ZeroTierOne/node/Network.cpp
2024-09-26 08:52:29 -04:00

1864 lines
77 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Network.hpp"
#include "../include/ZeroTierDebug.h"
#include "../version.h"
#include "Address.hpp"
#include "Buffer.hpp"
#include "Constants.hpp"
#include "ECC.hpp"
#include "InetAddress.hpp"
#include "MAC.hpp"
#include "Metrics.hpp"
#include "NetworkController.hpp"
#include "Node.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "RuntimeEnvironment.hpp"
#include "Switch.hpp"
#include "Trace.hpp"
#include <math.h>
#include <set>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
namespace ZeroTier {
namespace {
// Returns true if packet appears valid; pos and proto will be set
static inline bool _ipv6GetPayload(const uint8_t* frameData, unsigned int frameLen, unsigned int& pos, unsigned int& proto)
{
if (frameLen < 40) {
return false;
}
pos = 40;
proto = frameData[6];
while (pos <= frameLen) {
switch (proto) {
case 0: // hop-by-hop options
case 43: // routing
case 60: // destination options
case 135: // mobility options
if ((pos + 8) > frameLen) {
return false; // invalid!
}
proto = frameData[pos];
pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
break;
// case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
// case 50:
// case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
default:
return true;
}
}
return false; // overflow == invalid
}
enum _doZtFilterResult { DOZTFILTER_NO_MATCH, DOZTFILTER_DROP, DOZTFILTER_REDIRECT, DOZTFILTER_ACCEPT, DOZTFILTER_SUPER_ACCEPT };
static _doZtFilterResult _doZtFilter(
const RuntimeEnvironment* RR,
Trace::RuleResultLog& rrl,
const NetworkConfig& nconf,
const Membership* membership, // can be NULL
const bool inbound,
const Address& ztSource,
Address& ztDest, // MUTABLE -- is changed on REDIRECT actions
const MAC& macSource,
const MAC& macDest,
const uint8_t* const frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId,
const ZT_VirtualNetworkRule* rules, // cannot be NULL
const unsigned int ruleCount,
Address& cc, // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise
unsigned int& ccLength, // MUTABLE -- set to length of packet payload to TEE
bool& ccWatch, // MUTABLE -- set to true for WATCH target as opposed to normal TEE
uint8_t& qosBucket) // MUTABLE -- set to the value of the argument provided to PRIORITY
{
// Set to true if we are a TEE/REDIRECT/WATCH target
bool superAccept = false;
// The default match state for each set of entries starts as 'true' since an
// ACTION with no MATCH entries preceding it is always taken.
uint8_t thisSetMatches = 1;
uint8_t skipDrop = 0;
rrl.clear();
// uncomment for easier debugging fprintf
// if (!ztDest) { return DOZTFILTER_ACCEPT; }
#ifdef ZT_TRACE
// char buf[40], buf2[40];
// fprintf(stderr, "\nsrc %s dest %s inbound: %d ethertype %u", ztSource.toString(buf), ztDest.toString(buf2), inbound, etherType);
#endif
for (unsigned int rn = 0; rn < ruleCount; ++rn) {
const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3f);
#ifdef ZT_TRACE
// fprintf(stderr, "\n%02u %02d", rn, rt);
#endif
// First check if this is an ACTION
if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) {
if (thisSetMatches) {
switch (rt) {
case ZT_NETWORK_RULE_ACTION_PRIORITY:
qosBucket = (rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority)
return DOZTFILTER_ACCEPT;
case ZT_NETWORK_RULE_ACTION_DROP: {
if (! ! skipDrop) {
#ifdef ZT_TRACE
// fprintf(stderr, "\tskip Drop");
#endif
skipDrop = 0;
continue;
}
#ifdef ZT_TRACE
// fprintf(stderr, "\tDrop\n");
#endif
return DOZTFILTER_DROP;
}
case ZT_NETWORK_RULE_ACTION_ACCEPT: {
#ifdef ZT_TRACE
// fprintf(stderr, "\tAccept\n");
#endif
return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet
}
// These are initially handled together since preliminary logic is common
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: {
const Address fwdAddr(rules[rn].v.fwd.address);
if (fwdAddr == ztSource) {
// Skip as no-op since source is target
}
else if (fwdAddr == RR->identity.address()) {
if (inbound) {
return DOZTFILTER_SUPER_ACCEPT;
}
else {
}
}
else if (fwdAddr == ztDest) {
}
else {
if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) {
ztDest = fwdAddr;
return DOZTFILTER_REDIRECT;
}
else {
cc = fwdAddr;
ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen;
ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH);
}
}
}
continue;
case ZT_NETWORK_RULE_ACTION_BREAK:
return DOZTFILTER_NO_MATCH;
// Unrecognized ACTIONs are ignored as no-ops
default:
continue;
}
}
else {
// If this is an incoming packet and we are a TEE or REDIRECT target, we should
// super-accept if we accept at all. This will cause us to accept redirected or
// tee'd packets in spite of MAC and ZT addressing checks.
if (inbound) {
switch (rt) {
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
if (RR->identity.address() == rules[rn].v.fwd.address) {
superAccept = true;
}
break;
default:
break;
}
}
thisSetMatches = 1; // reset to default true for next batch of entries
continue;
}
}
// Circuit breaker: no need to evaluate an AND if the set's match state
// is currently false since anything AND false is false.
if ((! thisSetMatches) && (! (rules[rn].t & 0x40))) {
rrl.logSkipped(rn, thisSetMatches);
continue;
}
// If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result])
uint8_t thisRuleMatches = 0;
uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed
uint8_t hardYes = (rules[rn].t >> 7) ^ 1; // XOR with the NOT bit of the rule
uint8_t hardNo = (rules[rn].t >> 7) ^ 0;
switch (rt) {
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt());
break;
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt());
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac, 6) == macSource);
break;
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac, 6) == macDest);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void*)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void*)(frameData + 12), 4, 0)));
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void*)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void*)(frameData + 16), 4, 0)));
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void*)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void*)(frameData + 8), 16, 0)));
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void*)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void*)(frameData + 24), 16, 0)));
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
}
else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
const uint8_t tosMasked = (((frameData[0] << 4) & 0xf0) | ((frameData[1] >> 4) & 0x0f)) & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]);
}
else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto);
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
if (frameData[9] == 0x01) { // IP protocol == ICMP
const unsigned int ihl = (frameData[0] & 0xf) * 4;
if (frameLen >= (ihl + 2)) {
if (rules[rn].v.icmp.type == frameData[ihl]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[ihl + 1] == rules[rn].v.icmp.code);
}
else {
thisRuleMatches = hardYes;
}
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
}
else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
if ((proto == 0x3a) && (frameLen >= (pos + 2))) {
if (rules[rn].v.icmp.type == frameData[pos]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[pos + 1] == rules[rn].v.icmp.code);
}
else {
thisRuleMatches = hardYes;
}
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xf);
int p = -1;
switch (frameData[9]) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (headerLen + 4)) {
unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0);
p = (int)frameData[pos++] << 8;
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
}
else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
int p = -1;
switch (proto) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (pos + 4)) {
if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) {
pos += 2;
}
p = (int)frameData[pos++] << 8;
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
}
else {
thisRuleMatches = hardNo;
}
}
else {
thisRuleMatches = hardNo;
}
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: {
uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL;
if (macDest.isMulticast()) {
cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST;
}
if (macDest.isBroadcast()) {
cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST;
}
if (ownershipVerificationMask == 1) {
ownershipVerificationMask = 0;
InetAddress src;
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
src.set((const void*)(frameData + 12), 4, 0);
}
else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
// IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local.
if ((frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87) || (frameData[40] == 0x88))) {
if (frameData[40] == 0x87) {
// Neighbor solicitations contain no reliable source address, so we implement a small
// hack by considering them authenticated. Otherwise you would pretty much have to do
// this manually in the rule set for IPv6 to work at all.
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
}
else {
// Neighbor advertisements on the other hand can absolutely be authenticated.
src.set((const void*)(frameData + 40 + 8), 16, 0);
}
}
else {
// Other IPv6 packets can be handled normally
src.set((const void*)(frameData + 8), 16, 0);
}
}
else if ((etherType == ZT_ETHERTYPE_ARP) && (frameLen >= 28)) {
src.set((const void*)(frameData + 14), 4, 0);
}
if (inbound) {
if (membership) {
if ((src) && (membership->hasCertificateOfOwnershipFor<InetAddress>(nconf, src))) {
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
}
if (membership->hasCertificateOfOwnershipFor<MAC>(nconf, macSource)) {
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
}
}
}
else {
for (unsigned int i = 0; i < nconf.certificateOfOwnershipCount; ++i) {
if ((src) && (nconf.certificatesOfOwnership[i].owns(src))) {
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
}
if (nconf.certificatesOfOwnership[i].owns(macSource)) {
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
}
}
}
}
cf |= ownershipVerificationMask;
if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20) && (frameData[9] == 0x06)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xf);
cf |= (uint64_t)frameData[headerLen + 13];
cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0f)) << 8);
}
else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
if ((proto == 0x06) && (frameLen > (pos + 14))) {
cf |= (uint64_t)frameData[pos + 13];
cf |= (((uint64_t)(frameData[pos + 12] & 0x0f)) << 8);
}
}
}
thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0);
} break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0]) && (frameLen <= (unsigned int)rules[rn].v.frameSize[1]));
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
thisRuleMatches = (uint8_t)((uint32_t)(RR->node->prng() & 0xffffffffULL) <= rules[rn].v.randomProbability);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: {
const Tag* const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, Tag::IdComparePredicate());
if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
const Tag* const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const Tag*)0);
#ifdef ZT_TRACE
/*fprintf(stderr, "\tlocal tag [%u: %u] remote tag [%u: %u] match [%u]",
!!localTag ? localTag->id() : 0,
!!localTag ? localTag->value() : 0,
!!remoteTag ? remoteTag->id() : 0,
!!remoteTag ? remoteTag->value() : 0,
thisRuleMatches);*/
#endif
if (remoteTag) {
const uint32_t ltv = localTag->value();
const uint32_t rtv = remoteTag->value();
if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) {
const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv);
thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value);
}
else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) {
thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value);
}
else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) {
thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value);
}
else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) {
thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value);
}
else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) {
thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value) && (rtv == rules[rn].v.tag.value));
}
else { // sanity check, can't really happen
thisRuleMatches = hardNo;
}
}
else {
if ((inbound) && (! superAccept)) {
thisRuleMatches = hardNo;
#ifdef ZT_TRACE
// fprintf(stderr, "\tinbound ");
#endif
}
else {
// Outbound side is not strict since if we have to match both tags and
// we are sending a first packet to a recipient, we probably do not know
// about their tags yet. They will filter on inbound and we will filter
// once we get their tag. If we are a tee/redirect target we are also
// not strict since we likely do not have these tags.
skipDrop = 1;
thisRuleMatches = hardYes;
#ifdef ZT_TRACE
// fprintf(stderr, "\toutbound ");
#endif
}
}
}
else {
thisRuleMatches = hardNo;
}
} break;
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: {
const Tag* const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, Tag::IdComparePredicate());
#ifdef ZT_TRACE
/*const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0);
fprintf(stderr, "\tlocal tag [%u: %u] remote tag [%u: %u] match [%u]",
!!localTag ? localTag->id() : 0,
!!localTag ? localTag->value() : 0,
!!remoteTag ? remoteTag->id() : 0,
!!remoteTag ? remoteTag->value() : 0,
thisRuleMatches);*/
#endif
if (superAccept) {
skipDrop = 1;
thisRuleMatches = hardYes;
}
else if (((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER) && (inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) && (! inbound))) {
const Tag* const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const Tag*)0);
if (remoteTag) {
thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value);
}
else {
if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) {
// If we are checking the receiver and this is an outbound packet, we
// can't be strict since we may not yet know the receiver's tag.
skipDrop = 1;
thisRuleMatches = hardYes;
}
else {
thisRuleMatches = hardNo;
}
}
}
else { // sender and outbound or receiver and inbound
if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value);
}
else {
thisRuleMatches = hardNo;
}
}
} break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: {
uint64_t integer = 0;
const unsigned int bits = (rules[rn].v.intRange.format & 63) + 1;
const unsigned int bytes = ((bits + 8 - 1) / 8); // integer ceiling of division by 8
if ((rules[rn].v.intRange.format & 0x80) == 0) {
// Big-endian
unsigned int idx = rules[rn].v.intRange.idx + (8 - bytes);
const unsigned int eof = idx + bytes;
if (eof <= frameLen) {
while (idx < eof) {
integer <<= 8;
integer |= frameData[idx++];
}
}
integer &= 0xffffffffffffffffULL >> (64 - bits);
}
else {
// Little-endian
unsigned int idx = rules[rn].v.intRange.idx;
const unsigned int eof = idx + bytes;
if (eof <= frameLen) {
while (idx < eof) {
integer >>= 8;
integer |= ((uint64_t)frameData[idx++]) << 56;
}
}
integer >>= (64 - bits);
}
thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start) && (integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end)));
} break;
// The result of an unsupported MATCH is configurable at the network
// level via a flag.
default:
thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0);
break;
}
rrl.log(rn, thisRuleMatches, thisSetMatches);
if ((rules[rn].t & 0x40)) {
thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1));
}
else {
thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1));
}
}
return DOZTFILTER_NO_MATCH;
}
} // anonymous namespace
const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL), 0);
Network::Network(const RuntimeEnvironment* renv, void* tPtr, uint64_t nwid, void* uptr, const NetworkConfig* nconf)
: RR(renv)
, _uPtr(uptr)
, _id(nwid)
, _nwidStr(OSUtils::networkIDStr(nwid))
, _lastAnnouncedMulticastGroupsUpstream(0)
, _mac(renv->identity.address(), nwid)
, _portInitialized(false)
, _lastConfigUpdate(0)
, _destroyed(false)
, _netconfFailure(NETCONF_FAILURE_NONE)
, _portError(0)
, _num_multicast_groups { Metrics::network_num_multicast_groups.Add({ { "network_id", _nwidStr } }) }
, _incoming_packets_accepted { Metrics::network_packets.Add({ { "direction", "rx" }, { "network_id", _nwidStr }, { "accepted", "yes" } }) }
, _incoming_packets_dropped { Metrics::network_packets.Add({ { "direction", "rx" }, { "network_id", _nwidStr }, { "accepted", "no" } }) }
, _outgoing_packets_accepted { Metrics::network_packets.Add({ { "direction", "tx" }, { "network_id", _nwidStr }, { "accepted", "yes" } }) }
, _outgoing_packets_dropped { Metrics::network_packets.Add({ { "direction", "tx" }, { "network_id", _nwidStr }, { "accepted", "no" } }) }
{
for (int i = 0; i < ZT_NETWORK_MAX_INCOMING_UPDATES; ++i) {
_incomingConfigChunks[i].ts = 0;
}
if (nconf) {
this->setConfiguration(tPtr, *nconf, false);
_lastConfigUpdate = 0; // still want to re-request since it's likely outdated
}
else {
uint64_t tmp[2];
tmp[0] = nwid;
tmp[1] = 0;
bool got = false;
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>* dict = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
int n = RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, dict->unsafeData(), ZT_NETWORKCONFIG_DICT_CAPACITY - 1);
if (n > 1) {
NetworkConfig* nconf = new NetworkConfig();
try {
if (nconf->fromDictionary(*dict)) {
this->setConfiguration(tPtr, *nconf, false);
_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated
got = true;
}
}
catch (...) {
}
delete nconf;
}
}
catch (...) {
}
delete dict;
if (! got) {
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, "\n", 1);
}
}
if (! _portInitialized) {
ZT_VirtualNetworkConfig ctmp;
memset(&ctmp, 0, sizeof(ZT_VirtualNetworkConfig));
_externalConfig(&ctmp);
_portError = RR->node->configureVirtualNetworkPort(tPtr, _id, &_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
_portInitialized = true;
}
Metrics::network_num_joined++;
}
Network::~Network()
{
ZT_VirtualNetworkConfig ctmp;
_externalConfig(&ctmp);
Metrics::network_num_joined--;
if (_destroyed) {
// This is done in Node::leave() so we can pass tPtr properly
// RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
}
else {
RR->node->configureVirtualNetworkPort((void*)0, _id, &_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN, &ctmp);
}
}
bool Network::filterOutgoingPacket(
void* tPtr,
const bool noTee,
const Address& ztSource,
const Address& ztDest,
const MAC& macSource,
const MAC& macDest,
const uint8_t* frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId,
uint8_t& qosBucket)
{
Address ztFinalDest(ztDest);
int localCapabilityIndex = -1;
int accept = 0;
Trace::RuleResultLog rrl, crrl;
Address cc;
unsigned int ccLength = 0;
bool ccWatch = false;
Mutex::Lock _l(_lock);
Membership* const membership = (ztDest) ? _memberships.get(ztDest) : (Membership*)0;
switch (_doZtFilter(RR, rrl, _config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, _config.rules, _config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {
case DOZTFILTER_NO_MATCH: {
for (unsigned int c = 0; c < _config.capabilityCount; ++c) {
ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match
Address cc2;
unsigned int ccLength2 = 0;
bool ccWatch2 = false;
switch (_doZtFilter(
RR,
crrl,
_config,
membership,
false,
ztSource,
ztFinalDest,
macSource,
macDest,
frameData,
frameLen,
etherType,
vlanId,
_config.capabilities[c].rules(),
_config.capabilities[c].ruleCount(),
cc2,
ccLength2,
ccWatch2,
qosBucket)) {
case DOZTFILTER_NO_MATCH:
case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
break;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side in capabilities
localCapabilityIndex = (int)c;
accept = 1;
if ((! noTee) && (cc2)) {
Packet outp(cc2, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, ccLength2);
outp.compress();
RR->sw->send(tPtr, outp, true);
}
break;
}
if (accept) {
break;
}
}
} break;
case DOZTFILTER_DROP:
if (_config.remoteTraceTarget) {
RR->t->networkFilter(tPtr, *this, rrl, (Trace::RuleResultLog*)0, (Capability*)0, ztSource, ztDest, macSource, macDest, frameData, frameLen, etherType, vlanId, noTee, false, 0);
}
return false;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1;
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2;
break;
}
if (accept) {
_outgoing_packets_accepted++;
if ((! noTee) && (cc)) {
Packet outp(cc, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch ? 0x16 : 0x02));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, ccLength);
outp.compress();
RR->sw->send(tPtr, outp, true);
}
if ((ztDest != ztFinalDest) && (ztFinalDest)) {
Packet outp(ztFinalDest, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)0x04);
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, frameLen);
outp.compress();
RR->sw->send(tPtr, outp, true);
if (_config.remoteTraceTarget) {
RR->t->networkFilter(
tPtr,
*this,
rrl,
(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog*)0,
(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability*)0,
ztSource,
ztDest,
macSource,
macDest,
frameData,
frameLen,
etherType,
vlanId,
noTee,
false,
0);
}
return false; // DROP locally, since we redirected
}
else {
if (_config.remoteTraceTarget) {
RR->t->networkFilter(
tPtr,
*this,
rrl,
(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog*)0,
(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability*)0,
ztSource,
ztDest,
macSource,
macDest,
frameData,
frameLen,
etherType,
vlanId,
noTee,
false,
1);
}
return true;
}
}
else {
_outgoing_packets_dropped++;
if (_config.remoteTraceTarget) {
RR->t->networkFilter(
tPtr,
*this,
rrl,
(localCapabilityIndex >= 0) ? &crrl : (Trace::RuleResultLog*)0,
(localCapabilityIndex >= 0) ? &(_config.capabilities[localCapabilityIndex]) : (Capability*)0,
ztSource,
ztDest,
macSource,
macDest,
frameData,
frameLen,
etherType,
vlanId,
noTee,
false,
0);
}
return false;
}
}
int Network::filterIncomingPacket(
void* tPtr,
const SharedPtr<Peer>& sourcePeer,
const Address& ztDest,
const MAC& macSource,
const MAC& macDest,
const uint8_t* frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId)
{
Address ztFinalDest(ztDest);
Trace::RuleResultLog rrl, crrl;
int accept = 0;
Address cc;
unsigned int ccLength = 0;
bool ccWatch = false;
const Capability* c = (Capability*)0;
uint8_t qosBucket = 255; // For incoming packets this is a dummy value
Mutex::Lock _l(_lock);
Membership& membership = _membership(sourcePeer->address());
switch (_doZtFilter(RR, rrl, _config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, _config.rules, _config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {
case DOZTFILTER_NO_MATCH: {
Membership::CapabilityIterator mci(membership, _config);
while ((c = mci.next())) {
ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match
Address cc2;
unsigned int ccLength2 = 0;
bool ccWatch2 = false;
switch (_doZtFilter(RR, crrl, _config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
case DOZTFILTER_NO_MATCH:
case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
break;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1; // ACCEPT
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2; // super-ACCEPT
break;
}
if (accept) {
if (cc2) {
Packet outp(cc2, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, ccLength2);
outp.compress();
RR->sw->send(tPtr, outp, true);
}
break;
}
}
} break;
case DOZTFILTER_DROP:
if (_config.remoteTraceTarget) {
RR->t->networkFilter(tPtr, *this, rrl, (Trace::RuleResultLog*)0, (Capability*)0, sourcePeer->address(), ztDest, macSource, macDest, frameData, frameLen, etherType, vlanId, false, true, 0);
}
return 0; // DROP
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1; // ACCEPT
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2; // super-ACCEPT
break;
}
if (accept) {
_incoming_packets_accepted++;
if (cc) {
Packet outp(cc, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch ? 0x1c : 0x08));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, ccLength);
outp.compress();
RR->sw->send(tPtr, outp, true);
}
if ((ztDest != ztFinalDest) && (ztFinalDest)) {
Packet outp(ztFinalDest, RR->identity.address(), Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)0x0a);
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData, frameLen);
outp.compress();
RR->sw->send(tPtr, outp, true);
if (_config.remoteTraceTarget) {
RR->t->networkFilter(tPtr, *this, rrl, (c) ? &crrl : (Trace::RuleResultLog*)0, c, sourcePeer->address(), ztDest, macSource, macDest, frameData, frameLen, etherType, vlanId, false, true, 0);
}
return 0; // DROP locally, since we redirected
}
}
else {
_incoming_packets_dropped++;
}
if (_config.remoteTraceTarget) {
RR->t->networkFilter(tPtr, *this, rrl, (c) ? &crrl : (Trace::RuleResultLog*)0, c, sourcePeer->address(), ztDest, macSource, macDest, frameData, frameLen, etherType, vlanId, false, true, accept);
}
return accept;
}
bool Network::subscribedToMulticastGroup(const MulticastGroup& mg, bool includeBridgedGroups) const
{
Mutex::Lock _l(_lock);
if (std::binary_search(_myMulticastGroups.begin(), _myMulticastGroups.end(), mg)) {
return true;
}
else if (includeBridgedGroups) {
return _multicastGroupsBehindMe.contains(mg);
}
return false;
}
void Network::multicastSubscribe(void* tPtr, const MulticastGroup& mg)
{
Mutex::Lock _l(_lock);
if (! std::binary_search(_myMulticastGroups.begin(), _myMulticastGroups.end(), mg)) {
_myMulticastGroups.insert(std::upper_bound(_myMulticastGroups.begin(), _myMulticastGroups.end(), mg), mg);
_sendUpdatesToMembers(tPtr, &mg);
_num_multicast_groups++;
}
}
void Network::multicastUnsubscribe(const MulticastGroup& mg)
{
Mutex::Lock _l(_lock);
std::vector<MulticastGroup>::iterator i(std::lower_bound(_myMulticastGroups.begin(), _myMulticastGroups.end(), mg));
if ((i != _myMulticastGroups.end()) && (*i == mg)) {
_myMulticastGroups.erase(i);
_num_multicast_groups--;
}
}
uint64_t Network::handleConfigChunk(void* tPtr, const uint64_t packetId, const Address& source, const Buffer<ZT_PROTO_MAX_PACKET_LENGTH>& chunk, unsigned int ptr)
{
if (_destroyed) {
return 0;
}
const unsigned int start = ptr;
ptr += 8; // skip network ID, which is already obviously known
const unsigned int chunkLen = chunk.at<uint16_t>(ptr);
ptr += 2;
const void* chunkData = chunk.field(ptr, chunkLen);
ptr += chunkLen;
NetworkConfig* nc = (NetworkConfig*)0;
uint64_t configUpdateId;
{
Mutex::Lock _l(_lock);
_IncomingConfigChunk* c = (_IncomingConfigChunk*)0;
uint64_t chunkId = 0;
unsigned long totalLength, chunkIndex;
if (ptr < chunk.size()) {
const bool fastPropagate = ((chunk[ptr++] & 0x01) != 0);
configUpdateId = chunk.at<uint64_t>(ptr);
ptr += 8;
totalLength = chunk.at<uint32_t>(ptr);
ptr += 4;
chunkIndex = chunk.at<uint32_t>(ptr);
ptr += 4;
if (((chunkIndex + chunkLen) > totalLength) || (totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY)) { // >= since we need room for a null at the end
return 0;
}
if ((chunk[ptr] != 1) || (chunk.at<uint16_t>(ptr + 1) != ZT_ECC_SIGNATURE_LEN)) {
return 0;
}
const uint8_t* sig = reinterpret_cast<const uint8_t*>(chunk.field(ptr + 3, ZT_ECC_SIGNATURE_LEN));
// We can use the signature, which is unique per chunk, to get a per-chunk ID for local deduplication use
for (unsigned int i = 0; i < 16; ++i) {
reinterpret_cast<uint8_t*>(&chunkId)[i & 7] ^= sig[i];
}
// Find existing or new slot for this update and check if this is a duplicate chunk
for (int i = 0; i < ZT_NETWORK_MAX_INCOMING_UPDATES; ++i) {
if (_incomingConfigChunks[i].updateId == configUpdateId) {
c = &(_incomingConfigChunks[i]);
for (unsigned long j = 0; j < c->haveChunks; ++j) {
if (c->haveChunkIds[j] == chunkId) {
return 0;
}
}
break;
}
else if ((! c) || (_incomingConfigChunks[i].ts < c->ts)) {
c = &(_incomingConfigChunks[i]);
}
}
// If it's not a duplicate, check chunk signature
const Identity controllerId(RR->topology->getIdentity(tPtr, controller()));
if (! controllerId) { // we should always have the controller identity by now, otherwise how would we have queried it the first time?
return 0;
}
if (! controllerId.verify(chunk.field(start, ptr - start), ptr - start, sig, ZT_ECC_SIGNATURE_LEN)) {
return 0;
}
// New properly verified chunks can be flooded "virally" through the network
if (fastPropagate) {
Address* a = (Address*)0;
Membership* m = (Membership*)0;
Hashtable<Address, Membership>::Iterator i(_memberships);
while (i.next(a, m)) {
if ((*a != source) && (*a != controller())) {
Packet outp(*a, RR->identity.address(), Packet::VERB_NETWORK_CONFIG);
outp.append(reinterpret_cast<const uint8_t*>(chunk.data()) + start, chunk.size() - start);
RR->sw->send(tPtr, outp, true);
}
}
}
}
else if ((source == controller()) || (! source)) { // since old chunks aren't signed, only accept from controller itself (or via cluster backplane)
// Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers
chunkId = packetId;
configUpdateId = chunkId;
totalLength = chunkLen;
chunkIndex = 0;
if (totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY) {
return 0;
}
for (int i = 0; i < ZT_NETWORK_MAX_INCOMING_UPDATES; ++i) {
if ((! c) || (_incomingConfigChunks[i].ts < c->ts)) {
c = &(_incomingConfigChunks[i]);
}
}
}
else {
// Single-chunk unsigned legacy configs are only allowed from the controller itself
return 0;
}
++c->ts; // newer is higher, that's all we need
if (c->updateId != configUpdateId) {
c->updateId = configUpdateId;
c->haveChunks = 0;
c->haveBytes = 0;
}
if (c->haveChunks >= ZT_NETWORK_MAX_UPDATE_CHUNKS) {
return false;
}
c->haveChunkIds[c->haveChunks++] = chunkId;
memcpy(c->data.unsafeData() + chunkIndex, chunkData, chunkLen);
c->haveBytes += chunkLen;
if (c->haveBytes == totalLength) {
c->data.unsafeData()[c->haveBytes] = (char)0; // ensure null terminated
nc = new NetworkConfig();
try {
if (! nc->fromDictionary(c->data)) {
delete nc;
nc = (NetworkConfig*)0;
}
}
catch (...) {
delete nc;
nc = (NetworkConfig*)0;
}
}
}
if (nc) {
this->setConfiguration(tPtr, *nc, true);
delete nc;
return configUpdateId;
}
else {
return 0;
}
return 0;
}
int Network::setConfiguration(void* tPtr, const NetworkConfig& nconf, bool saveToDisk)
{
if (_destroyed) {
return 0;
}
// _lock is NOT locked when this is called
try {
if ((nconf.issuedTo != RR->identity.address()) || (nconf.networkId != _id)) {
return 0; // invalid config that is not for us or not for this network
}
if (_config == nconf) {
return 1; // OK config, but duplicate of what we already have
}
ZT_VirtualNetworkConfig ctmp;
bool oldPortInitialized;
{ // do things that require lock here, but unlock before calling callbacks
Mutex::Lock _l(_lock);
_config = nconf;
_lastConfigUpdate = RR->node->now();
_netconfFailure = NETCONF_FAILURE_NONE;
oldPortInitialized = _portInitialized;
_portInitialized = true;
_externalConfig(&ctmp);
}
_portError = RR->node->configureVirtualNetworkPort(tPtr, _id, &_uPtr, (oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
_authenticationURL = nconf.authenticationURL;
if (saveToDisk) {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>* const d = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (nconf.toDictionary(*d, false)) {
uint64_t tmp[2];
tmp[0] = _id;
tmp[1] = 0;
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, d->data(), d->sizeBytes());
}
}
catch (...) {
}
delete d;
}
return 2; // OK and configuration has changed
}
catch (...) {
} // ignore invalid configs
return 0;
}
void Network::requestConfiguration(void* tPtr)
{
if (_destroyed) {
return;
}
if ((_id >> 56) == 0xff) {
if ((_id & 0xffffff) == 0) {
const uint16_t startPortRange = (uint16_t)((_id >> 40) & 0xffff);
const uint16_t endPortRange = (uint16_t)((_id >> 24) & 0xffff);
if (endPortRange >= startPortRange) {
NetworkConfig* const nconf = new NetworkConfig();
nconf->networkId = _id;
nconf->timestamp = RR->node->now();
nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
nconf->revision = 1;
nconf->issuedTo = RR->identity.address();
nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
nconf->mtu = ZT_DEFAULT_MTU;
nconf->multicastLimit = 0;
nconf->staticIpCount = 1;
nconf->ruleCount = 14;
nconf->staticIps[0] = InetAddress::makeIpv66plane(_id, RR->identity.address().toInt());
// Drop everything but IPv6
nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80; // NOT
nconf->rules[0].v.etherType = 0x86dd; // IPv6
nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;
// Allow ICMPv6
nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6
nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Allow destination ports within range
nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
nconf->rules[4].v.ipProtocol = 0x11; // UDP
nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40; // OR
nconf->rules[5].v.ipProtocol = 0x06; // TCP
nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE;
nconf->rules[6].v.port[0] = startPortRange;
nconf->rules[6].v.port[1] = endPortRange;
nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Allow non-SYN TCP packets to permit non-connection-initiating traffic
nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80; // NOT
nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Also allow SYN+ACK which are replies to SYN
nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK;
nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;
nconf->type = ZT_NETWORK_TYPE_PUBLIC;
nconf->name[0] = 'a';
nconf->name[1] = 'd';
nconf->name[2] = 'h';
nconf->name[3] = 'o';
nconf->name[4] = 'c';
nconf->name[5] = '-';
Utils::hex((uint16_t)startPortRange, nconf->name + 6);
nconf->name[10] = '-';
Utils::hex((uint16_t)endPortRange, nconf->name + 11);
nconf->name[15] = (char)0;
this->setConfiguration(tPtr, *nconf, false);
delete nconf;
}
else {
this->setNotFound(tPtr);
}
}
else if ((_id & 0xff) == 0x01) {
// ffAAaaaaaaaaaa01 -- where AA is the IPv4 /8 to use and aaaaaaaaaa is the anchor node for multicast gather and replication
const uint64_t myAddress = RR->identity.address().toInt();
const uint64_t networkHub = (_id >> 8) & 0xffffffffffULL;
uint8_t ipv4[4];
ipv4[0] = (uint8_t)((_id >> 48) & 0xff);
ipv4[1] = (uint8_t)((myAddress >> 16) & 0xff);
ipv4[2] = (uint8_t)((myAddress >> 8) & 0xff);
ipv4[3] = (uint8_t)(myAddress & 0xff);
char v4ascii[24];
Utils::decimal(ipv4[0], v4ascii);
NetworkConfig* const nconf = new NetworkConfig();
nconf->networkId = _id;
nconf->timestamp = RR->node->now();
nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
nconf->revision = 1;
nconf->issuedTo = RR->identity.address();
nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
nconf->mtu = ZT_DEFAULT_MTU;
nconf->multicastLimit = 1024;
nconf->specialistCount = (networkHub == 0) ? 0 : 1;
nconf->staticIpCount = 2;
nconf->ruleCount = 1;
if (networkHub != 0) {
nconf->specialists[0] = networkHub;
}
nconf->staticIps[0] = InetAddress::makeIpv66plane(_id, myAddress);
nconf->staticIps[1].set(ipv4, 4, 8);
nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
nconf->type = ZT_NETWORK_TYPE_PUBLIC;
nconf->name[0] = 'a';
nconf->name[1] = 'd';
nconf->name[2] = 'h';
nconf->name[3] = 'o';
nconf->name[4] = 'c';
nconf->name[5] = '-';
unsigned long nn = 6;
while ((nconf->name[nn] = v4ascii[nn - 6])) {
++nn;
}
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn++] = (char)0;
this->setConfiguration(tPtr, *nconf, false);
delete nconf;
}
return;
}
const Address ctrl(controller());
Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> rmd;
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION, (uint64_t)ZT_NETWORKCONFIG_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR, (uint64_t)ZT_VENDOR_ZEROTIER);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION, (uint64_t)ZT_PROTO_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION, (uint64_t)ZEROTIER_ONE_VERSION_MAJOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION, (uint64_t)ZEROTIER_ONE_VERSION_MINOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION, (uint64_t)ZEROTIER_ONE_VERSION_REVISION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES, (uint64_t)ZT_MAX_NETWORK_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES, (uint64_t)ZT_MAX_NETWORK_CAPABILITIES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES, (uint64_t)ZT_MAX_CAPABILITY_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS, (uint64_t)ZT_MAX_NETWORK_TAGS);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS, (uint64_t)0);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV, (uint64_t)ZT_RULES_ENGINE_REVISION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_OS_ARCH, ZT_TARGET_NAME);
RR->t->networkConfigRequestSent(tPtr, *this, ctrl);
if (ctrl == RR->identity.address()) {
if (RR->localNetworkController) {
RR->localNetworkController->request(_id, InetAddress(), 0xffffffffffffffffULL, RR->identity, rmd);
}
else {
this->setNotFound(tPtr);
}
return;
}
Packet outp(ctrl, RR->identity.address(), Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append((uint64_t)_id);
const unsigned int rmdSize = rmd.sizeBytes();
outp.append((uint16_t)rmdSize);
outp.append((const void*)rmd.data(), rmdSize);
if (_config) {
outp.append((uint64_t)_config.revision);
outp.append((uint64_t)_config.timestamp);
}
else {
outp.append((unsigned char)0, 16);
}
outp.compress();
RR->node->expectReplyTo(outp.packetId());
RR->sw->send(tPtr, outp, true);
}
bool Network::gate(void* tPtr, const SharedPtr<Peer>& peer)
{
const int64_t now = RR->node->now();
// int64_t comTimestamp = 0;
// int64_t comRevocationThreshold = 0;
Mutex::Lock _l(_lock);
try {
if (_config) {
Membership* m = _memberships.get(peer->address());
// if (m) {
// comTimestamp = m->comTimestamp();
// comRevocationThreshold = m->comRevocationThreshold();
// }
if ((_config.isPublic()) || ((m) && (m->isAllowedOnNetwork(_config, peer->identity())))) {
if (! m) {
m = &(_membership(peer->address()));
}
if (m->multicastLikeGate(now)) {
_announceMulticastGroupsTo(tPtr, peer->address(), _allMulticastGroups());
}
return true;
}
}
}
catch (...) {
}
// printf("%.16llx %.10llx not allowed, COM ts %lld revocation %lld\n", _id, peer->address().toInt(), comTimestamp, comRevocationThreshold); fflush(stdout);
return false;
}
bool Network::recentlyAssociatedWith(const Address& addr)
{
Mutex::Lock _l(_lock);
const Membership* m = _memberships.get(addr);
return ((m) && (m->recentlyAssociated(RR->node->now())));
}
void Network::clean()
{
const int64_t now = RR->node->now();
Mutex::Lock _l(_lock);
if (_destroyed) {
return;
}
{
Hashtable<MulticastGroup, uint64_t>::Iterator i(_multicastGroupsBehindMe);
MulticastGroup* mg = (MulticastGroup*)0;
uint64_t* ts = (uint64_t*)0;
while (i.next(mg, ts)) {
if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2)) {
_multicastGroupsBehindMe.erase(*mg);
}
}
}
{
Address* a = (Address*)0;
Membership* m = (Membership*)0;
Hashtable<Address, Membership>::Iterator i(_memberships);
while (i.next(a, m)) {
if (! RR->topology->getPeerNoCache(*a)) {
_memberships.erase(*a);
}
else {
m->clean(now, _config);
}
}
}
}
void Network::learnBridgeRoute(const MAC& mac, const Address& addr)
{
Mutex::Lock _l(_lock);
_remoteBridgeRoutes[mac] = addr;
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
Hashtable<Address, unsigned long> counts;
Address maxAddr;
unsigned long maxCount = 0;
MAC* m = (MAC*)0;
Address* a = (Address*)0;
// Find the address responsible for the most entries
{
Hashtable<MAC, Address>::Iterator i(_remoteBridgeRoutes);
while (i.next(m, a)) {
const unsigned long c = ++counts[*a];
if (c > maxCount) {
maxCount = c;
maxAddr = *a;
}
}
}
// Kill this address from our table, since it's most likely spamming us
{
Hashtable<MAC, Address>::Iterator i(_remoteBridgeRoutes);
while (i.next(m, a)) {
if (*a == maxAddr) {
_remoteBridgeRoutes.erase(*m);
}
}
}
}
}
void Network::learnBridgedMulticastGroup(void* tPtr, const MulticastGroup& mg, int64_t now)
{
Mutex::Lock _l(_lock);
const unsigned long tmp = (unsigned long)_multicastGroupsBehindMe.size();
_multicastGroupsBehindMe.set(mg, now);
if (tmp != _multicastGroupsBehindMe.size()) {
_sendUpdatesToMembers(tPtr, &mg);
}
}
Membership::AddCredentialResult Network::addCredential(void* tPtr, const CertificateOfMembership& com)
{
if (com.networkId() != _id) {
return Membership::ADD_REJECTED;
}
Mutex::Lock _l(_lock);
return _membership(com.issuedTo()).addCredential(RR, tPtr, _config, com);
}
Membership::AddCredentialResult Network::addCredential(void* tPtr, const Address& sentFrom, const Revocation& rev)
{
if (rev.networkId() != _id) {
return Membership::ADD_REJECTED;
}
Mutex::Lock _l(_lock);
Membership& m = _membership(rev.target());
const Membership::AddCredentialResult result = m.addCredential(RR, tPtr, _config, rev);
if ((result == Membership::ADD_ACCEPTED_NEW) && (rev.fastPropagate())) {
Address* a = (Address*)0;
Membership* m = (Membership*)0;
Hashtable<Address, Membership>::Iterator i(_memberships);
while (i.next(a, m)) {
if ((*a != sentFrom) && (*a != rev.signer())) {
Packet outp(*a, RR->identity.address(), Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00); // no COM
outp.append((uint16_t)0); // no capabilities
outp.append((uint16_t)0); // no tags
outp.append((uint16_t)1); // one revocation!
rev.serialize(outp);
outp.append((uint16_t)0); // no certificates of ownership
RR->sw->send(tPtr, outp, true);
}
}
}
return result;
}
void Network::destroy()
{
Mutex::Lock _l(_lock);
_destroyed = true;
}
ZT_VirtualNetworkStatus Network::_status() const
{
// assumes _lock is locked
if (_portError) {
return ZT_NETWORK_STATUS_PORT_ERROR;
}
switch (_netconfFailure) {
case NETCONF_FAILURE_ACCESS_DENIED:
return ZT_NETWORK_STATUS_ACCESS_DENIED;
case NETCONF_FAILURE_NOT_FOUND:
return ZT_NETWORK_STATUS_NOT_FOUND;
case NETCONF_FAILURE_NONE:
return ((_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION);
case NETCONF_FAILURE_AUTHENTICATION_REQUIRED:
return ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED;
default:
return ZT_NETWORK_STATUS_PORT_ERROR;
}
}
void Network::_externalConfig(ZT_VirtualNetworkConfig* ec) const
{
// assumes _lock is locked
ec->nwid = _id;
ec->mac = _mac.toInt();
if (_config) {
Utils::scopy(ec->name, sizeof(ec->name), _config.name);
}
else {
ec->name[0] = (char)0;
}
ec->status = _status();
ec->type = (_config) ? (_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
ec->mtu = (_config) ? _config.mtu : ZT_DEFAULT_MTU;
ec->dhcp = 0;
std::vector<Address> ab(_config.activeBridges());
ec->bridge = (std::find(ab.begin(), ab.end(), RR->identity.address()) != ab.end()) ? 1 : 0;
ec->broadcastEnabled = (_config) ? (_config.enableBroadcast() ? 1 : 0) : 0;
ec->portError = _portError;
ec->netconfRevision = (_config) ? (unsigned long)_config.revision : 0;
ec->assignedAddressCount = 0;
for (unsigned int i = 0; i < ZT_MAX_ZT_ASSIGNED_ADDRESSES; ++i) {
if (i < _config.staticIpCount) {
memcpy(&(ec->assignedAddresses[i]), &(_config.staticIps[i]), sizeof(struct sockaddr_storage));
++ec->assignedAddressCount;
}
else {
memset(&(ec->assignedAddresses[i]), 0, sizeof(struct sockaddr_storage));
}
}
ec->routeCount = 0;
for (unsigned int i = 0; i < ZT_MAX_NETWORK_ROUTES; ++i) {
if (i < _config.routeCount) {
memcpy(&(ec->routes[i]), &(_config.routes[i]), sizeof(ZT_VirtualNetworkRoute));
++ec->routeCount;
}
else {
memset(&(ec->routes[i]), 0, sizeof(ZT_VirtualNetworkRoute));
}
}
ec->multicastSubscriptionCount = (unsigned int)_myMulticastGroups.size();
for (unsigned long i = 0; i < (unsigned long)_myMulticastGroups.size(); ++i) {
ec->multicastSubscriptions[i].mac = _myMulticastGroups[i].mac().toInt();
ec->multicastSubscriptions[i].adi = _myMulticastGroups[i].adi();
}
memcpy(&ec->dns, &_config.dns, sizeof(ZT_VirtualNetworkDNS));
Utils::scopy(ec->authenticationURL, sizeof(ec->authenticationURL), _authenticationURL.c_str());
ec->ssoVersion = _config.ssoVersion;
ec->authenticationExpiryTime = _config.authenticationExpiryTime;
ec->ssoEnabled = _config.ssoEnabled;
Utils::scopy(ec->centralAuthURL, sizeof(ec->centralAuthURL), _config.centralAuthURL);
Utils::scopy(ec->issuerURL, sizeof(ec->issuerURL), _config.issuerURL);
Utils::scopy(ec->ssoNonce, sizeof(ec->ssoNonce), _config.ssoNonce);
Utils::scopy(ec->ssoState, sizeof(ec->ssoState), _config.ssoState);
Utils::scopy(ec->ssoClientID, sizeof(ec->ssoClientID), _config.ssoClientID);
Utils::scopy(ec->ssoProvider, sizeof(ec->ssoProvider), _config.ssoProvider);
}
void Network::_sendUpdatesToMembers(void* tPtr, const MulticastGroup* const newMulticastGroup)
{
// Assumes _lock is locked
const int64_t now = RR->node->now();
std::vector<MulticastGroup> groups;
if (newMulticastGroup) {
groups.push_back(*newMulticastGroup);
}
else {
groups = _allMulticastGroups();
}
std::vector<Address> alwaysAnnounceTo;
if ((newMulticastGroup) || ((now - _lastAnnouncedMulticastGroupsUpstream) >= ZT_MULTICAST_ANNOUNCE_PERIOD)) {
if (! newMulticastGroup) {
_lastAnnouncedMulticastGroupsUpstream = now;
}
alwaysAnnounceTo = _config.alwaysContactAddresses();
if (std::find(alwaysAnnounceTo.begin(), alwaysAnnounceTo.end(), controller()) == alwaysAnnounceTo.end()) {
alwaysAnnounceTo.push_back(controller());
}
const std::vector<Address> upstreams(RR->topology->upstreamAddresses());
for (std::vector<Address>::const_iterator a(upstreams.begin()); a != upstreams.end(); ++a) {
if (std::find(alwaysAnnounceTo.begin(), alwaysAnnounceTo.end(), *a) == alwaysAnnounceTo.end()) {
alwaysAnnounceTo.push_back(*a);
}
}
std::sort(alwaysAnnounceTo.begin(), alwaysAnnounceTo.end());
for (std::vector<Address>::const_iterator a(alwaysAnnounceTo.begin()); a != alwaysAnnounceTo.end(); ++a) {
/*
// push COM to non-members so they can do multicast request auth
if ( (_config.com) && (!_memberships.contains(*a)) && (*a != RR->identity.address()) ) {
Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
_config.com.serialize(outp);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0); // no capabilities
outp.append((uint16_t)0); // no tags
outp.append((uint16_t)0); // no revocations
outp.append((uint16_t)0); // no certificates of ownership
RR->sw->send(tPtr,outp,true);
}
*/
_announceMulticastGroupsTo(tPtr, *a, groups);
}
}
{
Address* a = (Address*)0;
Membership* m = (Membership*)0;
Hashtable<Address, Membership>::Iterator i(_memberships);
while (i.next(a, m)) {
const Identity remoteIdentity(RR->topology->getIdentity(tPtr, *a));
if (remoteIdentity) {
if ((m->multicastLikeGate(now) || (newMulticastGroup)) && (m->isAllowedOnNetwork(_config, remoteIdentity)) && (! std::binary_search(alwaysAnnounceTo.begin(), alwaysAnnounceTo.end(), *a))) {
_announceMulticastGroupsTo(tPtr, *a, groups);
}
}
}
}
}
void Network::_announceMulticastGroupsTo(void* tPtr, const Address& peer, const std::vector<MulticastGroup>& allMulticastGroups)
{
// Assumes _lock is locked
Packet* const outp = new Packet(peer, RR->identity.address(), Packet::VERB_MULTICAST_LIKE);
for (std::vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin()); mg != allMulticastGroups.end(); ++mg) {
if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
outp->compress();
RR->sw->send(tPtr, *outp, true);
outp->reset(peer, RR->identity.address(), Packet::VERB_MULTICAST_LIKE);
}
// network ID, MAC, ADI
outp->append((uint64_t)_id);
mg->mac().appendTo(*outp);
outp->append((uint32_t)mg->adi());
}
if (outp->size() > ZT_PROTO_MIN_PACKET_LENGTH) {
outp->compress();
RR->sw->send(tPtr, *outp, true);
}
delete outp;
}
std::vector<MulticastGroup> Network::_allMulticastGroups() const
{
// Assumes _lock is locked
std::vector<MulticastGroup> mgs;
mgs.reserve(_myMulticastGroups.size() + _multicastGroupsBehindMe.size() + 1);
mgs.insert(mgs.end(), _myMulticastGroups.begin(), _myMulticastGroups.end());
_multicastGroupsBehindMe.appendKeys(mgs);
if ((_config) && (_config.enableBroadcast())) {
mgs.push_back(Network::BROADCAST);
}
std::sort(mgs.begin(), mgs.end());
mgs.erase(std::unique(mgs.begin(), mgs.end()), mgs.end());
return mgs;
}
Membership& Network::_membership(const Address& a)
{
// assumes _lock is locked
return _memberships[a];
}
void Network::setAuthenticationRequired(void* tPtr, const char* issuerURL, const char* centralEndpoint, const char* clientID, const char* ssoProvider, const char* nonce, const char* state)
{
Mutex::Lock _l(_lock);
_netconfFailure = NETCONF_FAILURE_AUTHENTICATION_REQUIRED;
_config.ssoEnabled = true;
_config.ssoVersion = 1;
Utils::scopy(_config.issuerURL, sizeof(_config.issuerURL), issuerURL);
Utils::scopy(_config.centralAuthURL, sizeof(_config.centralAuthURL), centralEndpoint);
Utils::scopy(_config.ssoClientID, sizeof(_config.ssoClientID), clientID);
Utils::scopy(_config.ssoNonce, sizeof(_config.ssoNonce), nonce);
Utils::scopy(_config.ssoState, sizeof(_config.ssoState), state);
Utils::scopy(_config.ssoProvider, sizeof(_config.ssoProvider), ssoProvider);
_sendUpdateEvent(tPtr);
}
void Network::_sendUpdateEvent(void* tPtr)
{
ZT_VirtualNetworkConfig ctmp;
_externalConfig(&ctmp);
RR->node->configureVirtualNetworkPort(tPtr, _id, &_uPtr, (_portInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
}
} // namespace ZeroTier