mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-12 07:52:49 +00:00
f73e51e94c
* fix formatting * properly adjust various lines breakup multiple statements onto multiple lines * insert {} around if, for, etc.
857 lines
21 KiB
C++
857 lines
21 KiB
C++
/*
|
|
* Copyright (c)2019 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2025-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#ifndef ZT_UTILS_HPP
|
|
#define ZT_UTILS_HPP
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
#include <map>
|
|
|
|
#if defined(__FreeBSD__)
|
|
#include <sys/endian.h>
|
|
#endif
|
|
|
|
#include "Constants.hpp"
|
|
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U)))
|
|
#define ZT_CONST_TO_BE_UINT64(x) ( \
|
|
(((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | \
|
|
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | \
|
|
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | \
|
|
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) | \
|
|
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | \
|
|
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | \
|
|
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | \
|
|
(((uint64_t)(x) & 0xff00000000000000ULL) >> 56U))
|
|
#else
|
|
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x))
|
|
#define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
|
|
#endif
|
|
|
|
#define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
|
|
#define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
#define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
|
|
#define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* Miscellaneous utility functions and global constants
|
|
*/
|
|
class Utils
|
|
{
|
|
public:
|
|
static const uint64_t ZERO256[4];
|
|
|
|
#ifdef ZT_ARCH_ARM_HAS_NEON
|
|
struct ARMCapabilities
|
|
{
|
|
ARMCapabilities() noexcept;
|
|
|
|
bool aes;
|
|
bool crc32;
|
|
bool pmull;
|
|
bool sha1;
|
|
bool sha2;
|
|
};
|
|
static const ARMCapabilities ARMCAP;
|
|
#endif
|
|
|
|
#ifdef ZT_ARCH_X64
|
|
struct CPUIDRegisters
|
|
{
|
|
CPUIDRegisters() noexcept;
|
|
|
|
bool rdrand;
|
|
bool aes;
|
|
bool avx;
|
|
bool vaes; // implies AVX
|
|
bool vpclmulqdq; // implies AVX
|
|
bool avx2;
|
|
bool avx512f;
|
|
bool sha;
|
|
bool fsrm;
|
|
};
|
|
static const CPUIDRegisters CPUID;
|
|
#endif
|
|
|
|
/**
|
|
* Compute the log2 (most significant bit set) of a 32-bit integer
|
|
*
|
|
* @param v Integer to compute
|
|
* @return log2 or 0 if v is 0
|
|
*/
|
|
static inline unsigned int log2(uint32_t v)
|
|
{
|
|
uint32_t r = (v > 0xffff) << 4;
|
|
v >>= r;
|
|
uint32_t shift = (v > 0xff) << 3;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0xf) << 2;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0x3) << 1;
|
|
v >>= shift;
|
|
r |= shift;
|
|
r |= (v >> 1);
|
|
return (unsigned int)r;
|
|
}
|
|
|
|
/**
|
|
* Perform a time-invariant binary comparison
|
|
*
|
|
* @param a First binary string
|
|
* @param b Second binary string
|
|
* @param len Length of strings
|
|
* @return True if strings are equal
|
|
*/
|
|
static inline bool secureEq(const void *a,const void *b,unsigned int len)
|
|
{
|
|
uint8_t diff = 0;
|
|
for(unsigned int i=0;i<len;++i) {
|
|
diff |= ( (reinterpret_cast<const uint8_t *>(a))[i] ^ (reinterpret_cast<const uint8_t *>(b))[i] );
|
|
}
|
|
return (diff == 0);
|
|
}
|
|
|
|
/**
|
|
* Securely zero memory, avoiding compiler optimizations and such
|
|
*/
|
|
static void burn(void *ptr,unsigned int len);
|
|
|
|
/**
|
|
* @param n Number to convert
|
|
* @param s Buffer, at least 24 bytes in size
|
|
* @return String containing 'n' in base 10 form
|
|
*/
|
|
static char *decimal(unsigned long n,char s[24]);
|
|
|
|
static inline char *hex(uint64_t i,char s[17])
|
|
{
|
|
s[0] = HEXCHARS[(i >> 60) & 0xf];
|
|
s[1] = HEXCHARS[(i >> 56) & 0xf];
|
|
s[2] = HEXCHARS[(i >> 52) & 0xf];
|
|
s[3] = HEXCHARS[(i >> 48) & 0xf];
|
|
s[4] = HEXCHARS[(i >> 44) & 0xf];
|
|
s[5] = HEXCHARS[(i >> 40) & 0xf];
|
|
s[6] = HEXCHARS[(i >> 36) & 0xf];
|
|
s[7] = HEXCHARS[(i >> 32) & 0xf];
|
|
s[8] = HEXCHARS[(i >> 28) & 0xf];
|
|
s[9] = HEXCHARS[(i >> 24) & 0xf];
|
|
s[10] = HEXCHARS[(i >> 20) & 0xf];
|
|
s[11] = HEXCHARS[(i >> 16) & 0xf];
|
|
s[12] = HEXCHARS[(i >> 12) & 0xf];
|
|
s[13] = HEXCHARS[(i >> 8) & 0xf];
|
|
s[14] = HEXCHARS[(i >> 4) & 0xf];
|
|
s[15] = HEXCHARS[i & 0xf];
|
|
s[16] = (char)0;
|
|
return s;
|
|
}
|
|
|
|
static inline char *hex10(uint64_t i,char s[11])
|
|
{
|
|
s[0] = HEXCHARS[(i >> 36) & 0xf];
|
|
s[1] = HEXCHARS[(i >> 32) & 0xf];
|
|
s[2] = HEXCHARS[(i >> 28) & 0xf];
|
|
s[3] = HEXCHARS[(i >> 24) & 0xf];
|
|
s[4] = HEXCHARS[(i >> 20) & 0xf];
|
|
s[5] = HEXCHARS[(i >> 16) & 0xf];
|
|
s[6] = HEXCHARS[(i >> 12) & 0xf];
|
|
s[7] = HEXCHARS[(i >> 8) & 0xf];
|
|
s[8] = HEXCHARS[(i >> 4) & 0xf];
|
|
s[9] = HEXCHARS[i & 0xf];
|
|
s[10] = (char)0;
|
|
return s;
|
|
}
|
|
|
|
static inline char *hex(uint32_t i,char s[9])
|
|
{
|
|
s[0] = HEXCHARS[(i >> 28) & 0xf];
|
|
s[1] = HEXCHARS[(i >> 24) & 0xf];
|
|
s[2] = HEXCHARS[(i >> 20) & 0xf];
|
|
s[3] = HEXCHARS[(i >> 16) & 0xf];
|
|
s[4] = HEXCHARS[(i >> 12) & 0xf];
|
|
s[5] = HEXCHARS[(i >> 8) & 0xf];
|
|
s[6] = HEXCHARS[(i >> 4) & 0xf];
|
|
s[7] = HEXCHARS[i & 0xf];
|
|
s[8] = (char)0;
|
|
return s;
|
|
}
|
|
|
|
static inline char *hex(uint16_t i,char s[5])
|
|
{
|
|
s[0] = HEXCHARS[(i >> 12) & 0xf];
|
|
s[1] = HEXCHARS[(i >> 8) & 0xf];
|
|
s[2] = HEXCHARS[(i >> 4) & 0xf];
|
|
s[3] = HEXCHARS[i & 0xf];
|
|
s[4] = (char)0;
|
|
return s;
|
|
}
|
|
|
|
static inline char *hex(uint8_t i,char s[3])
|
|
{
|
|
s[0] = HEXCHARS[(i >> 4) & 0xf];
|
|
s[1] = HEXCHARS[i & 0xf];
|
|
s[2] = (char)0;
|
|
return s;
|
|
}
|
|
|
|
static inline char *hex(const void *d,unsigned int l,char *s)
|
|
{
|
|
char *const save = s;
|
|
for(unsigned int i=0;i<l;++i) {
|
|
const unsigned int b = reinterpret_cast<const uint8_t *>(d)[i];
|
|
*(s++) = HEXCHARS[b >> 4];
|
|
*(s++) = HEXCHARS[b & 0xf];
|
|
}
|
|
*s = (char)0;
|
|
return save;
|
|
}
|
|
|
|
static inline unsigned int unhex(const char *h,void *buf,unsigned int buflen)
|
|
{
|
|
unsigned int l = 0;
|
|
while (l < buflen) {
|
|
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
|
|
if (!hc) {
|
|
break;
|
|
}
|
|
|
|
uint8_t c = 0;
|
|
if ((hc >= 48)&&(hc <= 57)) { // 0..9
|
|
c = hc - 48;
|
|
} else if ((hc >= 97)&&(hc <= 102)) { // a..f
|
|
c = hc - 87;
|
|
} else if ((hc >= 65)&&(hc <= 70)) { // A..F
|
|
c = hc - 55;
|
|
}
|
|
|
|
hc = *(reinterpret_cast<const uint8_t *>(h++));
|
|
if (!hc) {
|
|
break;
|
|
}
|
|
|
|
c <<= 4;
|
|
if ((hc >= 48)&&(hc <= 57)) {
|
|
c |= hc - 48;
|
|
} else if ((hc >= 97)&&(hc <= 102)) {
|
|
c |= hc - 87;
|
|
} else if ((hc >= 65)&&(hc <= 70)) {
|
|
c |= hc - 55;
|
|
}
|
|
|
|
reinterpret_cast<uint8_t *>(buf)[l++] = c;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static inline unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen)
|
|
{
|
|
unsigned int l = 0;
|
|
const char *hend = h + hlen;
|
|
while (l < buflen) {
|
|
if (h == hend) {
|
|
break;
|
|
}
|
|
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
|
|
if (!hc) {
|
|
break;
|
|
}
|
|
|
|
uint8_t c = 0;
|
|
if ((hc >= 48)&&(hc <= 57)) {
|
|
c = hc - 48;
|
|
} else if ((hc >= 97)&&(hc <= 102)) {
|
|
c = hc - 87;
|
|
} else if ((hc >= 65)&&(hc <= 70)) {
|
|
c = hc - 55;
|
|
}
|
|
|
|
if (h == hend) {
|
|
break;
|
|
}
|
|
hc = *(reinterpret_cast<const uint8_t *>(h++));
|
|
if (!hc) {
|
|
break;
|
|
}
|
|
|
|
c <<= 4;
|
|
if ((hc >= 48)&&(hc <= 57)) {
|
|
c |= hc - 48;
|
|
} else if ((hc >= 97)&&(hc <= 102)) {
|
|
c |= hc - 87;
|
|
} else if ((hc >= 65)&&(hc <= 70)) {
|
|
c |= hc - 55;
|
|
}
|
|
|
|
reinterpret_cast<uint8_t *>(buf)[l++] = c;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static inline float normalize(float value, float bigMin, float bigMax, float targetMin, float targetMax)
|
|
{
|
|
float bigSpan = bigMax - bigMin;
|
|
float smallSpan = targetMax - targetMin;
|
|
float valueScaled = (value - bigMin) / bigSpan;
|
|
return targetMin + valueScaled * smallSpan;
|
|
}
|
|
|
|
/**
|
|
* Generate secure random bytes
|
|
*
|
|
* This will try to use whatever OS sources of entropy are available. It's
|
|
* guarded by an internal mutex so it's thread-safe.
|
|
*
|
|
* @param buf Buffer to fill
|
|
* @param bytes Number of random bytes to generate
|
|
*/
|
|
static void getSecureRandom(void *buf,unsigned int bytes);
|
|
|
|
/**
|
|
* Tokenize a string (alias for strtok_r or strtok_s depending on platform)
|
|
*
|
|
* @param str String to split
|
|
* @param delim Delimiters
|
|
* @param saveptr Pointer to a char * for temporary reentrant storage
|
|
*/
|
|
static inline char *stok(char *str,const char *delim,char **saveptr)
|
|
{
|
|
#ifdef __WINDOWS__
|
|
return strtok_s(str,delim,saveptr);
|
|
#else
|
|
return strtok_r(str,delim,saveptr);
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); }
|
|
static inline int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); }
|
|
static inline unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); }
|
|
static inline long strToLong(const char *s) { return strtol(s,(char **)0,10); }
|
|
static inline double strToDouble(const char *s) { return strtod(s,NULL); }
|
|
static inline unsigned long long strToU64(const char *s)
|
|
{
|
|
#ifdef __WINDOWS__
|
|
return (unsigned long long)_strtoui64(s,(char **)0,10);
|
|
#else
|
|
return strtoull(s,(char **)0,10);
|
|
#endif
|
|
}
|
|
static inline long long strTo64(const char *s)
|
|
{
|
|
#ifdef __WINDOWS__
|
|
return (long long)_strtoi64(s,(char **)0,10);
|
|
#else
|
|
return strtoll(s,(char **)0,10);
|
|
#endif
|
|
}
|
|
static inline unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); }
|
|
static inline int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); }
|
|
static inline unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); }
|
|
static inline long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); }
|
|
static inline unsigned long long hexStrToU64(const char *s)
|
|
{
|
|
#ifdef __WINDOWS__
|
|
return (unsigned long long)_strtoui64(s,(char **)0,16);
|
|
#else
|
|
return strtoull(s,(char **)0,16);
|
|
#endif
|
|
}
|
|
static inline long long hexStrTo64(const char *s)
|
|
{
|
|
#ifdef __WINDOWS__
|
|
return (long long)_strtoi64(s,(char **)0,16);
|
|
#else
|
|
return strtoll(s,(char **)0,16);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Perform a safe C string copy, ALWAYS null-terminating the result
|
|
*
|
|
* This will never ever EVER result in dest[] not being null-terminated
|
|
* regardless of any input parameter (other than len==0 which is invalid).
|
|
*
|
|
* @param dest Destination buffer (must not be NULL)
|
|
* @param len Length of dest[] (if zero, false is returned and nothing happens)
|
|
* @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
|
|
* @return True on success, false on overflow (buffer will still be 0-terminated)
|
|
*/
|
|
static inline bool scopy(char *dest,unsigned int len,const char *src)
|
|
{
|
|
if (!len) {
|
|
return false; // sanity check
|
|
}
|
|
if (!src) {
|
|
*dest = (char)0;
|
|
return true;
|
|
}
|
|
char *end = dest + len;
|
|
while ((*dest++ = *src++)) {
|
|
if (dest == end) {
|
|
*(--dest) = (char)0;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Count the number of bits set in an integer
|
|
*
|
|
* @param v 32-bit integer
|
|
* @return Number of bits set in this integer (0-32)
|
|
*/
|
|
static inline uint32_t countBits(uint32_t v)
|
|
{
|
|
v = v - ((v >> 1) & (uint32_t)0x55555555);
|
|
v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
|
|
return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24);
|
|
}
|
|
|
|
/**
|
|
* Count the number of bits set in an integer
|
|
*
|
|
* @param v 64-bit integer
|
|
* @return Number of bits set in this integer (0-64)
|
|
*/
|
|
static inline uint64_t countBits(uint64_t v)
|
|
{
|
|
v = v - ((v >> 1) & (uint64_t)~(uint64_t)0/3);
|
|
v = (v & (uint64_t)~(uint64_t)0/15*3) + ((v >> 2) & (uint64_t)~(uint64_t)0/15*3);
|
|
v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0/255*15;
|
|
return (uint64_t)(v * ((uint64_t)~(uint64_t)0/255)) >> 56;
|
|
}
|
|
|
|
/**
|
|
* Check if a memory buffer is all-zero
|
|
*
|
|
* @param p Memory to scan
|
|
* @param len Length of memory
|
|
* @return True if memory is all zero
|
|
*/
|
|
static inline bool isZero(const void *p,unsigned int len)
|
|
{
|
|
for(unsigned int i=0;i<len;++i) {
|
|
if (((const unsigned char *)p)[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Unconditionally swap bytes regardless of host byte order
|
|
*
|
|
* @param n Integer to swap
|
|
* @return Integer with bytes reversed
|
|
*/
|
|
static ZT_INLINE uint64_t swapBytes(const uint64_t n) noexcept
|
|
{
|
|
#ifdef __GNUC__
|
|
return __builtin_bswap64(n);
|
|
#else
|
|
#ifdef _MSC_VER
|
|
return (uint64_t)_byteswap_uint64((unsigned __int64)n);
|
|
#else
|
|
return (
|
|
((n & 0x00000000000000ffULL) << 56) |
|
|
((n & 0x000000000000ff00ULL) << 40) |
|
|
((n & 0x0000000000ff0000ULL) << 24) |
|
|
((n & 0x00000000ff000000ULL) << 8) |
|
|
((n & 0x000000ff00000000ULL) >> 8) |
|
|
((n & 0x0000ff0000000000ULL) >> 24) |
|
|
((n & 0x00ff000000000000ULL) >> 40) |
|
|
((n & 0xff00000000000000ULL) >> 56)
|
|
);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Unconditionally swap bytes regardless of host byte order
|
|
*
|
|
* @param n Integer to swap
|
|
* @return Integer with bytes reversed
|
|
*/
|
|
static ZT_INLINE uint32_t swapBytes(const uint32_t n) noexcept
|
|
{
|
|
#if defined(__GNUC__)
|
|
return __builtin_bswap32(n);
|
|
#else
|
|
#ifdef _MSC_VER
|
|
return (uint32_t)_byteswap_ulong((unsigned long)n);
|
|
#else
|
|
return htonl(n);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Unconditionally swap bytes regardless of host byte order
|
|
*
|
|
* @param n Integer to swap
|
|
* @return Integer with bytes reversed
|
|
*/
|
|
static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept
|
|
{
|
|
#if defined(__GNUC__)
|
|
return __builtin_bswap16(n);
|
|
#else
|
|
#ifdef _MSC_VER
|
|
return (uint16_t)_byteswap_ushort((unsigned short)n);
|
|
#else
|
|
return htons(n);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// These are helper adapters to load and swap integer types special cased by size
|
|
// to work with all typedef'd variants, signed/unsigned, etc.
|
|
template< typename I, unsigned int S >
|
|
class _swap_bytes_bysize;
|
|
|
|
template< typename I >
|
|
class _swap_bytes_bysize< I, 1 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I s(const I n) noexcept
|
|
{ return n; }
|
|
};
|
|
|
|
template< typename I >
|
|
class _swap_bytes_bysize< I, 2 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I s(const I n) noexcept
|
|
{ return (I)swapBytes((uint16_t)n); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _swap_bytes_bysize< I, 4 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I s(const I n) noexcept
|
|
{ return (I)swapBytes((uint32_t)n); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _swap_bytes_bysize< I, 8 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I s(const I n) noexcept
|
|
{ return (I)swapBytes((uint64_t)n); }
|
|
};
|
|
|
|
template< typename I, unsigned int S >
|
|
class _load_be_bysize;
|
|
|
|
template< typename I >
|
|
class _load_be_bysize< I, 1 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return p[0]; }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_be_bysize< I, 2 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_be_bysize< I, 4 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_be_bysize< I, 8 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]); }
|
|
};
|
|
|
|
template< typename I, unsigned int S >
|
|
class _load_le_bysize;
|
|
|
|
template< typename I >
|
|
class _load_le_bysize< I, 1 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return p[0]; }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_le_bysize< I, 2 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U)); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_le_bysize< I, 4 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U)); }
|
|
};
|
|
|
|
template< typename I >
|
|
class _load_le_bysize< I, 8 >
|
|
{
|
|
public:
|
|
static ZT_INLINE I l(const uint8_t *const p) noexcept
|
|
{ return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U); }
|
|
};
|
|
|
|
/**
|
|
* Convert any signed or unsigned integer type to big-endian ("network") byte order
|
|
*
|
|
* @tparam I Integer type (usually inferred)
|
|
* @param n Value to convert
|
|
* @return Value in big-endian order
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE I hton(const I n) noexcept
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return _swap_bytes_bysize< I, sizeof(I) >::s(n);
|
|
#else
|
|
return n;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order
|
|
*
|
|
* @tparam I Integer type (usually inferred)
|
|
* @param n Value to convert
|
|
* @return Value in host byte order
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE I ntoh(const I n) noexcept
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return _swap_bytes_bysize< I, sizeof(I) >::s(n);
|
|
#else
|
|
return n;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Copy bits from memory into an integer type without modifying their order
|
|
*
|
|
* @tparam I Type to load
|
|
* @param p Byte stream, must be at least sizeof(I) in size
|
|
* @return Loaded raw integer
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE I loadMachineEndian(const void *const p) noexcept
|
|
{
|
|
#ifdef ZT_NO_UNALIGNED_ACCESS
|
|
I tmp;
|
|
for(int i=0;i<(int)sizeof(I);++i) {
|
|
reinterpret_cast<uint8_t *>(&tmp)[i] = reinterpret_cast<const uint8_t *>(p)[i];
|
|
}
|
|
return tmp;
|
|
#else
|
|
return *reinterpret_cast<const I *>(p);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Copy bits from memory into an integer type without modifying their order
|
|
*
|
|
* @tparam I Type to store
|
|
* @param p Byte array (must be at least sizeof(I))
|
|
* @param i Integer to store
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE void storeMachineEndian(void *const p, const I i) noexcept
|
|
{
|
|
#ifdef ZT_NO_UNALIGNED_ACCESS
|
|
for(unsigned int k=0;k<sizeof(I);++k) {
|
|
reinterpret_cast<uint8_t *>(p)[k] = reinterpret_cast<const uint8_t *>(&i)[k];
|
|
}
|
|
#else
|
|
*reinterpret_cast<I *>(p) = i;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Decode a big-endian value from a byte stream
|
|
*
|
|
* @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t)
|
|
* @param p Byte stream, must be at least sizeof(I) in size
|
|
* @return Decoded integer
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE I loadBigEndian(const void *const p) noexcept
|
|
{
|
|
#ifdef ZT_NO_UNALIGNED_ACCESS
|
|
return _load_be_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
|
|
#else
|
|
return ntoh(*reinterpret_cast<const I *>(p));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Save an integer in big-endian format
|
|
*
|
|
* @tparam I Integer type to store (usually inferred)
|
|
* @param p Byte stream to write (must be at least sizeof(I))
|
|
* #param i Integer to write
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE void storeBigEndian(void *const p, I i) noexcept
|
|
{
|
|
#ifdef ZT_NO_UNALIGNED_ACCESS
|
|
storeMachineEndian(p,hton(i));
|
|
#else
|
|
*reinterpret_cast<I *>(p) = hton(i);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Decode a little-endian value from a byte stream
|
|
*
|
|
* @tparam I Type to decode
|
|
* @param p Byte stream, must be at least sizeof(I) in size
|
|
* @return Decoded integer
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE I loadLittleEndian(const void *const p) noexcept
|
|
{
|
|
#if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
|
|
return _load_le_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
|
|
#else
|
|
return *reinterpret_cast<const I *>(p);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Save an integer in little-endian format
|
|
*
|
|
* @tparam I Integer type to store (usually inferred)
|
|
* @param p Byte stream to write (must be at least sizeof(I))
|
|
* #param i Integer to write
|
|
*/
|
|
template< typename I >
|
|
static ZT_INLINE void storeLittleEndian(void *const p, const I i) noexcept
|
|
{
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
storeMachineEndian(p,_swap_bytes_bysize<I,sizeof(I)>::s(i));
|
|
#else
|
|
#ifdef ZT_NO_UNALIGNED_ACCESS
|
|
storeMachineEndian(p,i);
|
|
#else
|
|
*reinterpret_cast<I *>(p) = i;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Copy memory block whose size is known at compile time.
|
|
*
|
|
* @tparam L Size of memory
|
|
* @param dest Destination memory
|
|
* @param src Source memory
|
|
*/
|
|
template< unsigned long L >
|
|
static ZT_INLINE void copy(void *dest, const void *src) noexcept
|
|
{
|
|
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
|
|
uintptr_t l = L;
|
|
__asm__ __volatile__ ("cld ; rep movsb" : "+c"(l), "+S"(src), "+D"(dest) :: "memory");
|
|
#else
|
|
memcpy(dest, src, L);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Copy memory block whose size is known at run time
|
|
*
|
|
* @param dest Destination memory
|
|
* @param src Source memory
|
|
* @param len Bytes to copy
|
|
*/
|
|
static ZT_INLINE void copy(void *dest, const void *src, unsigned long len) noexcept
|
|
{
|
|
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
|
|
__asm__ __volatile__ ("cld ; rep movsb" : "+c"(len), "+S"(src), "+D"(dest) :: "memory");
|
|
#else
|
|
memcpy(dest, src, len);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Zero memory block whose size is known at compile time
|
|
*
|
|
* @tparam L Size in bytes
|
|
* @param dest Memory to zero
|
|
*/
|
|
template< unsigned long L >
|
|
static ZT_INLINE void zero(void *dest) noexcept
|
|
{
|
|
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
|
|
uintptr_t l = L;
|
|
__asm__ __volatile__ ("cld ; rep stosb" :"+c" (l), "+D" (dest) : "a" (0) : "memory");
|
|
#else
|
|
memset(dest, 0, L);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Zero memory block whose size is known at run time
|
|
*
|
|
* @param dest Memory to zero
|
|
* @param len Size in bytes
|
|
*/
|
|
static ZT_INLINE void zero(void *dest, unsigned long len) noexcept
|
|
{
|
|
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
|
|
__asm__ __volatile__ ("cld ; rep stosb" :"+c" (len), "+D" (dest) : "a" (0) : "memory");
|
|
#else
|
|
memset(dest, 0, len);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Hexadecimal characters 0-f
|
|
*/
|
|
static const char HEXCHARS[16];
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|