"0"));
Utils::unhex(mac.c_str(),(unsigned int)mac.length(),rule.v.mac,6);
return true;
} else if (t == "MATCH_IPV4_SOURCE") {
rule.t |= ZT_NETWORK_RULE_MATCH_IPV4_SOURCE;
InetAddress ip(_jS(r["ip"],"0.0.0.0"));
rule.v.ipv4.ip = reinterpret_cast<struct sockaddr_in *>(&ip)->sin_addr.s_addr;
rule.v.ipv4.mask = Utils::ntoh(reinterpret_cast<struct sockaddr_in *>(&ip)->sin_port) & 0xff;
if (rule.v.ipv4.mask > 32) rule.v.ipv4.mask = 32;
return true;
} else if (t == "MATCH_IPV4_DEST") {
rule.t |= ZT_NETWORK_RULE_MATCH_IPV4_DEST;
InetAddress ip(_jS(r["ip"],"0.0.0.0"));
rule.v.ipv4.ip = reinterpret_cast<struct sockaddr_in *>(&ip)->sin_addr.s_addr;
rule.v.ipv4.mask = Utils::ntoh(reinterpret_cast<struct sockaddr_in *>(&ip)->sin_port) & 0xff;
if (rule.v.ipv4.mask > 32) rule.v.ipv4.mask = 32;
return true;
} else if (t == "MATCH_IPV6_SOURCE") {
rule.t |= ZT_NETWORK_RULE_MATCH_IPV6_SOURCE;
InetAddress ip(_jS(r["ip"],"::0"));
memcpy(rule.v.ipv6.ip,reinterpret_cast<struct sockaddr_in6 *>(&ip)->sin6_addr.s6_addr,16);
rule.v.ipv6.mask = Utils::ntoh(reinterpret_cast<struct sockaddr_in6 *>(&ip)->sin6_port) & 0xff;
if (rule.v.ipv6.mask > 128) rule.v.ipv6.mask = 128;
return true;
} else if (t == "MATCH_IPV6_DEST") {
rule.t |= ZT_NETWORK_RULE_MATCH_IPV6_DEST;
InetAddress ip(_jS(r["ip"],"::0"));
memcpy(rule.v.ipv6.ip,reinterpret_cast<struct sockaddr_in6 *>(&ip)->sin6_addr.s6_addr,16);
rule.v.ipv6.mask = Utils::ntoh(reinterpret_cast<struct sockaddr_in6 *>(&ip)->sin6_port) & 0xff;
if (rule.v.ipv6.mask > 128) rule.v.ipv6.mask = 128;
return true;
} else if (t == "MATCH_IP_TOS") {
rule.t |= ZT_NETWORK_RULE_MATCH_IP_TOS;
rule.v.ipTos = (uint8_t)(_jI(r["ipTos"],0ULL) & 0xffULL);
return true;
} else if (t == "MATCH_IP_PROTOCOL") {
rule.t |= ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
rule.v.ipProtocol = (uint8_t)(_jI(r["ipProtocol"],0ULL) & 0xffULL);
return true;
} else if (t == "MATCH_IP_SOURCE_PORT_RANGE") {
rule.t |= ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE;
rule.v.port[0] = (uint16_t)(_jI(r["start"],0ULL) & 0xffffULL);
rule.v.port[1] = (uint16_t)(_jI(r["end"],(uint64_t)rule.v.port[0]) & 0xffffULL);
return true;
} else if (t == "MATCH_IP_DEST_PORT_RANGE") {
rule.t |= ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE;
rule.v.port[0] = (uint16_t)(_jI(r["start"],0ULL) & 0xffffULL);
rule.v.port[1] = (uint16_t)(_jI(r["end"],(uint64_t)rule.v.port[0]) & 0xffffULL);
return true;
} else if (t == "MATCH_CHARACTERISTICS") {
rule.t |= ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
if (r.count("mask")) {
auto v = r["mask"];
if (v.is_number()) {
rule.v.characteristics[0] = v;
} else {
std::string tmp = v;
rule.v.characteristics[0] = Utils::hexStrToU64(tmp.c_str());
}
}
if (r.count("value")) {
auto v = r["value"];
if (v.is_number()) {
rule.v.characteristics[1] = v;
} else {
std::string tmp = v;
rule.v.characteristics[1] = Utils::hexStrToU64(tmp.c_str());
}
}
return true;
} else if (t == "MATCH_FRAME_SIZE_RANGE") {
rule.t |= ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE;
rule.v.frameSize[0] = (uint16_t)(_jI(r["start"],0ULL) & 0xffffULL);
rule.v.frameSize[1] = (uint16_t)(_jI(r["end"],(uint64_t)rule.v.frameSize[0]) & 0xffffULL);
return true;
} else if (t == "MATCH_TAGS_SAMENESS") {
rule.t |= ZT_NETWORK_RULE_MATCH_TAGS_SAMENESS;
rule.v.tag.id = (uint32_t)(_jI(r["id"],0ULL) & 0xffffffffULL);
rule.v.tag.value = (uint32_t)(_jI(r["value"],0ULL) & 0xffffffffULL);
return true;
} else if (t == "MATCH_TAGS_BITWISE_AND") {
rule.t |= ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND;
rule.v.tag.id = (uint32_t)(_jI(r["id"],0ULL) & 0xffffffffULL);
rule.v.tag.value = (uint32_t)(_jI(r["value"],0ULL) & 0xffffffffULL);
return true;
} else if (t == "MATCH_TAGS_BITWISE_OR") {
rule.t |= ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR;
rule.v.tag.id = (uint32_t)(_jI(r["id"],0ULL) & 0xffffffffULL);
rule.v.tag.value = (uint32_t)(_jI(r["value"],0ULL) & 0xffffffffULL);
return true;
} else if (t == "MATCH_TAGS_BITWISE_XOR") {
rule.t |= ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR;
rule.v.tag.id = (uint32_t)(_jI(r["id"],0ULL) & 0xffffffffULL);
rule.v.tag.value = (uint32_t)(_jI(r["value"],0ULL) & 0xffffffffULL);
return true;
}
return false;
}
EmbeddedNetworkController::EmbeddedNetworkController(Node *node,const char *dbPath) :
_node(node),
_path(dbPath)
{
OSUtils::mkdir(dbPath);
OSUtils::lockDownFile(dbPath,true); // networks might contain auth tokens, etc., so restrict directory permissions
}
EmbeddedNetworkController::~EmbeddedNetworkController()
{
}
NetworkController::ResultCode EmbeddedNetworkController::doNetworkConfigRequest(const InetAddress &fromAddr,const Identity &signingId,const Identity &identity,uint64_t nwid,const Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> &metaData,NetworkConfig &nc)
{
if (((!signingId)||(!signingId.hasPrivate()))||(signingId.address().toInt() != (nwid >> 24))) {
return NetworkController::NETCONF_QUERY_INTERNAL_SERVER_ERROR;
}
const uint64_t now = OSUtils::now();
// Check rate limit circuit breaker to prevent flooding
{
Mutex::Lock _l(_lastRequestTime_m);
uint64_t &lrt = _lastRequestTime[std::pair<uint64_t,uint64_t>(identity.address().toInt(),nwid)];
if ((now - lrt) <= ZT_NETCONF_MIN_REQUEST_PERIOD)
return NetworkController::NETCONF_QUERY_IGNORE;
lrt = now;
}
json network(_readJson(_networkJP(nwid,false)));
if (!network.size())
return NetworkController::NETCONF_QUERY_OBJECT_NOT_FOUND;
const std::string memberJP(_memberJP(nwid,identity.address(),true));
json member(_readJson(memberJP));
{
std::string haveIdStr(_jS(member["identity"],""));
if (haveIdStr.length() > 0) {
// If we already know this member's identity perform a full compare. This prevents
// a "collision" from being able to auth onto our network in place of an already
// known member.
try {
if (Identity(haveIdStr.c_str()) != identity)
return NetworkController::NETCONF_QUERY_ACCESS_DENIED;
} catch ( ... ) {
return NetworkController::NETCONF_QUERY_ACCESS_DENIED;
}
} else {
// If we do not yet know this member's identity, learn it.
member["identity"] = identity.toString(false);
}
}
_initMember(member);
// Make sure these are always present no matter what, and increment member revision since we will always at least log something
member["id"] = identity.address().toString();
member["address"] = member["id"];
member["nwid"] = network["id"];
member["lastModified"] = now;
{
auto revj = member["revision"];
const uint64_t rev = (revj.is_number() ? ((uint64_t)revj + 1ULL) : 1ULL);
member["revision"] = rev;
}
// Determine whether and how member is authorized
const char *authorizedBy = (const char *)0;
if (!_jB(network["private"],true)) {
authorizedBy = "networkIsPublic";
// If member already has an authorized field, leave it alone. That way its state is
// preserved if the user toggles the network back to private. Otherwise set it to
// true by default for new members of public nets.
if (!member.count("authorized")) member["authorized"] = true;
} else if (_jB(member["authorized"],false)) {
authorizedBy = "memberIsAuthorized";
} else {
char atok[256];
if (metaData.get(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_AUTH_TOKEN,atok,sizeof(atok)) > 0) {
atok[255] = (char)0; // not necessary but YDIFLO
if (strlen(atok) > 0) { // extra sanity check since we never want to compare a null token on either side
auto authTokens = network["authTokens"];
if (authTokens.is_array()) {
for(unsigned long i=0;i<authTokens.size();++i) {
auto at = authTokens[i];
if (at.is_object()) {
const uint64_t expires = _jI(at["expires"],0ULL);
std::string tok = _jS(at["token"],"");
if ( ((expires == 0ULL)||(expires > now)) && (tok.length() > 0) && (tok == atok) ) {
authorizedBy = "token";
member["authorized"] = true; // tokens actually change member authorization state
break;
}
}
}
}
}
}
}
// Log this request
{
json rlEntry = json::object();
rlEntry["ts"] = now;
rlEntry["authorized"] = (authorizedBy) ? true : false;
rlEntry["authorizedBy"] = (authorizedBy) ? authorizedBy : "";
rlEntry["clientMajorVersion"] = metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,0);
rlEntry["clientMinorVersion"] = metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,0);
rlEntry["clientRevision"] = metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,0);
rlEntry["clientProtocolVersion"] = metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,0);
if (fromAddr)
rlEntry["fromAddr"] = fromAddr.toString();
json recentLog = json::array();
recentLog.push_back(rlEntry);
auto oldLog = member["recentLog"];
if (oldLog.is_array()) {
for(unsigned long i=0;i<oldLog.size();++i) {
recentLog.push_back(oldLog[i]);
if (recentLog.size() >= ZT_NETCONF_DB_MEMBER_HISTORY_LENGTH)
break;
}
}
member["recentLog"] = recentLog;
}
// If they are not authorized, STOP!
if (!authorizedBy) {
_writeJson(memberJP,member);
return NetworkController::NETCONF_QUERY_ACCESS_DENIED;
}
// If we made it this far, they are authorized.
_NetworkMemberInfo nmi;
_getNetworkMemberInfo(now,nwid,nmi);
nc.networkId = nwid;
nc.type = _jB(network["private"],true) ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC;
nc.timestamp = now;
nc.revision = _jI(network["revision"],0ULL);
nc.issuedTo = identity.address();
if (_jB(network["enableBroadcast"],true)) nc.flags |= ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
if (_jB(network["allowPassiveBridging"],false)) nc.flags |= ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING;
Utils::scopy(nc.name,sizeof(nc.name),_jS(network["name"],"").c_str());
nc.multicastLimit = (unsigned int)_jI(network["multicastLimit"],32ULL);
for(std::set<Address>::const_iterator ab(nmi.activeBridges.begin());ab!=nmi.activeBridges.end();++ab)
nc.addSpecialist(*ab,ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE);
auto v4AssignMode = network["v4AssignMode"];
auto v6AssignMode = network["v6AssignMode"];
auto ipAssignmentPools = network["ipAssignmentPools"];
auto routes = network["routes"];
auto rules = network["rules"];
auto capabilities = network["capabilities"];
auto memberCapabilities = member["capabilities"];
auto memberTags = member["tags"];
if (rules.is_array()) {
for(unsigned long i=0;i<rules.size();++i) {
if (nc.ruleCount >= ZT_MAX_NETWORK_RULES)
break;
if (_parseRule(rules[i],nc.rules[nc.ruleCount]))
++nc.ruleCount;
}
}
if ((memberCapabilities.is_array())&&(memberCapabilities.size() > 0)&&(capabilities.is_array())) {
std::map< uint64_t,json > capsById;
for(unsigned long i=0;i<capabilities.size();++i) {
auto cap = capabilities[i];
if (cap.is_object())
capsById[_jI(cap["id"],0ULL) & 0xffffffffULL] = cap;
}
for(unsigned long i=0;i<memberCapabilities.size();++i) {
const uint64_t capId = _jI(memberCapabilities[i],0ULL) & 0xffffffffULL;
json &cap = capsById[capId];
if ((cap.is_object())&&(cap.size() > 0)) {
ZT_VirtualNetworkRule capr[ZT_MAX_CAPABILITY_RULES];
unsigned int caprc = 0;
auto caprj = cap["rules"];
if ((caprj.is_array())&&(caprj.size() > 0)) {
for(unsigned long j=0;j<caprj.size();++j) {
if (caprc >= ZT_MAX_CAPABILITY_RULES)
break;
if (_parseRule(caprj[j],capr[caprc]))
++caprc;
}
}
nc.capabilities[nc.capabilityCount] = Capability((uint32_t)capId,nwid,now,now + ZT_NETWORK_COM_DEFAULT_REVISION_MAX_DELTA,1,capr,caprc);
if (nc.capabilities[nc.capabilityCount].sign(signingId,identity.address()))
++nc.capabilityCount;
if (nc.capabilityCount >= ZT_MAX_NETWORK_CAPABILITIES)
break;
}
}
}
if (memberTags.is_array()) {
std::map< uint32_t,uint32_t > tagsById;
for(unsigned long i=0;i<memberTags.size();++i) {
auto t = memberTags[i];
if ((t.is_array())&&(t.size() == 2))
tagsById[(uint32_t)(_jI(t[0],0ULL) & 0xffffffffULL)] = (uint32_t)(_jI(t[1],0ULL) & 0xffffffffULL);
}
for(std::map< uint32_t,uint32_t >::const_iterator t(tagsById.begin());t!=tagsById.end();++t) {
if (nc.tagCount >= ZT_MAX_NETWORK_TAGS)
break;
nc.tags[nc.tagCount] = Tag(nwid,now,now + ZT_NETWORK_COM_DEFAULT_REVISION_MAX_DELTA,identity.address(),t->first,t->second);
if (nc.tags[nc.tagCount].sign(signingId))
++nc.tagCount;
}
}
if (routes.is_array()) {
for(unsigned long i=0;i<routes.size();++i) {
if (nc.routeCount >= ZT_MAX_NETWORK_ROUTES)
break;
auto route = routes[i];
InetAddress t(_jS(route["target"],""));
InetAddress v(_jS(route["via"],""));
if ((t)&&(v)&&(t.ss_family == v.ss_family)) {
ZT_VirtualNetworkRoute *r = &(nc.routes[nc.routeCount]);
*(reinterpret_cast<InetAddress *>(&(r->target))) = t;
*(reinterpret_cast<InetAddress *>(&(r->via))) = v;
++nc.routeCount;
}
}
}
if (v6AssignMode.is_object()) {
if ((_jB(v6AssignMode["rfc4193"],false))&&(nc.staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES)) {
nc.staticIps[nc.staticIpCount++] = InetAddress::makeIpv6rfc4193(nwid,identity.address().toInt());
nc.flags |= ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
}
if ((_jB(v6AssignMode["6plane"],false))&&(nc.staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES)) {
nc.staticIps[nc.staticIpCount++] = InetAddress::makeIpv66plane(nwid,identity.address().toInt());
nc.flags |= ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
}
}
bool haveManagedIpv4AutoAssignment = false;
bool haveManagedIpv6AutoAssignment = false; // "special" NDP-emulated address types do not count
json ipAssignments = member["ipAssignments"];
if (ipAssignments.is_array()) {
for(unsigned long i=0;i<ipAssignments.size();++i) {
std::string ips = ipAssignments[i];
InetAddress ip(ips);
// IP assignments are only pushed if there is a corresponding local route. We also now get the netmask bits from
// this route, ignoring the netmask bits field of the assigned IP itself. Using that was worthless and a source
// of user error / poor UX.
int routedNetmaskBits = 0;
for(unsigned int rk=0;rk<nc.routeCount;++rk) {
if ( (!nc.routes[rk].via.ss_family) && (reinterpret_cast<const InetAddress *>(&(nc.routes[rk].target))->containsAddress(ip)) )
routedNetmaskBits = reinterpret_cast<const InetAddress *>(&(nc.routes[rk].target))->netmaskBits();
}
if (routedNetmaskBits > 0) {
if (nc.staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES) {
ip.setPort(routedNetmaskBits);
nc.staticIps[nc.staticIpCount++] = ip;
}
if (ip.ss_family == AF_INET)
haveManagedIpv4AutoAssignment = true;
else if (ip.ss_family == AF_INET6)
haveManagedIpv6AutoAssignment = true;
}
}
} else {
ipAssignments = json::array();
}
if ( (ipAssignmentPools.is_array()) && ((v6AssignMode.is_object())&&(_jB(v6AssignMode["zt"],false))) && (!haveManagedIpv6AutoAssignment) && (!_jB(member["activeBridge"],false)) ) {
for(unsigned long p=0;((p<ipAssignmentPools.size())&&(!haveManagedIpv6AutoAssignment));++p) {
auto pool = ipAssignmentPools[p];
if (pool.is_object()) {
InetAddress ipRangeStart(_jS(pool["ipRangeStart"],""));
InetAddress ipRangeEnd(_jS(pool["ipRangeEnd"],""));
if ( (ipRangeStart.ss_family == AF_INET6) && (ipRangeEnd.ss_family == AF_INET6) ) {
uint64_t s[2],e[2],x[2],xx[2];
memcpy(s,ipRangeStart.rawIpData(),16);
memcpy(e,ipRangeEnd.rawIpData(),16);
s[0] = Utils::ntoh(s[0]);
s[1] = Utils::ntoh(s[1]);
e[0] = Utils::ntoh(e[0]);
e[1] = Utils::ntoh(e[1]);
x[0] = s[0];
x[1] = s[1];
for(unsigned int trialCount=0;trialCount<1000;++trialCount) {
if ((trialCount == 0)&&(e[1] > s[1])&&((e[1] - s[1]) >= 0xffffffffffULL)) {
// First see if we can just cram a ZeroTier ID into the higher 64 bits. If so do that.
xx[0] = Utils::hton(x[0]);
xx[1] = Utils::hton(x[1] + identity.address().toInt());
} else {
// Otherwise pick random addresses -- this technically doesn't explore the whole range if the lower 64 bit range is >= 1 but that won't matter since that would be huge anyway
Utils::getSecureRandom((void *)xx,16);
if ((e[0] > s[0]))
xx[0] %= (e[0] - s[0]);
else xx[0] = 0;
if ((e[1] > s[1]))
xx[1] %= (e[1] - s[1]);
else xx[1] = 0;
xx[0] = Utils::hton(x[0] + xx[0]);
xx[1] = Utils::hton(x[1] + xx[1]);
}
InetAddress ip6((const void *)xx,16,0);
// Check if this IP is within a local-to-Ethernet routed network
int routedNetmaskBits = 0;
for(unsigned int rk=0;rk<nc.routeCount;++rk) {
if ( (!nc.routes[rk].via.ss_family) && (nc.routes[rk].target.ss_family == AF_INET6) && (reinterpret_cast<const InetAddress *>(&(nc.routes[rk].target))->containsAddress(ip6)) )
routedNetmaskBits = reinterpret_cast<const InetAddress *>(&(nc.routes[rk].target))->netmaskBits();
}
// If it's routed, then try to claim and assign it and if successful end loop
if ((routedNetmaskBits > 0)&&(!nmi.allocatedIps.count(ip6))) {
ipAssignments.push_back(ip6.toIpString());
member["ipAssignments"] = ipAssignments;
ip6.setPort((unsigned int)routedNetmaskBits);
if (nc.staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES)
nc.staticIps[nc.staticIpCount++] = ip6;
haveManagedIpv4AutoAssignment = true;
break;
}
}
}
}
}
}
if ( (ipAssignmentPools.is_array()) && ((v4AssignMode.is_object())&&(_jB(v4AssignMode["zt"],false))) && (!haveManagedIpv4AutoAssignment) && (!_jB(member["activeBridge"],false)) ) {
for(unsigned long p=0;((p<ipAssignmentPools.size())&&(!haveManagedIpv4AutoAssignment));++p) {
auto pool = ipAssignmentPools[p];
if (pool.is_object()) {
InetAddress ipRangeStart(_jS(pool["ipRangeStart"],""));
InetAddress ipRangeEnd(_jS(pool["ipRangeEnd"],""));
if ( (ipRangeStart.ss_family == AF_INET) && (ipRangeEnd.ss_family == AF_INET) ) {
uint32_t ipRangeStart = Utils::ntoh((uint32_t)(reinterpret_cast<struct sockaddr_in *>(&ipRangeStart)->sin_addr.s_addr));
uint32_t ipRangeEnd = Utils::ntoh((uint32_t)(reinterpret_cast<struct sockaddr_in *>(&ipRangeEnd)->sin_addr.s_addr));
if ((ipRangeEnd <= ipRangeStart)||(ipRangeStart == 0))
continue;
uint32_t ipRangeLen = ipRangeEnd - ipRangeStart;
// Start with the LSB of the member's address
uint32_t ipTrialCounter = (uint32_t)(identity.address().toInt() & 0xffffffff);
for(uint32_t k=ipRangeStart,trialCount=0;(k<=ipRangeEnd)&&(trialCount < 1000);++k,++trialCount) {
uint32_t ip = (ipRangeLen > 0) ? (ipRangeStart + (ipTrialCounter % ipRangeLen)) : ipRangeStart;
++ipTrialCounter;
if ((ip & 0x000000ff) == 0x000000ff)
continue; // don't allow addresses that end in .255
// Check if this IP is within a local-to-Ethernet routed network
int routedNetmaskBits = 0;
for(unsigned int rk=0;rk<nc.routeCount;++rk) {
if ((!nc.routes[rk].via.ss_family)&&(nc.routes[rk].target.ss_family == AF_INET)) {
uint32_t targetIp = Utils::ntoh((uint32_t)(reinterpret_cast<const struct sockaddr_in *>(&(nc.routes[rk].target))->sin_addr.s_addr));
int targetBits = Utils::ntoh((uint16_t)(reinterpret_cast<const struct sockaddr_in *>(&(nc.routes[rk].target))->sin_port));
if ((ip & (0xffffffff << (32 - targetBits))) == targetIp) {
routedNetmaskBits = targetBits;
break;
}
}
}
InetAddress ip4(Utils::hton(ip),0);
// If it's routed, then try to claim and assign it and if successful end loop
if ((routedNetmaskBits > 0)&&(!nmi.allocatedIps.count(ip4))) {
ipAssignments.push_back(ip4.toIpString());
member["ipAssignments"] = ipAssignments;
if (nc.staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES) {
struct sockaddr_in *const v4ip = reinterpret_cast<struct sockaddr_in *>(&(nc.staticIps[nc.staticIpCount++]));
v4ip->sin_family = AF_INET;
v4ip->sin_port = Utils::hton((uint16_t)routedNetmaskBits);
v4ip->sin_addr.s_addr = Utils::hton(ip);
}
haveManagedIpv4AutoAssignment = true;
break;
}
}
}
}
}
}
if (_jB(network["private"],true)) {
CertificateOfMembership com(now,ZT_NETWORK_COM_DEFAULT_REVISION_MAX_DELTA,nwid,identity.address());
if (com.sign(signingId)) {
nc.com = com;
} else {
return NETCONF_QUERY_INTERNAL_SERVER_ERROR;
}
}
_writeJson(memberJP,member);
return NetworkController::NETCONF_QUERY_OK;
}
unsigned int EmbeddedNetworkController::handleControlPlaneHttpGET(
const std::vector<std::string> &path,
const std::map<std::string,std::string> &urlArgs,
const std::map<std::string,std::string> &headers,
const std::string &body,
std::string &responseBody,
std::string &responseContentType)
{
if ((path.size() > 0)&&(path[0] == "network")) {
if ((path.size() >= 2)&&(path[1].length() == 16)) {
const uint64_t nwid = Utils::hexStrToU64(path[1].c_str());
char nwids[24];
Utils::snprintf(nwids,sizeof(nwids),"%.16llx",(unsigned long long)nwid);
json network(_readJson(_networkJP(nwid,false)));
if (!network.size())
return 404;
if (path.size() >= 3) {
if (path[2] == "member") {
if (path.size() >= 4) {
const uint64_t address = Utils::hexStrToU64(path[3].c_str());
json member(_readJson(_memberJP(nwid,Address(address),false)));
if (!member.size())
return 404;
char addrs[24];
Utils::snprintf(addrs,sizeof(addrs),"%.10llx",address);
// Add non-persisted fields
member["clock"] = OSUtils::now();
responseBody = member.dump(2);
responseContentType = "application/json";
return 200;
} else {
responseBody = "{";
std::vector<std::string> members(OSUtils::listSubdirectories((_networkBP(nwid,false) + ZT_PATH_SEPARATOR_S + "member").c_str()));
for(std::vector<std::string>::iterator i(members.begin());i!=members.end();++i) {
if (i->length() == ZT_ADDRESS_LENGTH_HEX) {
json member(_readJson(_memberJP(nwid,Address(Utils::hexStrToU64(i->c_str())),false)));
if (member.size()) {
responseBody.append((responseBody.length() == 1) ? "\"" : ",\"");
responseBody.append(*i);
responseBody.append("\":");
responseBody.append(_jS(member["revision"],"0"));
}
}
}
responseBody.push_back('}');
responseContentType = "application/json";
return 200;
}
} else if ((path[2] == "active")&&(path.size() == 3)) {
responseBody = "{";
std::vector<std::string> members(OSUtils::listSubdirectories((_networkBP(nwid,false) + ZT_PATH_SEPARATOR_S + "member").c_str()));
const uint64_t threshold = OSUtils::now() - ZT_NETCONF_NODE_ACTIVE_THRESHOLD;
for(std::vector<std::string>::iterator i(members.begin());i!=members.end();++i) {
if (i->length() == ZT_ADDRESS_LENGTH_HEX) {
json member(_readJson(_memberJP(nwid,Address(Utils::hexStrToU64(i->c_str())),false)));
if (member.size()) {
auto recentLog = member["recentLog"];
if ((recentLog.is_array())&&(recentLog.size() > 0)) {
auto mostRecentLog = recentLog[0];
if ((mostRecentLog.is_object())&&(_jI(mostRecentLog["ts"],0ULL) >= threshold)) {
responseBody.append((responseBody.length() == 1) ? "\"" : ",\"");
responseBody.append(*i);
responseBody.append("\":");
responseBody.append(mostRecentLog.dump());
}
}
}
}
}
responseBody.push_back('}');
responseContentType = "application/json";
return 200;
} else if ((path[2] == "test")&&(path.size() >= 4)) {
Mutex::Lock _l(_circuitTests_m);
std::map< uint64_t,_CircuitTestEntry >::iterator cte(_circuitTests.find(Utils::hexStrToU64(path[3].c_str())));
if ((cte != _circuitTests.end())&&(cte->second.test)) {
responseBody = "[";
responseBody.append(cte->second.jsonResults);
responseBody.push_back(']');
responseContentType = "application/json";
return 200;
} // else 404
} // else 404
} else {
const uint64_t now = OSUtils::now();
_NetworkMemberInfo nmi;
_getNetworkMemberInfo(now,nwid,nmi);
_addNetworkNonPersistedFields(network,now,nmi);
responseBody = network.dump(2);
responseContentType = "application/json";
return 200;
}
} else if (path.size() == 1) {
responseBody = "[";
std::vector<std::string> networks(OSUtils::listSubdirectories((_path + ZT_PATH_SEPARATOR_S + "network").c_str()));
for(auto i(networks.begin());i!=networks.end();++i) {
if (i->length() == 16) {
responseBody.append((responseBody.length() == 1) ? "\"" : ",\"");
responseBody.append(*i);
responseBody.append("\"");
}
}
responseBody.push_back(']');
responseContentType = "application/json";
return 200;
} // else 404
} else {
char tmp[4096];
Utils::snprintf(tmp,sizeof(tmp),"{\n\t\"controller\": true,\n\t\"apiVersion\": %d,\n\t\"clock\": %llu\n}\n",ZT_NETCONF_CONTROLLER_API_VERSION,(unsigned long long)OSUtils::now());
responseBody = tmp;
responseContentType = "application/json";
return 200;
}
return 404;
}
unsigned int EmbeddedNetworkController::handleControlPlaneHttpPOST(
const std::vector<std::string> &path,
const std::map<std::string,std::string> &urlArgs,
const std::map<std::string,std::string> &headers,
const std::string &body,
std::string &responseBody,
std::string &responseContentType)
{
if (path.empty())
return 404;
json b;
try {
b = json::parse(body);
if (!b.is_object())
return 400;
} catch ( ... ) {
return 400;
}
const uint64_t now = OSUtils::now();
if (path[0] == "network") {
if ((path.size() >= 2)&&(path[1].length() == 16)) {
uint64_t nwid = Utils::hexStrToU64(path[1].c_str());
char nwids[24];
Utils::snprintf(nwids,sizeof(nwids),"%.16llx",(unsigned long long)nwid);
if (path.size() >= 3) {
json network(_readJson(_networkJP(nwid,false)));
if (!network.size())
return 404;
if ((path.size() == 4)&&(path[2] == "member")&&(path[3].length() == 10)) {
uint64_t address = Utils::hexStrToU64(path[3].c_str());
char addrs[24];
Utils::snprintf(addrs,sizeof(addrs),"%.10llx",(unsigned long long)address);
json member(_readJson(_memberJP(nwid,Address(address),true)));
_initMember(member);
try {
if (b.count("authorized")) member["authorized"] = _jB(b["authorized"],false);
if (b.count("activeBridge")) member["activeBridge"] = _jB(b["activeBridge"],false);
if ((b.count("identity"))&&(!member.count("identity"))) member["identity"] = _jS(b["identity"],""); // allow identity to be populated only if not already known
if (b.count("ipAssignments")) {
auto ipa = b["ipAssignments"];
if (ipa.is_array()) {
json mipa(json::array());
for(unsigned long i=0;i<ipa.size();++i) {
std::string ips = ipa[i];
InetAddress ip(ips);
if ((ip.ss_family == AF_INET)||(ip.ss_family == AF_INET6)) {
mipa.push_back(ip.toIpString());
}
}
member["ipAssignments"] = mipa;
}
}
if (b.count("tags")) {
auto tags = b["tags"];
if (tags.is_array()) {
std::map<uint64_t,uint64_t> mtags;
for(unsigned long i=0;i<tags.size();++i) {
auto tag = tags[i];
if ((tag.is_array())&&(tag.size() == 2))
mtags[_jI(tag[0],0ULL) & 0xffffffffULL] = _jI(tag[1],0ULL) & 0xffffffffULL;
}
json mtagsa = json::array();
for(std::map<uint64_t,uint64_t>::iterator t(mtags.begin());t!=mtags.end();++t) {
json ta = json::array();
ta.push_back(t->first);
ta.push_back(t->second);
mtagsa.push_back(ta);
}
member["tags"] = mtagsa;
}
}
if (b.count("capabilities")) {
auto capabilities = b["capabilities"];
if (capabilities.is_array()) {
json mcaps = json::array();
for(unsigned long i=0;i<capabilities.size();++i) {
mcaps.push_back(_jI(capabilities[i],0ULL));
}
std::sort(mcaps.begin(),mcaps.end());
mcaps.erase(std::unique(mcaps.begin(),mcaps.end()),mcaps.end());
member["capabilities"] = mcaps;
}
}
} catch ( ... ) {
return 400;
}
member["id"] = addrs;
member["address"] = addrs; // legacy
member["nwid"] = nwids;
member["lastModified"] = now;
{
auto revj = member["revision"];
const uint64_t rev = (revj.is_number() ? ((uint64_t)revj + 1ULL) : 1ULL);
member["revision"] = rev;
}
_writeJson(_memberJP(nwid,Address(address),true).c_str(),member);
// Add non-persisted fields
member["clock"] = member["lastModified"];
responseBody = member.dump(2);
responseContentType = "application/json";
return 200;
} else if ((path.size() == 3)&&(path[2] == "test")) {
Mutex::Lock _l(_circuitTests_m);
ZT_CircuitTest *test = (ZT_CircuitTest *)malloc(sizeof(ZT_CircuitTest));
memset(test,0,sizeof(ZT_CircuitTest));
Utils::getSecureRandom(&(test->testId),sizeof(test->testId));
test->credentialNetworkId = nwid;
test->ptr = (void *)this;
json hops = b["hops"];
if (hops.is_array()) {
for(unsigned long i=0;i<hops.size();++i) {
auto hops2 = hops[i];
if (hops2.is_array()) {
for(unsigned long j=0;j<hops2.size();++j) {
std::string s = hops2[j];
test->hops[test->hopCount].addresses[test->hops[test->hopCount].breadth++] = Utils::hexStrToU64(s.c_str()) & 0xffffffffffULL;
}
} else if (hops2.is_string()) {
std::string s = hops2;
test->hops[test->hopCount].addresses[test->hops[test->hopCount].breadth++] = Utils::hexStrToU64(s.c_str()) & 0xffffffffffULL;
}
}
}
test->reportAtEveryHop = (_jB(b["reportAtEveryHop"],true) ? 1 : 0);
if (!test->hopCount) {
::free((void *)test);
return 400;
}
test->timestamp = OSUtils::now();
_CircuitTestEntry &te = _circuitTests[test->testId];
te.test = test;
te.jsonResults = "";
_node->circuitTestBegin(test,&(EmbeddedNetworkController::_circuitTestCallback));
char json[1024];
Utils::snprintf(json,sizeof(json),"{\"testId\":\"%.16llx\"}",test->testId);
responseBody = json;
responseContentType = "application/json";
return 200;
} // else 404
} else {
// POST to network ID
// Magic ID ending with ______ picks a random unused network ID
if (path[1].substr(10) == "______") {
nwid = 0;
uint64_t nwidPrefix = (Utils::hexStrToU64(path[1].substr(0,10).c_str()) << 24) & 0xffffffffff000000ULL;
uint64_t nwidPostfix = 0;
for(unsigned long k=0;k<100000;++k) { // sanity limit on trials
Utils::getSecureRandom(&nwidPostfix,sizeof(nwidPostfix));
uint64_t tryNwid = nwidPrefix | (nwidPostfix & 0xffffffULL);
if ((tryNwid & 0xffffffULL) == 0ULL) tryNwid |= 1ULL;
Utils::snprintf(nwids,sizeof(nwids),"%.16llx",(unsigned long long)tryNwid);
if (!OSUtils::fileExists(_networkJP(tryNwid,false).c_str())) {
nwid = tryNwid;
break;
}
}
if (!nwid)
return 503;
}
json network(_readJson(_networkJP(nwid,true)));
_initNetwork(network);
try {
if (b.count("name")) network["name"] = _jS(b["name"],"");
if (b.count("private")) network["private"] = _jB(b["private"],true);
if (b.count("enableBroadcast")) network["enableBroadcast"] = _jB(b["enableBroadcast"],false);
if (b.count("allowPassiveBridging")) network["allowPassiveBridging"] = _jB(b["allowPassiveBridging"],false);
if (b.count("multicastLimit")) network["multicastLimit"] = _jI(b["multicastLimit"],32ULL);
if (b.count("v4AssignMode")) {
auto nv4m = network["v4AssignMode"];
if (!nv4m.is_object()) nv4m = json::object();
if (b["v4AssignMode"].is_string()) { // backward compatibility
nv4m["zt"] = (_jS(b["v4AssignMode"],"") == "zt");
} else if (b["v4AssignMode"].is_object()) {
auto v4m = b["v4AssignMode"];
if (v4m.count("zt")) nv4m["zt"] = _jB(v4m["zt"],false);
}
if (!nv4m.count("zt")) nv4m["zt"] = false;
}
if (b.count("v6AssignMode")) {
auto nv6m = network["v6AssignMode"];
if (!nv6m.is_object()) nv6m = json::object();
if (b["v6AssignMode"].is_string()) { // backward compatibility
std::vector<std::string> v6m(Utils::split(_jS(b["v6AssignMode"],"").c_str(),",","",""));
std::sort(v6m.begin(),v6m.end());
v6m.erase(std::unique(v6m.begin(),v6m.end()),v6m.end());
for(std::vector<std::string>::iterator i(v6m.begin());i!=v6m.end();++i) {
if (*i == "rfc4193")
nv6m["rfc4193"] = true;
else if (*i == "zt")
nv6m["zt"] = true;
else if (*i == "6plane")
nv6m["6plane"] = true;
}
} else if (b["v6AssignMode"].is_object()) {
auto v6m = b["v6AssignMode"];
if (v6m.count("rfc4193")) nv6m["rfc4193"] = _jB(v6m["rfc4193"],false);
if (v6m.count("zt")) nv6m["rfc4193"] = _jB(v6m["zt"],false);
if (v6m.count("6plane")) nv6m["rfc4193"] = _jB(v6m["6plane"],false);
}
if (!nv6m.count("rfc4193")) nv6m["rfc4193"] = false;
if (!nv6m.count("zt")) nv6m["zt"] = false;
if (!nv6m.count("6plane")) nv6m["6plane"] = false;
}
if (b.count("routes")) {
auto rts = b["routes"];
if (rts.is_array()) {
for(unsigned long i=0;i<rts.size();++i) {
auto rt = rts[i];
if ((rt.is_object())&&(rt.count("target"))&&(rt.count("via"))) {
InetAddress t(_jS(rt["target"],""));
InetAddress v(_jS(rt["via"],""));
if ( ((t.ss_family == AF_INET)||(t.ss_family == AF_INET6)) && (t.ss_family == v.ss_family) && (t.netmaskBitsValid()) ) {
auto nrts = network["routes"];
if (!nrts.is_array()) nrts = json::array();
json tmp;
tmp["target"] = t.toString();
tmp["via"] = v.toIpString();
nrts.push_back(tmp);
}
}
}
}
}
if (b.count("ipAssignmentPools")) {
auto ipp = b["ipAssignmentPools"];
if (ipp.is_array()) {
for(unsigned long i=0;i<ipp.size();++i) {
auto ip = ipp[i];
if ((ip.is_object())&&(ip.count("ipRangeStart"))&&(ip.count("ipRangeEnd"))) {
InetAddress f(_jS(ip["ipRangeStart"],""));
InetAddress t(_jS(ip["ipRangeEnd"],""));
if ( ((f.ss_family == AF_INET)||(f.ss_family == AF_INET6)) && (f.ss_family == t.ss_family) ) {
auto nipp = network["ipAssignmentPools"];
if (!nipp.is_array()) nipp = json::array();
json tmp;
tmp["ipRangeStart"] = f.toIpString();
tmp["ipRangeEnd"] = t.toIpString();
nipp.push_back(tmp);
}
}
}
}
}
if (b.count("rules")) {
auto rules = b["rules"];
if (rules.is_array()) {
json nrules = json::array();
for(unsigned long i=0;i<rules.size();++i) {
json rule = rules[i];
if (rule.is_object()) {
ZT_VirtualNetworkRule ztr;
if (_parseRule(rule,ztr)) {
rule = _renderRule(ztr);
if ((rule.is_object())&&(rule.count("type"))) {
nrules.push_back(rule);
}
}
}
}
network["rules"] = nrules;
}
}
if (b.count("authTokens")) {
auto authTokens = b["authTokens"];
if (authTokens.is_array()) {
json nat = json::array();
for(unsigned long i=0;i<authTokens.size();++i) {
auto token = authTokens[i];
if (token.is_object()) {
std::string tstr = token["token"];
if (tstr.length() > 0) {
json t = json::object();
t["token"] = tstr;
t["expires"] = _jI(token["expires"],0ULL);
nat.push_back(t);
}
}
}
network["authTokens"] = nat;
}
}
if (b.count("capabilities")) {
auto capabilities = b["capabilities"];
if (capabilities.is_array()) {
std::map< uint64_t,json > ncaps;
for(unsigned long i=0;i<capabilities.size();++i) {
auto cap = capabilities[i];
if (cap.is_object()) {
json ncap = json::object();
const uint64_t capId = _jI(cap["id"],0ULL);
ncap["id"] = capId;
auto rules = cap["rules"];
json nrules = json::array();
if (rules.is_array()) {
for(unsigned long i=0;i<rules.size();++i) {
json rule = rules[i];
if (rule.is_object()) {
ZT_VirtualNetworkRule ztr;
if (_parseRule(rule,ztr)) {
rule = _renderRule(ztr);
if ((rule.is_object())&&(rule.count("type"))) {
nrules.push_back(rule);
}
}
}
}
}
ncap["rules"] = nrules;
ncaps[capId] = ncap;
}
}
json ncapsa = json::array();
for(std::map< uint64_t,json >::iterator c(ncaps.begin());c!=ncaps.end();++c)
ncapsa.push_back(c->second);
network["capabilities"] = ncapsa;
}
}
} catch ( ... ) {
return 400;
}
network["id"] = nwids;
network["nwid"] = nwids; // legacy
auto rev = network["revision"];
network["revision"] = (rev.is_number() ? ((uint64_t)rev + 1ULL) : 1ULL);
network["lastModified"] = now;
_writeJson(_networkJP(nwid,true),network);
_NetworkMemberInfo nmi;
_getNetworkMemberInfo(now,nwid,nmi);
_addNetworkNonPersistedFields(network,now,nmi);
responseBody = network.dump(2);
responseContentType = "application/json";
return 200;
} // else 404
} // else 404
} // else 404
return 404;
}
unsigned int EmbeddedNetworkController::handleControlPlaneHttpDELETE(
const std::vector<std::string> &path,
const std::map<std::string,std::string> &urlArgs,
const std::map<std::string,std::string> &headers,
const std::string &body,
std::string &responseBody,
std::string &responseContentType)
{
if (path.empty())
return 404;
if (path[0] == "network") {
if ((path.size() >= 2)&&(path[1].length() == 16)) {
const uint64_t nwid = Utils::hexStrToU64(path[1].c_str());
json network(_readJson(_networkJP(nwid,false)));
if (!network.size())
return 404;
if (path.size() >= 3) {
if ((path.size() == 4)&&(path[2] == "member")&&(path[3].length() == 10)) {
const uint64_t address = Utils::hexStrToU64(path[3].c_str());
json member(_readJson(_memberJP(nwid,Address(address),false)));
if (!member.size())
return 404;
OSUtils::rmDashRf(_memberBP(nwid,Address(address),false).c_str());
responseBody = member.dump(2);
responseContentType = "application/json";
return 200;
}
} else {
OSUtils::rmDashRf(_networkBP(nwid,false).c_str());
{
Mutex::Lock _l(_networkMemberCache_m);
_networkMemberCache.erase(nwid);
}
responseBody = network.dump(2);
responseContentType = "application/json";
return 200;
}
} // else 404
} // else 404
return 404;
}
void EmbeddedNetworkController::_circuitTestCallback(ZT_Node *node,ZT_CircuitTest *test,const ZT_CircuitTestReport *report)
{
char tmp[65535];
EmbeddedNetworkController *const self = reinterpret_cast<EmbeddedNetworkController *>(test->ptr);
if (!test)
return;
if (!report)
return;
Mutex::Lock _l(self->_circuitTests_m);
std::map< uint64_t,_CircuitTestEntry >::iterator cte(self->_circuitTests.find(test->testId));
if (cte == self->_circuitTests.end()) { // sanity check: a circuit test we didn't launch?
self->_node->circuitTestEnd(test);
::free((void *)test);
return;
}
Utils::snprintf(tmp,sizeof(tmp),
"%s{\n"
"\t\"timestamp\": %llu," ZT_EOL_S
"\t\"testId\": \"%.16llx\"," ZT_EOL_S
"\t\"upstream\": \"%.10llx\"," ZT_EOL_S
"\t\"current\": \"%.10llx\"," ZT_EOL_S
"\t\"receivedTimestamp\": %llu," ZT_EOL_S
"\t\"remoteTimestamp\": %llu," ZT_EOL_S
"\t\"sourcePacketId\": \"%.16llx\"," ZT_EOL_S
"\t\"flags\": %llu," ZT_EOL_S
"\t\"sourcePacketHopCount\": %u," ZT_EOL_S
"\t\"errorCode\": %u," ZT_EOL_S
"\t\"vendor\": %d," ZT_EOL_S
"\t\"protocolVersion\": %u," ZT_EOL_S
"\t\"majorVersion\": %u," ZT_EOL_S
"\t\"minorVersion\": %u," ZT_EOL_S
"\t\"revision\": %u," ZT_EOL_S
"\t\"platform\": %d," ZT_EOL_S
"\t\"architecture\": %d," ZT_EOL_S
"\t\"receivedOnLocalAddress\": \"%s\"," ZT_EOL_S
"\t\"receivedFromRemoteAddress\": \"%s\"" ZT_EOL_S
"}",
((cte->second.jsonResults.length() > 0) ? ",\n" : ""),
(unsigned long long)report->timestamp,
(unsigned long long)test->testId,
(unsigned long long)report->upstream,
(unsigned long long)report->current,
(unsigned long long)OSUtils::now(),
(unsigned long long)report->remoteTimestamp,
(unsigned long long)report->sourcePacketId,
(unsigned long long)report->flags,
report->sourcePacketHopCount,
report->errorCode,
(int)report->vendor,
report->protocolVersion,
report->majorVersion,
report->minorVersion,
report->revision,
(int)report->platform,
(int)report->architecture,
reinterpret_cast<const InetAddress *>(&(report->receivedOnLocalAddress))->toString().c_str(),
reinterpret_cast<const InetAddress *>(&(report->receivedFromRemoteAddress))->toString().c_str());
cte->second.jsonResults.append(tmp);
}
void EmbeddedNetworkController::_getNetworkMemberInfo(uint64_t now,uint64_t nwid,_NetworkMemberInfo &nmi)
{
Mutex::Lock _mcl(_networkMemberCache_m);
auto memberCacheEntry = _networkMemberCache[nwid];
if ((now - memberCacheEntry.second) >= ZT_NETCONF_NETWORK_MEMBER_CACHE_EXPIRE) {
const std::string bp(_networkBP(nwid,false) + ZT_PATH_SEPARATOR_S + "member");
std::vector<std::string> members(OSUtils::listSubdirectories(bp.c_str()));
for(std::vector<std::string>::iterator m(members.begin());m!=members.end();++m) {
if (m->length() == ZT_ADDRESS_LENGTH_HEX) {
nlohmann::json mj(_readJson(bp + ZT_PATH_SEPARATOR_S + *m + ZT_PATH_SEPARATOR_S + "config.json"));
if ((mj.is_object())&&(mj.size() > 0)) {
memberCacheEntry.first[Address(*m)] = mj;
}
}
}
memberCacheEntry.second = now;
}
nmi.totalMemberCount = memberCacheEntry.first.size();
for(std::map< Address,nlohmann::json >::const_iterator nm(memberCacheEntry.first.begin());nm!=memberCacheEntry.first.end();++nm) {
if (_jB(nm->second["authorized"],false)) {
++nmi.authorizedMemberCount;
auto mlog = nm->second["recentLog"];
if ((mlog.is_array())&&(mlog.size() > 0)) {
auto mlog1 = mlog[0];
if (mlog1.is_object()) {
if ((now - _jI(mlog1["ts"],0ULL)) < ZT_NETCONF_NODE_ACTIVE_THRESHOLD)
++nmi.activeMemberCount;
}
}
if (_jB(nm->second["activeBridge"],false)) {
nmi.activeBridges.insert(nm->first);
}
auto mips = nm->second["ipAssignments"];
if (mips.is_array()) {
for(unsigned long i=0;i<mips.size();++i) {
InetAddress mip(_jS(mips[i],""));
if ((mip.ss_family == AF_INET)||(mip.ss_family == AF_INET6))
nmi.allocatedIps.insert(mip);
}
}
}
}
}
} // namespace ZeroTier