ZeroTierOne/node/Peer.cpp
2024-09-26 08:52:29 -04:00

721 lines
28 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Peer.hpp"
#include "../version.h"
#include "Constants.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Metrics.hpp"
#include "Network.hpp"
#include "Packet.hpp"
#include "RingBuffer.hpp"
#include "SelfAwareness.hpp"
#include "Switch.hpp"
#include "Trace.hpp"
#include "Utils.hpp"
namespace ZeroTier {
static unsigned char s_freeRandomByteCounter = 0;
Peer::Peer(const RuntimeEnvironment* renv, const Identity& myIdentity, const Identity& peerIdentity)
: RR(renv)
, _lastReceive(0)
, _lastNontrivialReceive(0)
, _lastTriedMemorizedPath(0)
, _lastDirectPathPushSent(0)
, _lastDirectPathPushReceive(0)
, _lastCredentialRequestSent(0)
, _lastWhoisRequestReceived(0)
, _lastCredentialsReceived(0)
, _lastTrustEstablishedPacketReceived(0)
, _lastSentFullHello(0)
, _lastEchoCheck(0)
, _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter)
, _vProto(0)
, _vMajor(0)
, _vMinor(0)
, _vRevision(0)
, _id(peerIdentity)
, _directPathPushCutoffCount(0)
, _echoRequestCutoffCount(0)
, _localMultipathSupported(false)
, _lastComputedAggregateMeanLatency(0)
#ifndef ZT_NO_PEER_METRICS
, _peer_latency { Metrics::peer_latency.Add({ { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) } }, std::vector<uint64_t> { 1, 3, 6, 10, 30, 60, 100, 300, 600, 1000 }) }
, _alive_path_count { Metrics::peer_path_count.Add({ { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) }, { "status", "alive" } }) }
, _dead_path_count { Metrics::peer_path_count.Add({ { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) }, { "status", "dead" } }) }
, _incoming_packet { Metrics::peer_packets.Add({ { "direction", "rx" }, { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) } }) }
, _outgoing_packet { Metrics::peer_packets.Add({ { "direction", "tx" }, { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) } }) }
, _packet_errors { Metrics::peer_packet_errors.Add({ { "node_id", OSUtils::nodeIDStr(peerIdentity.address().toInt()) } }) }
#endif
{
if (! myIdentity.agree(peerIdentity, _key)) {
throw ZT_EXCEPTION_INVALID_ARGUMENT;
}
uint8_t ktmp[ZT_SYMMETRIC_KEY_SIZE];
KBKDFHMACSHA384(_key, ZT_KBKDF_LABEL_AES_GMAC_SIV_K0, 0, 0, ktmp);
_aesKeys[0].init(ktmp);
KBKDFHMACSHA384(_key, ZT_KBKDF_LABEL_AES_GMAC_SIV_K1, 0, 0, ktmp);
_aesKeys[1].init(ktmp);
Utils::burn(ktmp, ZT_SYMMETRIC_KEY_SIZE);
}
void Peer::received(
void* tPtr,
const SharedPtr<Path>& path,
const unsigned int hops,
const uint64_t packetId,
const unsigned int payloadLength,
const Packet::Verb verb,
const uint64_t inRePacketId,
const Packet::Verb inReVerb,
const bool trustEstablished,
const uint64_t networkId,
const int32_t flowId)
{
const int64_t now = RR->node->now();
_lastReceive = now;
switch (verb) {
case Packet::VERB_FRAME:
case Packet::VERB_EXT_FRAME:
case Packet::VERB_NETWORK_CONFIG_REQUEST:
case Packet::VERB_NETWORK_CONFIG:
case Packet::VERB_MULTICAST_FRAME:
_lastNontrivialReceive = now;
break;
default:
break;
}
#ifndef ZT_NO_PEER_METRICS
_incoming_packet++;
#endif
recordIncomingPacket(path, packetId, payloadLength, verb, flowId, now);
if (trustEstablished) {
_lastTrustEstablishedPacketReceived = now;
path->trustedPacketReceived(now);
}
if (hops == 0) {
// If this is a direct packet (no hops), update existing paths or learn new ones
bool havePath = false;
{
Mutex::Lock _l(_paths_m);
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if (_paths[i].p == path) {
_paths[i].lr = now;
havePath = true;
break;
}
// If same address on same interface then don't learn unless existing path isn't alive (prevents learning loop)
if (_paths[i].p->address().ipsEqual(path->address()) && _paths[i].p->localSocket() == path->localSocket()) {
if (_paths[i].p->alive(now) && ! _bond) {
havePath = true;
break;
}
}
}
else {
break;
}
}
}
if ((! havePath) && RR->node->shouldUsePathForZeroTierTraffic(tPtr, _id.address(), path->localSocket(), path->address())) {
if (verb == Packet::VERB_OK) {
Mutex::Lock _l(_paths_m);
unsigned int oldestPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
unsigned int oldestPathAge = 0;
unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
// Keep track of oldest path as a last resort option
unsigned int currAge = _paths[i].p->age(now);
if (currAge > oldestPathAge) {
oldestPathAge = currAge;
oldestPathIdx = i;
}
if (_paths[i].p->address().ipsEqual(path->address())) {
if (_paths[i].p->localSocket() == path->localSocket()) {
if (! _paths[i].p->alive(now)) {
replacePath = i;
break;
}
}
}
}
else {
replacePath = i;
break;
}
}
// If we didn't find a good candidate then resort to replacing oldest path
replacePath = (replacePath == ZT_MAX_PEER_NETWORK_PATHS) ? oldestPathIdx : replacePath;
if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {
RR->t->peerLearnedNewPath(tPtr, networkId, *this, path, packetId);
_paths[replacePath].lr = now;
_paths[replacePath].p = path;
_paths[replacePath].priority = 1;
Mutex::Lock _l(_bond_m);
if (_bond) {
_bond->nominatePathToBond(_paths[replacePath].p, now);
}
}
}
else {
Mutex::Lock ltl(_lastTriedPath_m);
bool triedTooRecently = false;
for (std::list<std::pair<Path*, int64_t> >::iterator i(_lastTriedPath.begin()); i != _lastTriedPath.end();) {
if ((now - i->second) > 1000) {
_lastTriedPath.erase(i++);
}
else if (i->first == path.ptr()) {
++i;
triedTooRecently = true;
}
else {
++i;
}
}
if (! triedTooRecently) {
_lastTriedPath.push_back(std::pair<Path*, int64_t>(path.ptr(), now));
attemptToContactAt(tPtr, path->localSocket(), path->address(), now, true);
path->sent(now);
RR->t->peerConfirmingUnknownPath(tPtr, networkId, *this, path, packetId, verb);
}
}
}
}
// If we have a trust relationship periodically push a message enumerating
// all known external addresses for ourselves. If we already have a path this
// is done less frequently.
if (this->trustEstablished(now)) {
const int64_t sinceLastPush = now - _lastDirectPathPushSent;
bool lowBandwidth = RR->node->lowBandwidthModeEnabled();
int timerScale = lowBandwidth ? 16 : 1;
if (sinceLastPush >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH * timerScale : ZT_DIRECT_PATH_PUSH_INTERVAL)) {
_lastDirectPathPushSent = now;
std::vector<InetAddress> pathsToPush(RR->node->directPaths());
std::vector<InetAddress> ma = RR->sa->whoami();
pathsToPush.insert(pathsToPush.end(), ma.begin(), ma.end());
if (! pathsToPush.empty()) {
std::vector<InetAddress>::const_iterator p(pathsToPush.begin());
while (p != pathsToPush.end()) {
Packet* const outp = new Packet(_id.address(), RR->identity.address(), Packet::VERB_PUSH_DIRECT_PATHS);
outp->addSize(2); // leave room for count
unsigned int count = 0;
while ((p != pathsToPush.end()) && ((outp->size() + 24) < 1200)) {
uint8_t addressType = 4;
switch (p->ss_family) {
case AF_INET:
break;
case AF_INET6:
addressType = 6;
break;
default: // we currently only push IP addresses
++p;
continue;
}
outp->append((uint8_t)0); // no flags
outp->append((uint16_t)0); // no extensions
outp->append(addressType);
outp->append((uint8_t)((addressType == 4) ? 6 : 18));
outp->append(p->rawIpData(), ((addressType == 4) ? 4 : 16));
outp->append((uint16_t)p->port());
++count;
++p;
}
if (count) {
Metrics::pkt_push_direct_paths_out++;
outp->setAt(ZT_PACKET_IDX_PAYLOAD, (uint16_t)count);
outp->compress();
outp->armor(_key, true, false, aesKeysIfSupported(), _id);
Metrics::pkt_push_direct_paths_out++;
path->send(RR, tPtr, outp->data(), outp->size(), now);
}
delete outp;
}
}
}
}
}
SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired, int32_t flowId)
{
Mutex::Lock _l(_paths_m);
Mutex::Lock _lb(_bond_m);
if (_bond && _bond->isReady()) {
return _bond->getAppropriatePath(now, flowId);
}
unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;
/**
* Send traffic across the highest quality path only. This algorithm will still
* use the old path quality metric from protocol version 9.
*/
long bestPathQuality = 2147483647;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if ((includeExpired) || ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {
const long q = _paths[i].p->quality(now) / _paths[i].priority;
if (q <= bestPathQuality) {
bestPathQuality = q;
bestPath = i;
}
}
}
else {
break;
}
}
if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {
return _paths[bestPath].p;
}
return SharedPtr<Path>();
}
void Peer::introduce(void* const tPtr, const int64_t now, const SharedPtr<Peer>& other) const
{
unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE + 1];
for (int i = 0; i <= ZT_INETADDRESS_MAX_SCOPE; ++i) {
myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
myBestV4QualityByScope[i] = 2147483647;
myBestV6QualityByScope[i] = 2147483647;
theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
theirBestV4QualityByScope[i] = 2147483647;
theirBestV6QualityByScope[i] = 2147483647;
}
Mutex::Lock _l1(_paths_m);
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
const long q = _paths[i].p->quality(now) / _paths[i].priority;
const unsigned int s = (unsigned int)_paths[i].p->ipScope();
switch (_paths[i].p->address().ss_family) {
case AF_INET:
if (q <= myBestV4QualityByScope[s]) {
myBestV4QualityByScope[s] = q;
myBestV4ByScope[s] = i;
}
break;
case AF_INET6:
if (q <= myBestV6QualityByScope[s]) {
myBestV6QualityByScope[s] = q;
myBestV6ByScope[s] = i;
}
break;
}
}
else {
break;
}
}
Mutex::Lock _l2(other->_paths_m);
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (other->_paths[i].p) {
const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority;
const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();
switch (other->_paths[i].p->address().ss_family) {
case AF_INET:
if (q <= theirBestV4QualityByScope[s]) {
theirBestV4QualityByScope[s] = q;
theirBestV4ByScope[s] = i;
}
break;
case AF_INET6:
if (q <= theirBestV6QualityByScope[s]) {
theirBestV6QualityByScope[s] = q;
theirBestV6ByScope[s] = i;
}
break;
}
}
else {
break;
}
}
unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;
unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;
for (int s = ZT_INETADDRESS_MAX_SCOPE; s >= 0; --s) {
if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS) && (theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
mine = myBestV6ByScope[s];
theirs = theirBestV6ByScope[s];
break;
}
if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS) && (theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
mine = myBestV4ByScope[s];
theirs = theirBestV4ByScope[s];
break;
}
}
if (mine != ZT_MAX_PEER_NETWORK_PATHS) {
unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons
const unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
Packet outp(_id.address(), RR->identity.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
other->_id.address().appendTo(outp);
outp.append((uint16_t)other->_paths[theirs].p->address().port());
if (other->_paths[theirs].p->address().ss_family == AF_INET6) {
outp.append((uint8_t)16);
outp.append(other->_paths[theirs].p->address().rawIpData(), 16);
}
else {
outp.append((uint8_t)4);
outp.append(other->_paths[theirs].p->address().rawIpData(), 4);
}
outp.armor(_key, true, false, aesKeysIfSupported(), _id);
Metrics::pkt_rendezvous_out++;
_paths[mine].p->send(RR, tPtr, outp.data(), outp.size(), now);
}
else {
Packet outp(other->_id.address(), RR->identity.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
_id.address().appendTo(outp);
outp.append((uint16_t)_paths[mine].p->address().port());
if (_paths[mine].p->address().ss_family == AF_INET6) {
outp.append((uint8_t)16);
outp.append(_paths[mine].p->address().rawIpData(), 16);
}
else {
outp.append((uint8_t)4);
outp.append(_paths[mine].p->address().rawIpData(), 4);
}
outp.armor(other->_key, true, false, other->aesKeysIfSupported(), other->identity());
Metrics::pkt_rendezvous_out++;
other->_paths[theirs].p->send(RR, tPtr, outp.data(), outp.size(), now);
}
++alt;
}
}
}
void Peer::sendHELLO(void* tPtr, const int64_t localSocket, const InetAddress& atAddress, int64_t now)
{
Packet outp(_id.address(), RR->identity.address(), Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp, false);
atAddress.serialize(outp);
outp.append((uint64_t)RR->topology->planetWorldId());
outp.append((uint64_t)RR->topology->planetWorldTimestamp());
const unsigned int startCryptedPortionAt = outp.size();
std::vector<World> moons(RR->topology->moons());
std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
outp.append((uint16_t)(moons.size() + moonsWanted.size()));
for (std::vector<World>::const_iterator m(moons.begin()); m != moons.end(); ++m) {
outp.append((uint8_t)m->type());
outp.append((uint64_t)m->id());
outp.append((uint64_t)m->timestamp());
}
for (std::vector<uint64_t>::const_iterator m(moonsWanted.begin()); m != moonsWanted.end(); ++m) {
outp.append((uint8_t)World::TYPE_MOON);
outp.append(*m);
outp.append((uint64_t)0);
}
outp.cryptField(_key, startCryptedPortionAt, outp.size() - startCryptedPortionAt);
Metrics::pkt_hello_out++;
if (atAddress) {
// TODO: this is where extended armor should be invoked
outp.armor(_key, false, false, nullptr, _id);
RR->node->expectReplyTo(outp.packetId());
RR->node->putPacket(tPtr, RR->node->lowBandwidthModeEnabled() ? localSocket : -1, atAddress, outp.data(), outp.size());
}
else {
RR->node->expectReplyTo(outp.packetId());
RR->sw->send(tPtr, outp, true);
}
}
void Peer::attemptToContactAt(void* tPtr, const int64_t localSocket, const InetAddress& atAddress, int64_t now, bool sendFullHello)
{
if ((! sendFullHello) && (_vProto >= 5) && (! ((_vMajor == 1) && (_vMinor == 1) && (_vRevision == 0)))) {
Packet outp(_id.address(), RR->identity.address(), Packet::VERB_ECHO);
outp.armor(_key, true, false, aesKeysIfSupported(), _id);
Metrics::pkt_echo_out++;
RR->node->expectReplyTo(outp.packetId());
RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());
}
else {
sendHELLO(tPtr, localSocket, atAddress, now);
}
}
void Peer::tryMemorizedPath(void* tPtr, int64_t now)
{
if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
_lastTriedMemorizedPath = now;
InetAddress mp;
if (RR->node->externalPathLookup(tPtr, _id.address(), -1, mp)) {
attemptToContactAt(tPtr, -1, mp, now, true);
}
}
}
void Peer::performMultipathStateCheck(void* tPtr, int64_t now)
{
Mutex::Lock _l(_bond_m);
/**
* Check for conditions required for multipath bonding and create a bond
* if allowed.
*/
int numAlivePaths = 0;
bool atLeastOneNonExpired = false;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if (_paths[i].p->alive(now)) {
numAlivePaths++;
}
if ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) {
atLeastOneNonExpired = true;
}
}
}
if (_bond) {
if (numAlivePaths == 0 && ! atLeastOneNonExpired) {
_bond = SharedPtr<Bond>();
RR->bc->destroyBond(_id.address().toInt());
}
return;
}
_localMultipathSupported = ((numAlivePaths >= 1) && (RR->bc->inUse()) && (ZT_PROTO_VERSION > 9));
if (_localMultipathSupported && ! _bond) {
if (RR->bc) {
_bond = RR->bc->createBond(RR, this);
/**
* Allow new bond to retroactively learn all paths known to this peer
*/
if (_bond) {
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
_bond->nominatePathToBond(_paths[i].p, now);
}
}
}
}
}
}
unsigned int Peer::doPingAndKeepalive(void* tPtr, int64_t now)
{
unsigned int sent = 0;
{
Mutex::Lock _l(_paths_m);
performMultipathStateCheck(tPtr, now);
const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);
if (sendFullHello) {
_lastSentFullHello = now;
}
// Right now we only keep pinging links that have the maximum priority. The
// priority is used to track cluster redirections, meaning that when a cluster
// redirects us its redirect target links override all other links and we
// let those old links expire.
long maxPriority = 0;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
maxPriority = std::max(_paths[i].priority, maxPriority);
}
else {
break;
}
}
bool deletionOccurred = false;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
// Clean expired and reduced priority paths
if (((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) && (_paths[i].priority == maxPriority)) {
if ((sendFullHello) || (_paths[i].p->needsHeartbeat(now))) {
attemptToContactAt(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), now, sendFullHello);
_paths[i].p->sent(now);
sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;
}
}
else {
_paths[i] = _PeerPath();
deletionOccurred = true;
}
}
if (! _paths[i].p || deletionOccurred) {
for (unsigned int j = i; j < ZT_MAX_PEER_NETWORK_PATHS; ++j) {
if (_paths[j].p && i != j) {
_paths[i] = _paths[j];
_paths[j] = _PeerPath();
break;
}
}
deletionOccurred = false;
}
}
#ifndef ZT_NO_PEER_METRICS
uint16_t alive_path_count_tmp = 0, dead_path_count_tmp = 0;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if (_paths[i].p->alive(now)) {
alive_path_count_tmp++;
}
else {
dead_path_count_tmp++;
}
}
}
_alive_path_count = alive_path_count_tmp;
_dead_path_count = dead_path_count_tmp;
#endif
}
#ifndef ZT_NO_PEER_METRICS
_peer_latency.Observe(latency(now));
#endif
return sent;
}
void Peer::clusterRedirect(void* tPtr, const SharedPtr<Path>& originatingPath, const InetAddress& remoteAddress, const int64_t now)
{
SharedPtr<Path> np(RR->topology->getPath(originatingPath->localSocket(), remoteAddress));
RR->t->peerRedirected(tPtr, 0, *this, np);
attemptToContactAt(tPtr, originatingPath->localSocket(), remoteAddress, now, true);
{
Mutex::Lock _l(_paths_m);
// New priority is higher than the priority of the originating path (if known)
long newPriority = 1;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if (_paths[i].p == originatingPath) {
newPriority = _paths[i].priority;
break;
}
}
else {
break;
}
}
newPriority += 2;
// Erase any paths with lower priority than this one or that are duplicate
// IPs and add this path.
unsigned int j = 0;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if ((_paths[i].priority >= newPriority) && (! _paths[i].p->address().ipsEqual2(remoteAddress))) {
if (i != j) {
_paths[j] = _paths[i];
}
++j;
}
}
}
if (j < ZT_MAX_PEER_NETWORK_PATHS) {
_paths[j].lr = now;
_paths[j].p = np;
_paths[j].priority = newPriority;
++j;
while (j < ZT_MAX_PEER_NETWORK_PATHS) {
_paths[j].lr = 0;
_paths[j].p.zero();
_paths[j].priority = 1;
++j;
}
}
}
}
void Peer::resetWithinScope(void* tPtr, InetAddress::IpScope scope, int inetAddressFamily, int64_t now)
{
Mutex::Lock _l(_paths_m);
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
if ((_paths[i].p->address().ss_family == inetAddressFamily) && (_paths[i].p->ipScope() == scope)) {
attemptToContactAt(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), now, false);
_paths[i].p->sent(now);
_paths[i].lr = 0; // path will not be used unless it speaks again
}
}
else {
break;
}
}
}
void Peer::recordOutgoingPacket(const SharedPtr<Path>& path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
#ifndef ZT_NO_PEER_METRICS
_outgoing_packet++;
#endif
if (_localMultipathSupported && _bond) {
_bond->recordOutgoingPacket(path, packetId, payloadLength, verb, flowId, now);
}
}
void Peer::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
{
#ifndef ZT_NO_PEER_METRICS
_packet_errors++;
#endif
if (_localMultipathSupported && _bond) {
_bond->recordIncomingInvalidPacket(path);
}
}
void Peer::recordIncomingPacket(const SharedPtr<Path>& path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
if (_localMultipathSupported && _bond) {
_bond->recordIncomingPacket(path, packetId, payloadLength, verb, flowId, now);
}
}
} // namespace ZeroTier