ZeroTierOne/node/Node.cpp

1018 lines
36 KiB
C++

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2011-2014 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <map>
#include <set>
#include <utility>
#include <algorithm>
#include <list>
#include <vector>
#include <string>
#include "Constants.hpp"
#ifdef __WINDOWS__
#include <WinSock2.h>
#include <Windows.h>
#include <ShlObj.h>
#else
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>
#include <sys/file.h>
#endif
#include "../version.h"
#include "Node.hpp"
#include "RuntimeEnvironment.hpp"
#include "Logger.hpp"
#include "Utils.hpp"
#include "Defaults.hpp"
#include "Identity.hpp"
#include "Topology.hpp"
#include "SocketManager.hpp"
#include "Packet.hpp"
#include "Switch.hpp"
#include "EthernetTap.hpp"
#include "CMWC4096.hpp"
#include "NodeConfig.hpp"
#include "Network.hpp"
#include "MulticastGroup.hpp"
#include "Multicaster.hpp"
#include "Mutex.hpp"
#include "Service.hpp"
#include "SoftwareUpdater.hpp"
#include "Buffer.hpp"
#include "AntiRecursion.hpp"
#include "RoutingTable.hpp"
#include "HttpClient.hpp"
namespace ZeroTier {
struct _NodeImpl
{
RuntimeEnvironment renv;
unsigned int udpPort,tcpPort;
std::string reasonForTerminationStr;
volatile Node::ReasonForTermination reasonForTermination;
volatile bool started;
volatile bool running;
volatile bool resynchronize;
volatile bool disableRootTopologyUpdates;
// This function performs final node tear-down
inline Node::ReasonForTermination terminate()
{
RuntimeEnvironment *RR = &renv;
LOG("terminating: %s",reasonForTerminationStr.c_str());
renv.shutdownInProgress = true;
Thread::sleep(500);
running = false;
#ifndef __WINDOWS__
delete renv.netconfService;
#endif
delete renv.updater; renv.updater = (SoftwareUpdater *)0;
delete renv.nc; renv.nc = (NodeConfig *)0; // shut down all networks, close taps, etc.
delete renv.topology; renv.topology = (Topology *)0; // now we no longer need routing info
delete renv.sm; renv.sm = (SocketManager *)0; // close all sockets
delete renv.sw; renv.sw = (Switch *)0; // order matters less from here down
delete renv.mc; renv.mc = (Multicaster *)0;
delete renv.antiRec; renv.antiRec = (AntiRecursion *)0;
delete renv.http; renv.http = (HttpClient *)0;
delete renv.prng; renv.prng = (CMWC4096 *)0;
delete renv.log; renv.log = (Logger *)0; // but stop logging last of all
return reasonForTermination;
}
inline Node::ReasonForTermination terminateBecause(Node::ReasonForTermination r,const char *rstr)
{
reasonForTerminationStr = rstr;
reasonForTermination = r;
return terminate();
}
};
#ifndef __WINDOWS__ // "services" are not supported on Windows
static void _netconfServiceMessageHandler(void *renv,Service &svc,const Dictionary &msg)
{
if (!renv)
return; // sanity check
const RuntimeEnvironment *RR = (const RuntimeEnvironment *)renv;
try {
//TRACE("from netconf:\n%s",msg.toString().c_str());
const std::string &type = msg.get("type");
if (type == "ready") {
LOG("received 'ready' from netconf.service, sending netconf-init with identity information...");
Dictionary initMessage;
initMessage["type"] = "netconf-init";
initMessage["netconfId"] = RR->identity.toString(true);
RR->netconfService->send(initMessage);
} else if (type == "netconf-response") {
uint64_t inRePacketId = strtoull(msg.get("requestId").c_str(),(char **)0,16);
uint64_t nwid = strtoull(msg.get("nwid").c_str(),(char **)0,16);
Address peerAddress(msg.get("peer").c_str());
if (peerAddress) {
if (msg.contains("error")) {
Packet::ErrorCode errCode = Packet::ERROR_INVALID_REQUEST;
const std::string &err = msg.get("error");
if (err == "OBJ_NOT_FOUND")
errCode = Packet::ERROR_OBJ_NOT_FOUND;
else if (err == "ACCESS_DENIED")
errCode = Packet::ERROR_NETWORK_ACCESS_DENIED_;
Packet outp(peerAddress,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(inRePacketId);
outp.append((unsigned char)errCode);
outp.append(nwid);
RR->sw->send(outp,true);
} else if (msg.contains("netconf")) {
const std::string &netconf = msg.get("netconf");
if (netconf.length() < 2048) { // sanity check
Packet outp(peerAddress,RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(inRePacketId);
outp.append(nwid);
outp.append((uint16_t)netconf.length());
outp.append(netconf.data(),netconf.length());
outp.compress();
RR->sw->send(outp,true);
}
}
}
} else if (type == "netconf-push") {
if (msg.contains("to")) {
Dictionary to(msg.get("to")); // key: peer address, value: comma-delimited network list
for(Dictionary::iterator t(to.begin());t!=to.end();++t) {
Address ztaddr(t->first);
if (ztaddr) {
Packet outp(ztaddr,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REFRESH);
char *saveptr = (char *)0;
// Note: this loop trashes t->second, which is quasi-legal C++ but
// shouldn't break anything as long as we don't try to use 'to'
// for anything interesting after doing this.
for(char *p=Utils::stok(const_cast<char *>(t->second.c_str()),",",&saveptr);(p);p=Utils::stok((char *)0,",",&saveptr)) {
uint64_t nwid = Utils::hexStrToU64(p);
if (nwid) {
if ((outp.size() + sizeof(uint64_t)) >= ZT_UDP_DEFAULT_PAYLOAD_MTU) {
RR->sw->send(outp,true);
outp.reset(ztaddr,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REFRESH);
}
outp.append(nwid);
}
}
if (outp.payloadLength())
RR->sw->send(outp,true);
}
}
}
}
} catch (std::exception &exc) {
LOG("unexpected exception parsing response from netconf service: %s",exc.what());
} catch ( ... ) {
LOG("unexpected exception parsing response from netconf service: unknown exception");
}
}
#endif // !__WINDOWS__
Node::Node(
const char *hp,
EthernetTapFactory *tf,
RoutingTable *rt,
unsigned int udpPort,
unsigned int tcpPort,
bool resetIdentity)
throw() :
_impl(new _NodeImpl)
{
_NodeImpl *impl = (_NodeImpl *)_impl;
if ((hp)&&(hp[0]))
impl->renv.homePath = hp;
else impl->renv.homePath = ZT_DEFAULTS.defaultHomePath;
impl->renv.tapFactory = tf;
impl->renv.routingTable = rt;
if (resetIdentity) {
// Forget identity and peer database, peer keys, etc.
Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "identity.public").c_str());
Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "identity.secret").c_str());
Utils::rm((impl->renv.homePath + ZT_PATH_SEPARATOR_S + "peers.persist").c_str());
// Truncate network config information in networks.d but leave the files since we
// still want to remember any networks we have joined. This will force those networks
// to be reconfigured with our newly regenerated identity after startup.
std::string networksDotD(impl->renv.homePath + ZT_PATH_SEPARATOR_S + "networks.d");
std::map< std::string,bool > nwfiles(Utils::listDirectory(networksDotD.c_str()));
for(std::map<std::string,bool>::iterator nwf(nwfiles.begin());nwf!=nwfiles.end();++nwf) {
FILE *trun = fopen((networksDotD + ZT_PATH_SEPARATOR_S + nwf->first).c_str(),"w");
if (trun)
fclose(trun);
}
}
impl->udpPort = udpPort & 0xffff;
impl->tcpPort = tcpPort & 0xffff;
impl->reasonForTermination = Node::NODE_RUNNING;
impl->started = false;
impl->running = false;
impl->resynchronize = false;
impl->disableRootTopologyUpdates = false;
}
Node::~Node()
{
delete (_NodeImpl *)_impl;
}
static void _CBztTraffic(const SharedPtr<Socket> &fromSock,void *arg,const InetAddress &from,Buffer<ZT_SOCKET_MAX_MESSAGE_LEN> &data)
{
const RuntimeEnvironment *RR = (const RuntimeEnvironment *)arg;
if ((RR->sw)&&(!RR->shutdownInProgress))
RR->sw->onRemotePacket(fromSock,from,data);
}
static void _cbHandleGetRootTopology(void *arg,int code,const std::string &url,const std::string &body)
{
RuntimeEnvironment *RR = (RuntimeEnvironment *)arg;
if (RR->shutdownInProgress)
return;
if ((code != 200)||(body.length() == 0)) {
TRACE("failed to retrieve %s",url.c_str());
return;
}
try {
Dictionary rt(body);
if (!Topology::authenticateRootTopology(rt)) {
LOG("discarded invalid root topology update from %s (signature check failed)",url.c_str());
return;
}
{
std::string rootTopologyPath(RR->homePath + ZT_PATH_SEPARATOR_S + "root-topology");
std::string rootTopology;
if (Utils::readFile(rootTopologyPath.c_str(),rootTopology)) {
Dictionary alreadyHave(rootTopology);
if (alreadyHave == rt) {
TRACE("retrieved root topology from %s but no change (same as on disk)",url.c_str());
return;
} else if (alreadyHave.signatureTimestamp() > rt.signatureTimestamp()) {
TRACE("retrieved root topology from %s but no change (ours is newer)",url.c_str());
return;
}
}
Utils::writeFile(rootTopologyPath.c_str(),body);
}
RR->topology->setSupernodes(Dictionary(rt.get("supernodes")));
} catch ( ... ) {
LOG("discarded invalid root topology update from %s (format invalid)",url.c_str());
return;
}
}
Node::ReasonForTermination Node::run()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
impl->started = true;
impl->running = true;
try {
#ifdef ZT_LOG_STDOUT
RR->log = new Logger((const char *)0,(const char *)0,0);
#else
RR->log = new Logger((RR->homePath + ZT_PATH_SEPARATOR_S + "node.log").c_str(),(const char *)0,131072);
#endif
LOG("starting version %s",versionString());
// Create non-crypto PRNG right away in case other code in init wants to use it
RR->prng = new CMWC4096();
// Read identity public and secret, generating if not present
{
bool gotId = false;
std::string identitySecretPath(RR->homePath + ZT_PATH_SEPARATOR_S + "identity.secret");
std::string identityPublicPath(RR->homePath + ZT_PATH_SEPARATOR_S + "identity.public");
std::string idser;
if (Utils::readFile(identitySecretPath.c_str(),idser))
gotId = RR->identity.fromString(idser);
if ((gotId)&&(!RR->identity.locallyValidate()))
gotId = false;
if (gotId) {
// Make sure identity.public matches identity.secret
idser = std::string();
Utils::readFile(identityPublicPath.c_str(),idser);
std::string pubid(RR->identity.toString(false));
if (idser != pubid) {
if (!Utils::writeFile(identityPublicPath.c_str(),pubid))
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.public (home path not writable?)");
}
} else {
LOG("no identity found or identity invalid, generating one... this might take a few seconds...");
RR->identity.generate();
LOG("generated new identity: %s",RR->identity.address().toString().c_str());
idser = RR->identity.toString(true);
if (!Utils::writeFile(identitySecretPath.c_str(),idser))
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.secret (home path not writable?)");
idser = RR->identity.toString(false);
if (!Utils::writeFile(identityPublicPath.c_str(),idser))
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"could not write identity.public (home path not writable?)");
}
Utils::lockDownFile(identitySecretPath.c_str(),false);
}
// Make sure networks.d exists
{
std::string networksDotD(RR->homePath + ZT_PATH_SEPARATOR_S + "networks.d");
#ifdef __WINDOWS__
CreateDirectoryA(networksDotD.c_str(),NULL);
#else
mkdir(networksDotD.c_str(),0700);
#endif
}
RR->http = new HttpClient();
RR->antiRec = new AntiRecursion();
RR->mc = new Multicaster();
RR->sw = new Switch(RR);
RR->sm = new SocketManager(impl->udpPort,impl->tcpPort,&_CBztTraffic,RR);
RR->topology = new Topology(RR,Utils::fileExists((RR->homePath + ZT_PATH_SEPARATOR_S + "iddb.d").c_str()));
try {
RR->nc = new NodeConfig(RR);
} catch (std::exception &exc) {
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unable to initialize IPC socket: is ZeroTier One already running?");
}
RR->node = this;
#ifdef ZT_AUTO_UPDATE
if (ZT_DEFAULTS.updateLatestNfoURL.length()) {
RR->updater = new SoftwareUpdater(RR);
RR->updater->cleanOldUpdates(); // clean out updates.d on startup
} else {
LOG("WARNING: unable to enable software updates: latest .nfo URL from ZT_DEFAULTS is empty (does this platform actually support software updates?)");
}
#endif
// Initialize root topology from defaults or root-toplogy file in home path on disk
{
std::string rootTopologyPath(RR->homePath + ZT_PATH_SEPARATOR_S + "root-topology");
std::string rootTopology;
if (!Utils::readFile(rootTopologyPath.c_str(),rootTopology))
rootTopology = ZT_DEFAULTS.defaultRootTopology;
try {
Dictionary rt(rootTopology);
if (Topology::authenticateRootTopology(rt)) {
// Set supernodes if root topology signature is valid
RR->topology->setSupernodes(Dictionary(rt.get("supernodes",""))); // set supernodes from root-topology
// If root-topology contains noupdate=1, disable further updates and only use what was on disk
impl->disableRootTopologyUpdates = (Utils::strToInt(rt.get("noupdate","0").c_str()) > 0);
} else {
// Revert to built-in defaults if root topology fails signature check
LOG("%s failed signature check, using built-in defaults instead",rootTopologyPath.c_str());
Utils::rm(rootTopologyPath.c_str());
RR->topology->setSupernodes(Dictionary(Dictionary(ZT_DEFAULTS.defaultRootTopology).get("supernodes","")));
impl->disableRootTopologyUpdates = false;
}
} catch ( ... ) {
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"invalid root-topology format");
}
}
} catch (std::bad_alloc &exc) {
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"memory allocation failure");
} catch (std::runtime_error &exc) {
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,exc.what());
} catch ( ... ) {
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unknown exception during initialization");
}
// Start external service subprocesses, which is only used by special nodes
// right now and isn't available on Windows.
#ifndef __WINDOWS__
try {
std::string netconfServicePath(RR->homePath + ZT_PATH_SEPARATOR_S + "services.d" + ZT_PATH_SEPARATOR_S + "netconf.service");
if (Utils::fileExists(netconfServicePath.c_str())) {
LOG("netconf.d/netconf.service appears to exist, starting...");
RR->netconfService = new Service(RR,"netconf",netconfServicePath.c_str(),&_netconfServiceMessageHandler,RR);
Dictionary initMessage;
initMessage["type"] = "netconf-init";
initMessage["netconfId"] = RR->identity.toString(true);
RR->netconfService->send(initMessage);
}
} catch ( ... ) {
LOG("unexpected exception attempting to start services");
}
#endif
// Core I/O loop
try {
/* Shut down if this file exists but fails to open. This is used on Mac to
* shut down automatically on .app deletion by symlinking this to the
* Info.plist file inside the ZeroTier One application. This causes the
* service to die when the user throws away the app, allowing uninstallation
* in the natural Mac way. */
std::string shutdownIfUnreadablePath(RR->homePath + ZT_PATH_SEPARATOR_S + "shutdownIfUnreadable");
uint64_t lastNetworkAutoconfCheck = Utils::now() - 5000ULL; // check autoconf again after 5s for startup
uint64_t lastPingCheck = 0;
uint64_t lastClean = Utils::now(); // don't need to do this immediately
uint64_t lastNetworkFingerprintCheck = 0;
uint64_t lastMulticastCheck = 0;
uint64_t lastSupernodePingCheck = 0;
uint64_t lastBeacon = 0;
uint64_t lastRootTopologyFetch = 0;
uint64_t lastShutdownIfUnreadableCheck = 0;
long lastDelayDelta = 0;
uint64_t networkConfigurationFingerprint = 0;
RR->timeOfLastResynchronize = Utils::now();
// We are up and running
RR->initialized = true;
while (impl->reasonForTermination == NODE_RUNNING) {
uint64_t now = Utils::now();
bool resynchronize = false;
/* This is how the service automatically shuts down when the OSX .app is
* thrown in the trash. It's not used on any other platform for now but
* could do similar things. It's disabled on Windows since it doesn't really
* work there. */
#ifdef __UNIX_LIKE__
if ((now - lastShutdownIfUnreadableCheck) > 10000) {
lastShutdownIfUnreadableCheck = now;
if (Utils::fileExists(shutdownIfUnreadablePath.c_str(),false)) {
int tmpfd = ::open(shutdownIfUnreadablePath.c_str(),O_RDONLY,0);
if (tmpfd < 0) {
return impl->terminateBecause(Node::NODE_NORMAL_TERMINATION,"shutdownIfUnreadable exists but is not readable");
} else ::close(tmpfd);
}
}
#endif
// If it looks like the computer slept and woke, resynchronize.
if (lastDelayDelta >= ZT_SLEEP_WAKE_DETECTION_THRESHOLD) {
resynchronize = true;
LOG("probable suspend/resume detected, pausing a moment for things to settle...");
Thread::sleep(ZT_SLEEP_WAKE_SETTLE_TIME);
}
// If our network environment looks like it changed, resynchronize.
if ((resynchronize)||((now - lastNetworkFingerprintCheck) >= ZT_NETWORK_FINGERPRINT_CHECK_DELAY)) {
lastNetworkFingerprintCheck = now;
uint64_t fp = RR->routingTable->networkEnvironmentFingerprint(RR->nc->networkTapDeviceNames());
if (fp != networkConfigurationFingerprint) {
LOG("netconf fingerprint change: %.16llx != %.16llx, resyncing with network",networkConfigurationFingerprint,fp);
networkConfigurationFingerprint = fp;
resynchronize = true;
}
}
// Supernodes do not resynchronize unless explicitly ordered via SIGHUP.
if ((resynchronize)&&(RR->topology->amSupernode()))
resynchronize = false;
// Check for SIGHUP / force resync.
if (impl->resynchronize) {
impl->resynchronize = false;
resynchronize = true;
LOG("resynchronize forced by user, syncing with network");
}
if (resynchronize) {
RR->tcpTunnelingEnabled = false; // turn off TCP tunneling master switch at first, will be reenabled on persistent UDP failure
RR->timeOfLastResynchronize = now;
}
/* Supernodes are pinged separately and more aggressively. The
* ZT_STARTUP_AGGRO parameter sets a limit on how rapidly they are
* tried, while PingSupernodesThatNeedPing contains the logic for
* determining if they need PING. */
if ((now - lastSupernodePingCheck) >= ZT_STARTUP_AGGRO) {
lastSupernodePingCheck = now;
uint64_t lastReceiveFromAnySupernode = 0; // function object result paramter
RR->topology->eachSupernodePeer(Topology::FindMostRecentDirectReceiveTimestamp(lastReceiveFromAnySupernode));
// Turn on TCP tunneling master switch if we haven't heard anything since before
// the last resynchronize and we've been trying long enough.
uint64_t tlr = RR->timeOfLastResynchronize;
if ((lastReceiveFromAnySupernode < tlr)&&((now - tlr) >= ZT_TCP_TUNNEL_FAILOVER_TIMEOUT)) {
TRACE("network still unreachable after %u ms, TCP TUNNELING ENABLED",(unsigned int)ZT_TCP_TUNNEL_FAILOVER_TIMEOUT);
RR->tcpTunnelingEnabled = true;
}
RR->topology->eachSupernodePeer(Topology::PingSupernodesThatNeedPing(RR,now));
}
if (resynchronize) {
/* Send NOP to all peers on resynchronize, directly to supernodes and
* indirectly to regular nodes (to trigger RENDEZVOUS). Also clear
* learned paths since they're likely no longer valid, and close
* TCP sockets since they're also likely invalid. */
RR->sm->closeTcpSockets();
RR->topology->eachPeer(Topology::ResetActivePeers(RR,now));
} else {
/* Periodically check for changes in our local multicast subscriptions
* and broadcast those changes to directly connected peers. */
if ((now - lastMulticastCheck) >= ZT_MULTICAST_LOCAL_POLL_PERIOD) {
lastMulticastCheck = now;
try {
std::vector< SharedPtr<Network> > networks(RR->nc->networks());
for(std::vector< SharedPtr<Network> >::const_iterator nw(networks.begin());nw!=networks.end();++nw)
(*nw)->updateMulticastGroups();
} catch (std::exception &exc) {
LOG("unexpected exception announcing multicast groups: %s",exc.what());
} catch ( ... ) {
LOG("unexpected exception announcing multicast groups: (unknown)");
}
}
/* Periodically ping all our non-stale direct peers unless we're a supernode.
* Supernodes only ping each other (which is done above). */
if ((!RR->topology->amSupernode())&&((now - lastPingCheck) >= ZT_PING_CHECK_DELAY)) {
lastPingCheck = now;
try {
RR->topology->eachPeer(Topology::PingPeersThatNeedPing(RR,now));
} catch (std::exception &exc) {
LOG("unexpected exception running ping check cycle: %s",exc.what());
} catch ( ... ) {
LOG("unexpected exception running ping check cycle: (unkonwn)");
}
}
}
// Update network configurations when needed.
if ((resynchronize)||((now - lastNetworkAutoconfCheck) >= ZT_NETWORK_AUTOCONF_CHECK_DELAY)) {
lastNetworkAutoconfCheck = now;
std::vector< SharedPtr<Network> > nets(RR->nc->networks());
for(std::vector< SharedPtr<Network> >::iterator n(nets.begin());n!=nets.end();++n) {
if ((now - (*n)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)
(*n)->requestConfiguration();
}
}
// Do periodic tasks in submodules.
if ((now - lastClean) >= ZT_DB_CLEAN_PERIOD) {
lastClean = now;
RR->topology->clean();
RR->mc->clean(RR,now);
RR->nc->clean();
if (RR->updater)
RR->updater->checkIfMaxIntervalExceeded(now);
}
// Send beacons to physical local LANs
if ((resynchronize)||((now - lastBeacon) >= ZT_BEACON_INTERVAL)) {
lastBeacon = now;
char bcn[ZT_PROTO_BEACON_LENGTH];
void *bcnptr = bcn;
*((uint32_t *)(bcnptr)) = RR->prng->next32();
bcnptr = bcn + 4;
*((uint32_t *)(bcnptr)) = RR->prng->next32();
RR->identity.address().copyTo(bcn + ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH);
TRACE("sending LAN beacon to %s",ZT_DEFAULTS.v4Broadcast.toString().c_str());
RR->antiRec->logOutgoingZT(bcn,ZT_PROTO_BEACON_LENGTH);
RR->sm->send(ZT_DEFAULTS.v4Broadcast,false,false,bcn,ZT_PROTO_BEACON_LENGTH);
}
// Check for updates to root topology (supernodes) periodically
if ((now - lastRootTopologyFetch) >= ZT_UPDATE_ROOT_TOPOLOGY_CHECK_INTERVAL) {
lastRootTopologyFetch = now;
if (!impl->disableRootTopologyUpdates) {
TRACE("fetching root topology from %s",ZT_DEFAULTS.rootTopologyUpdateURL.c_str());
RR->http->GET(ZT_DEFAULTS.rootTopologyUpdateURL,HttpClient::NO_HEADERS,60,&_cbHandleGetRootTopology,RR);
}
}
// Sleep for loop interval or until something interesting happens.
try {
unsigned long delay = std::min((unsigned long)ZT_MAX_SERVICE_LOOP_INTERVAL,RR->sw->doTimerTasks());
uint64_t start = Utils::now();
RR->sm->poll(delay);
lastDelayDelta = (long)(Utils::now() - start) - (long)delay; // used to detect sleep/wake
} catch (std::exception &exc) {
LOG("unexpected exception running Switch doTimerTasks: %s",exc.what());
} catch ( ... ) {
LOG("unexpected exception running Switch doTimerTasks: (unknown)");
}
}
} catch ( ... ) {
LOG("FATAL: unexpected exception in core loop: unknown exception");
return impl->terminateBecause(Node::NODE_UNRECOVERABLE_ERROR,"unexpected exception during outer main I/O loop");
}
return impl->terminate();
}
const char *Node::terminationMessage() const
throw()
{
if ((!((_NodeImpl *)_impl)->started)||(((_NodeImpl *)_impl)->running))
return (const char *)0;
return ((_NodeImpl *)_impl)->reasonForTerminationStr.c_str();
}
void Node::terminate(ReasonForTermination reason,const char *reasonText)
throw()
{
((_NodeImpl *)_impl)->reasonForTermination = reason;
((_NodeImpl *)_impl)->reasonForTerminationStr = ((reasonText) ? reasonText : "");
((_NodeImpl *)_impl)->renv.sm->whack();
}
void Node::resync()
throw()
{
((_NodeImpl *)_impl)->resynchronize = true;
((_NodeImpl *)_impl)->renv.sm->whack();
}
bool Node::online()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
if (!impl->running)
return false;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
uint64_t now = Utils::now();
uint64_t since = RR->timeOfLastResynchronize;
std::vector< SharedPtr<Peer> > snp(RR->topology->supernodePeers());
for(std::vector< SharedPtr<Peer> >::const_iterator sn(snp.begin());sn!=snp.end();++sn) {
uint64_t lastRec = (*sn)->lastDirectReceive();
if ((lastRec)&&(lastRec > since)&&((now - lastRec) < ZT_PEER_PATH_ACTIVITY_TIMEOUT))
return true;
}
return false;
}
bool Node::started()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
return impl->started;
}
bool Node::running()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
return impl->running;
}
bool Node::initialized()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
return ((RR)&&(RR->initialized));
}
uint64_t Node::address()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
if ((!RR)||(!RR->initialized))
return 0;
return RR->identity.address().toInt();
}
void Node::join(uint64_t nwid)
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
RR->nc->join(nwid);
}
void Node::leave(uint64_t nwid)
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
RR->nc->leave(nwid);
}
struct GatherPeerStatistics
{
uint64_t now;
ZT1_Node_Status *status;
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
++status->knownPeers;
if (p->hasActiveDirectPath(now))
++status->directlyConnectedPeers;
if (p->alive(now))
++status->alivePeers;
}
};
void Node::status(ZT1_Node_Status *status)
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
memset(status,0,sizeof(ZT1_Node_Status));
Utils::scopy(status->publicIdentity,sizeof(status->publicIdentity),RR->identity.toString(false).c_str());
RR->identity.address().toString(status->address,sizeof(status->address));
status->rawAddress = RR->identity.address().toInt();
status->knownPeers = 0;
status->supernodes = RR->topology->numSupernodes();
status->directlyConnectedPeers = 0;
status->alivePeers = 0;
GatherPeerStatistics gps;
gps.now = Utils::now();
gps.status = status;
RR->topology->eachPeer<GatherPeerStatistics &>(gps);
if (status->alivePeers > 0) {
double dlsr = (double)status->directlyConnectedPeers / (double)status->alivePeers;
if (dlsr > 1.0) dlsr = 1.0;
if (dlsr < 0.0) dlsr = 0.0;
status->directLinkSuccessRate = (float)dlsr;
} else status->directLinkSuccessRate = 1.0f; // no connections to no active peers == 100% success at nothing
status->online = online();
status->running = impl->running;
}
struct CollectPeersAndPaths
{
std::vector< std::pair< SharedPtr<Peer>,std::vector<Path> > > data;
inline void operator()(Topology &t,const SharedPtr<Peer> &p) { this->data.push_back(std::pair< SharedPtr<Peer>,std::vector<Path> >(p,p->paths())); }
};
struct SortPeersAndPathsInAscendingAddressOrder
{
inline bool operator()(const std::pair< SharedPtr<Peer>,std::vector<Path> > &a,const std::pair< SharedPtr<Peer>,std::vector<Path> > &b) const { return (a.first->address() < b.first->address()); }
};
ZT1_Node_PeerList *Node::listPeers()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
CollectPeersAndPaths pp;
RR->topology->eachPeer<CollectPeersAndPaths &>(pp);
std::sort(pp.data.begin(),pp.data.end(),SortPeersAndPathsInAscendingAddressOrder());
unsigned int returnBufSize = sizeof(ZT1_Node_PeerList);
for(std::vector< std::pair< SharedPtr<Peer>,std::vector<Path> > >::iterator p(pp.data.begin());p!=pp.data.end();++p)
returnBufSize += sizeof(ZT1_Node_Peer) + (sizeof(ZT1_Node_PhysicalPath) * p->second.size());
char *buf = (char *)::malloc(returnBufSize);
if (!buf)
return (ZT1_Node_PeerList *)0;
memset(buf,0,returnBufSize);
ZT1_Node_PeerList *pl = (ZT1_Node_PeerList *)buf;
buf += sizeof(ZT1_Node_PeerList);
pl->peers = (ZT1_Node_Peer *)buf;
buf += (sizeof(ZT1_Node_Peer) * pp.data.size());
pl->numPeers = 0;
uint64_t now = Utils::now();
for(std::vector< std::pair< SharedPtr<Peer>,std::vector<Path> > >::iterator p(pp.data.begin());p!=pp.data.end();++p) {
ZT1_Node_Peer *prec = &(pl->peers[pl->numPeers++]);
if (p->first->remoteVersionKnown())
Utils::snprintf(prec->remoteVersion,sizeof(prec->remoteVersion),"%u.%u.%u",p->first->remoteVersionMajor(),p->first->remoteVersionMinor(),p->first->remoteVersionRevision());
p->first->address().toString(prec->address,sizeof(prec->address));
prec->rawAddress = p->first->address().toInt();
prec->latency = p->first->latency();
prec->paths = (ZT1_Node_PhysicalPath *)buf;
buf += sizeof(ZT1_Node_PhysicalPath) * p->second.size();
prec->numPaths = 0;
for(std::vector<Path>::iterator pi(p->second.begin());pi!=p->second.end();++pi) {
ZT1_Node_PhysicalPath *path = &(prec->paths[prec->numPaths++]);
path->type = static_cast<typeof(path->type)>(pi->type());
if (pi->address().isV6()) {
path->address.type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV6;
memcpy(path->address.bits,pi->address().rawIpData(),16);
// TODO: zoneIndex not supported yet, but should be once echo-location works w/V6
} else {
path->address.type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV4;
memcpy(path->address.bits,pi->address().rawIpData(),4);
}
path->address.port = pi->address().port();
Utils::scopy(path->address.ascii,sizeof(path->address.ascii),pi->address().toIpString().c_str());
path->lastSend = (pi->lastSend() > 0) ? ((long)(now - pi->lastSend())) : (long)-1;
path->lastReceive = (pi->lastReceived() > 0) ? ((long)(now - pi->lastReceived())) : (long)-1;
path->lastPing = (pi->lastPing() > 0) ? ((long)(now - pi->lastPing())) : (long)-1;
path->active = pi->active(now);
path->fixed = pi->fixed();
}
}
return pl;
}
// Fills out everything but ips[] and numIps, which must be done more manually
static void _fillNetworkQueryResultBuffer(const SharedPtr<Network> &network,const SharedPtr<NetworkConfig> &nconf,ZT1_Node_Network *nbuf)
{
nbuf->nwid = network->id();
Utils::snprintf(nbuf->nwidHex,sizeof(nbuf->nwidHex),"%.16llx",(unsigned long long)network->id());
if (nconf) {
Utils::scopy(nbuf->name,sizeof(nbuf->name),nconf->name().c_str());
Utils::scopy(nbuf->description,sizeof(nbuf->description),nconf->description().c_str());
}
Utils::scopy(nbuf->device,sizeof(nbuf->device),network->tapDeviceName().c_str());
Utils::scopy(nbuf->statusStr,sizeof(nbuf->statusStr),Network::statusString(network->status()));
network->mac().toString(nbuf->macStr,sizeof(nbuf->macStr));
network->mac().copyTo(nbuf->mac,sizeof(nbuf->mac));
uint64_t lcu = network->lastConfigUpdate();
if (lcu > 0)
nbuf->configAge = (long)(Utils::now() - lcu);
else nbuf->configAge = -1;
nbuf->status = static_cast<typeof(nbuf->status)>(network->status());
nbuf->enabled = network->enabled();
nbuf->isPrivate = (nconf) ? nconf->isPrivate() : true;
}
ZT1_Node_Network *Node::getNetworkStatus(uint64_t nwid)
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
SharedPtr<Network> network(RR->nc->network(nwid));
if (!network)
return (ZT1_Node_Network *)0;
SharedPtr<NetworkConfig> nconf(network->config2());
std::set<InetAddress> ips(network->ips());
char *buf = (char *)::malloc(sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * ips.size()));
if (!buf)
return (ZT1_Node_Network *)0;
memset(buf,0,sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * ips.size()));
ZT1_Node_Network *nbuf = (ZT1_Node_Network *)buf;
buf += sizeof(ZT1_Node_Network);
_fillNetworkQueryResultBuffer(network,nconf,nbuf);
nbuf->ips = (ZT1_Node_PhysicalAddress *)buf;
nbuf->numIps = 0;
for(std::set<InetAddress>::iterator ip(ips.begin());ip!=ips.end();++ip) {
ZT1_Node_PhysicalAddress *ipb = &(nbuf->ips[nbuf->numIps++]);
if (ip->isV6()) {
ipb->type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV6;
memcpy(ipb->bits,ip->rawIpData(),16);
} else {
ipb->type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV4;
memcpy(ipb->bits,ip->rawIpData(),4);
}
ipb->port = ip->port();
Utils::scopy(ipb->ascii,sizeof(ipb->ascii),ip->toIpString().c_str());
}
return nbuf;
}
ZT1_Node_NetworkList *Node::listNetworks()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
std::vector< SharedPtr<Network> > networks(RR->nc->networks());
std::vector< SharedPtr<NetworkConfig> > nconfs(networks.size());
std::vector< std::set<InetAddress> > ipsv(networks.size());
unsigned long returnBufSize = sizeof(ZT1_Node_NetworkList);
for(unsigned long i=0;i<networks.size();++i) {
nconfs[i] = networks[i]->config2();
ipsv[i] = networks[i]->ips();
returnBufSize += sizeof(ZT1_Node_Network) + (sizeof(ZT1_Node_PhysicalAddress) * ipsv[i].size());
}
char *buf = (char *)::malloc(returnBufSize);
if (!buf)
return (ZT1_Node_NetworkList *)0;
memset(buf,0,returnBufSize);
ZT1_Node_NetworkList *nl = (ZT1_Node_NetworkList *)buf;
buf += sizeof(ZT1_Node_NetworkList);
nl->networks = (ZT1_Node_Network *)buf;
buf += sizeof(ZT1_Node_Network) * networks.size();
for(unsigned long i=0;i<networks.size();++i) {
ZT1_Node_Network *nbuf = &(nl->networks[nl->numNetworks++]);
_fillNetworkQueryResultBuffer(networks[i],nconfs[i],nbuf);
nbuf->ips = (ZT1_Node_PhysicalAddress *)buf;
buf += sizeof(ZT1_Node_PhysicalAddress);
nbuf->numIps = 0;
for(std::set<InetAddress>::iterator ip(ipsv[i].begin());ip!=ipsv[i].end();++ip) {
ZT1_Node_PhysicalAddress *ipb = &(nbuf->ips[nbuf->numIps++]);
if (ip->isV6()) {
ipb->type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV6;
memcpy(ipb->bits,ip->rawIpData(),16);
} else {
ipb->type = ZT1_Node_PhysicalAddress::ZT1_Node_PhysicalAddress_TYPE_IPV4;
memcpy(ipb->bits,ip->rawIpData(),4);
}
ipb->port = ip->port();
Utils::scopy(ipb->ascii,sizeof(ipb->ascii),ip->toIpString().c_str());
}
}
return nl;
}
void Node::freeQueryResult(void *qr)
throw()
{
if (qr)
::free(qr);
}
bool Node::updateCheck()
throw()
{
_NodeImpl *impl = (_NodeImpl *)_impl;
RuntimeEnvironment *RR = (RuntimeEnvironment *)&(impl->renv);
if (RR->updater) {
RR->updater->checkNow();
return true;
}
return false;
}
class _VersionStringMaker
{
public:
char vs[32];
_VersionStringMaker()
{
Utils::snprintf(vs,sizeof(vs),"%d.%d.%d",(int)ZEROTIER_ONE_VERSION_MAJOR,(int)ZEROTIER_ONE_VERSION_MINOR,(int)ZEROTIER_ONE_VERSION_REVISION);
}
~_VersionStringMaker() {}
};
static const _VersionStringMaker __versionString;
const char *Node::versionString() throw() { return __versionString.vs; }
unsigned int Node::versionMajor() throw() { return ZEROTIER_ONE_VERSION_MAJOR; }
unsigned int Node::versionMinor() throw() { return ZEROTIER_ONE_VERSION_MINOR; }
unsigned int Node::versionRevision() throw() { return ZEROTIER_ONE_VERSION_REVISION; }
} // namespace ZeroTier