ZeroTierOne/node/InetAddress.cpp
2024-09-26 08:52:29 -04:00

543 lines
21 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "InetAddress.hpp"
#include "Constants.hpp"
#include "Utils.hpp"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <string>
namespace ZeroTier {
const InetAddress InetAddress::LO4((const void*)("\x7f\x00\x00\x01"), 4, 0);
const InetAddress InetAddress::LO6((const void*)("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"), 16, 0);
InetAddress::IpScope InetAddress::ipScope() const
{
switch (ss_family) {
case AF_INET: {
const uint32_t ip = Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr);
switch (ip >> 24) {
case 0x00:
return IP_SCOPE_NONE; // 0.0.0.0/8 (reserved, never used)
case 0x06:
return IP_SCOPE_PSEUDOPRIVATE; // 6.0.0.0/8 (US Army)
case 0x0a:
return IP_SCOPE_PRIVATE; // 10.0.0.0/8
case 0x0b:
return IP_SCOPE_PSEUDOPRIVATE; // 11.0.0.0/8 (US DoD)
case 0x15:
return IP_SCOPE_PSEUDOPRIVATE; // 21.0.0.0/8 (US DDN-RVN)
case 0x16:
return IP_SCOPE_PSEUDOPRIVATE; // 22.0.0.0/8 (US DISA)
case 0x19:
return IP_SCOPE_PSEUDOPRIVATE; // 25.0.0.0/8 (UK Ministry of Defense)
case 0x1a:
return IP_SCOPE_PSEUDOPRIVATE; // 26.0.0.0/8 (US DISA)
case 0x1c:
return IP_SCOPE_PSEUDOPRIVATE; // 28.0.0.0/8 (US DSI-North)
case 0x1d:
return IP_SCOPE_PSEUDOPRIVATE; // 29.0.0.0/8 (US DISA)
case 0x1e:
return IP_SCOPE_PSEUDOPRIVATE; // 30.0.0.0/8 (US DISA)
case 0x33:
return IP_SCOPE_PSEUDOPRIVATE; // 51.0.0.0/8 (UK Department of Social Security)
case 0x37:
return IP_SCOPE_PSEUDOPRIVATE; // 55.0.0.0/8 (US DoD)
case 0x38:
return IP_SCOPE_PSEUDOPRIVATE; // 56.0.0.0/8 (US Postal Service)
case 0x64:
if ((ip & 0xffc00000) == 0x64400000) {
return IP_SCOPE_PRIVATE; // 100.64.0.0/10
}
break;
case 0x7f:
return IP_SCOPE_LOOPBACK; // 127.0.0.0/8
case 0xa9:
if ((ip & 0xffff0000) == 0xa9fe0000) {
return IP_SCOPE_LINK_LOCAL; // 169.254.0.0/16
}
break;
case 0xac:
if ((ip & 0xfff00000) == 0xac100000) {
return IP_SCOPE_PRIVATE; // 172.16.0.0/12
}
break;
case 0xc0:
if ((ip & 0xffff0000) == 0xc0a80000) {
return IP_SCOPE_PRIVATE; // 192.168.0.0/16
}
if ((ip & 0xffffff00) == 0xc0000200) {
return IP_SCOPE_PRIVATE; // 192.0.2.0/24
}
break;
case 0xc6:
if ((ip & 0xfffe0000) == 0xc6120000) {
return IP_SCOPE_PRIVATE; // 198.18.0.0/15
}
if ((ip & 0xffffff00) == 0xc6336400) {
return IP_SCOPE_PRIVATE; // 198.51.100.0/24
}
break;
case 0xcb:
if ((ip & 0xffffff00) == 0xcb007100) {
return IP_SCOPE_PRIVATE; // 203.0.113.0/24
}
break;
case 0xff:
return IP_SCOPE_NONE; // 255.0.0.0/8 (broadcast, or unused/unusable)
}
switch (ip >> 28) {
case 0xe:
return IP_SCOPE_MULTICAST; // 224.0.0.0/4
case 0xf:
return IP_SCOPE_PSEUDOPRIVATE; // 240.0.0.0/4 ("reserved," usually unusable)
}
return IP_SCOPE_GLOBAL;
} break;
case AF_INET6: {
const unsigned char* ip = reinterpret_cast<const unsigned char*>(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr);
if ((ip[0] & 0xf0) == 0xf0) {
if (ip[0] == 0xff) {
return IP_SCOPE_MULTICAST; // ff00::/8
}
if ((ip[0] == 0xfe) && ((ip[1] & 0xc0) == 0x80)) {
unsigned int k = 2;
while ((! ip[k]) && (k < 15)) {
++k;
}
if ((k == 15) && (ip[15] == 0x01)) {
return IP_SCOPE_LOOPBACK; // fe80::1/128
}
else {
return IP_SCOPE_LINK_LOCAL; // fe80::/10
}
}
if ((ip[0] & 0xfe) == 0xfc) {
return IP_SCOPE_PRIVATE; // fc00::/7
}
}
// :::ffff:127.0.0.1
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x7f, 0, 0, 1
unsigned int k = 0;
while ((! ip[k]) && (k < 9)) {
++k;
}
if (k == 9) {
if (ip[10] == 0xff && ip[11] == 0xff && ip[12] == 0x7f) {
return IP_SCOPE_LOOPBACK;
}
}
k = 0;
while ((! ip[k]) && (k < 15)) {
++k;
}
if (k == 15) { // all 0's except last byte
if (ip[15] == 0x01) {
return IP_SCOPE_LOOPBACK; // ::1/128
}
if (ip[15] == 0x00) {
return IP_SCOPE_NONE; // ::/128
}
}
return IP_SCOPE_GLOBAL;
} break;
}
return IP_SCOPE_NONE;
}
void InetAddress::set(const void* ipBytes, unsigned int ipLen, unsigned int port)
{
memset(this, 0, sizeof(InetAddress));
if (ipLen == 4) {
uint32_t ipb[1];
memcpy(ipb, ipBytes, 4);
ss_family = AF_INET;
reinterpret_cast<struct sockaddr_in*>(this)->sin_addr.s_addr = ipb[0];
reinterpret_cast<struct sockaddr_in*>(this)->sin_port = Utils::hton((uint16_t)port);
}
else if (ipLen == 16) {
ss_family = AF_INET6;
memcpy(reinterpret_cast<struct sockaddr_in6*>(this)->sin6_addr.s6_addr, ipBytes, 16);
reinterpret_cast<struct sockaddr_in6*>(this)->sin6_port = Utils::hton((uint16_t)port);
}
}
char* InetAddress::toString(char buf[64]) const
{
char* p = toIpString(buf);
if (*p) {
while (*p) {
++p;
}
*(p++) = '/';
Utils::decimal(port(), p);
}
return buf;
}
char* InetAddress::toIpString(char buf[64]) const
{
buf[0] = (char)0;
switch (ss_family) {
case AF_INET: {
#ifdef _WIN32
inet_ntop(AF_INET, (void*)&reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr, buf, INET_ADDRSTRLEN);
#else
inet_ntop(AF_INET, &reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr, buf, INET_ADDRSTRLEN);
#endif
} break;
case AF_INET6: {
#ifdef _WIN32
inet_ntop(AF_INET6, (void*)reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN);
#else
inet_ntop(AF_INET6, reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN);
#endif
} break;
}
return buf;
}
bool InetAddress::fromString(const char* ipSlashPort)
{
char buf[64];
memset(this, 0, sizeof(InetAddress));
if (! *ipSlashPort) {
return true;
}
if (! Utils::scopy(buf, sizeof(buf), ipSlashPort)) {
return false;
}
char* portAt = buf;
while ((*portAt) && (*portAt != '/')) {
++portAt;
}
unsigned int port = 0;
if (*portAt) {
*(portAt++) = (char)0;
port = Utils::strToUInt(portAt) & 0xffff;
}
if (strchr(buf, ':')) {
struct sockaddr_in6* const in6 = reinterpret_cast<struct sockaddr_in6*>(this);
inet_pton(AF_INET6, buf, &in6->sin6_addr.s6_addr);
in6->sin6_family = AF_INET6;
in6->sin6_port = Utils::hton((uint16_t)port);
return true;
}
else if (strchr(buf, '.')) {
struct sockaddr_in* const in = reinterpret_cast<struct sockaddr_in*>(this);
inet_pton(AF_INET, buf, &in->sin_addr.s_addr);
in->sin_family = AF_INET;
in->sin_port = Utils::hton((uint16_t)port);
return true;
}
else {
return false;
}
}
InetAddress InetAddress::netmask() const
{
InetAddress r(*this);
switch (r.ss_family) {
case AF_INET:
reinterpret_cast<struct sockaddr_in*>(&r)->sin_addr.s_addr = Utils::hton((uint32_t)(0xffffffff << (32 - netmaskBits())));
break;
case AF_INET6: {
uint64_t nm[2];
const unsigned int bits = netmaskBits();
if (bits) {
nm[0] = Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] = Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
}
else {
nm[0] = 0;
nm[1] = 0;
}
memcpy(reinterpret_cast<struct sockaddr_in6*>(&r)->sin6_addr.s6_addr, nm, 16);
} break;
}
return r;
}
InetAddress InetAddress::broadcast() const
{
if (ss_family == AF_INET) {
InetAddress r(*this);
reinterpret_cast<struct sockaddr_in*>(&r)->sin_addr.s_addr |= Utils::hton((uint32_t)(0xffffffff >> netmaskBits()));
return r;
}
return InetAddress();
}
InetAddress InetAddress::network() const
{
InetAddress r(*this);
switch (r.ss_family) {
case AF_INET:
reinterpret_cast<struct sockaddr_in*>(&r)->sin_addr.s_addr &= Utils::hton((uint32_t)(0xffffffff << (32 - netmaskBits())));
break;
case AF_INET6: {
uint64_t nm[2];
const unsigned int bits = netmaskBits();
memcpy(nm, reinterpret_cast<struct sockaddr_in6*>(&r)->sin6_addr.s6_addr, 16);
nm[0] &= Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] &= Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
memcpy(reinterpret_cast<struct sockaddr_in6*>(&r)->sin6_addr.s6_addr, nm, 16);
} break;
}
return r;
}
bool InetAddress::isEqualPrefix(const InetAddress& addr) const
{
if (addr.ss_family == ss_family) {
switch (ss_family) {
case AF_INET6: {
const InetAddress mask(netmask());
InetAddress addr_mask(addr.netmask());
const uint8_t* n = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&addr_mask)->sin6_addr.s6_addr);
const uint8_t* m = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&mask)->sin6_addr.s6_addr);
const uint8_t* a = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&addr)->sin6_addr.s6_addr);
const uint8_t* b = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr);
for (unsigned int i = 0; i < 16; ++i) {
if ((a[i] & m[i]) != (b[i] & n[i])) {
return false;
}
}
return true;
}
}
}
return false;
}
bool InetAddress::containsAddress(const InetAddress& addr) const
{
if (addr.ss_family == ss_family) {
switch (ss_family) {
case AF_INET: {
const unsigned int bits = netmaskBits();
if (bits == 0) {
return true;
}
return (
(Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in*>(&addr)->sin_addr.s_addr) >> (32 - bits)) == (Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr) >> (32 - bits)));
}
case AF_INET6: {
const InetAddress mask(netmask());
const uint8_t* m = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&mask)->sin6_addr.s6_addr);
const uint8_t* a = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(&addr)->sin6_addr.s6_addr);
const uint8_t* b = reinterpret_cast<const uint8_t*>(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr);
for (unsigned int i = 0; i < 16; ++i) {
if ((a[i] & m[i]) != b[i]) {
return false;
}
}
return true;
}
}
}
return false;
}
bool InetAddress::isNetwork() const
{
switch (ss_family) {
case AF_INET: {
unsigned int bits = netmaskBits();
if (bits <= 0) {
return false;
}
if (bits >= 32) {
return false;
}
uint32_t ip = Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr);
return ((ip & (0xffffffff >> bits)) == 0);
}
case AF_INET6: {
unsigned int bits = netmaskBits();
if (bits <= 0) {
return false;
}
if (bits >= 128) {
return false;
}
const unsigned char* ip = reinterpret_cast<const unsigned char*>(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr);
unsigned int p = bits / 8;
if ((ip[p++] & (0xff >> (bits % 8))) != 0) {
return false;
}
while (p < 16) {
if (ip[p++]) {
return false;
}
}
return true;
}
}
return false;
}
bool InetAddress::operator==(const InetAddress& a) const
{
if (ss_family == a.ss_family) {
switch (ss_family) {
case AF_INET:
return (
(reinterpret_cast<const struct sockaddr_in*>(this)->sin_port == reinterpret_cast<const struct sockaddr_in*>(&a)->sin_port)
&& (reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr == reinterpret_cast<const struct sockaddr_in*>(&a)->sin_addr.s_addr));
break;
case AF_INET6:
return (
(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_port == reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_port)
&& (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_flowinfo == reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_flowinfo)
&& (memcmp(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr, reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_addr.s6_addr, 16) == 0)
&& (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_scope_id == reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_scope_id));
break;
default:
return (memcmp(this, &a, sizeof(InetAddress)) == 0);
}
}
return false;
}
bool InetAddress::operator<(const InetAddress& a) const
{
if (ss_family < a.ss_family) {
return true;
}
else if (ss_family == a.ss_family) {
switch (ss_family) {
case AF_INET:
if (reinterpret_cast<const struct sockaddr_in*>(this)->sin_port < reinterpret_cast<const struct sockaddr_in*>(&a)->sin_port) {
return true;
}
else if (reinterpret_cast<const struct sockaddr_in*>(this)->sin_port == reinterpret_cast<const struct sockaddr_in*>(&a)->sin_port) {
if (reinterpret_cast<const struct sockaddr_in*>(this)->sin_addr.s_addr < reinterpret_cast<const struct sockaddr_in*>(&a)->sin_addr.s_addr) {
return true;
}
}
break;
case AF_INET6:
if (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_port < reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_port) {
return true;
}
else if (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_port == reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_port) {
if (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_flowinfo < reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_flowinfo) {
return true;
}
else if (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_flowinfo == reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_flowinfo) {
if (memcmp(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr, reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_addr.s6_addr, 16) < 0) {
return true;
}
else if (memcmp(reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_addr.s6_addr, reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_addr.s6_addr, 16) == 0) {
if (reinterpret_cast<const struct sockaddr_in6*>(this)->sin6_scope_id < reinterpret_cast<const struct sockaddr_in6*>(&a)->sin6_scope_id) {
return true;
}
}
}
}
break;
default:
return (memcmp(this, &a, sizeof(InetAddress)) < 0);
}
}
return false;
}
InetAddress InetAddress::makeIpv6LinkLocal(const MAC& mac)
{
struct sockaddr_in6 sin6;
sin6.sin6_family = AF_INET6;
sin6.sin6_addr.s6_addr[0] = 0xfe;
sin6.sin6_addr.s6_addr[1] = 0x80;
sin6.sin6_addr.s6_addr[2] = 0x00;
sin6.sin6_addr.s6_addr[3] = 0x00;
sin6.sin6_addr.s6_addr[4] = 0x00;
sin6.sin6_addr.s6_addr[5] = 0x00;
sin6.sin6_addr.s6_addr[6] = 0x00;
sin6.sin6_addr.s6_addr[7] = 0x00;
sin6.sin6_addr.s6_addr[8] = mac[0] & 0xfd;
sin6.sin6_addr.s6_addr[9] = mac[1];
sin6.sin6_addr.s6_addr[10] = mac[2];
sin6.sin6_addr.s6_addr[11] = 0xff;
sin6.sin6_addr.s6_addr[12] = 0xfe;
sin6.sin6_addr.s6_addr[13] = mac[3];
sin6.sin6_addr.s6_addr[14] = mac[4];
sin6.sin6_addr.s6_addr[15] = mac[5];
sin6.sin6_port = Utils::hton((uint16_t)64);
return InetAddress(sin6);
}
InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid, uint64_t zeroTierAddress)
{
InetAddress r;
struct sockaddr_in6* const sin6 = reinterpret_cast<struct sockaddr_in6*>(&r);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr.s6_addr[0] = 0xfd;
sin6->sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 56);
sin6->sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 48);
sin6->sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 40);
sin6->sin6_addr.s6_addr[4] = (uint8_t)(nwid >> 32);
sin6->sin6_addr.s6_addr[5] = (uint8_t)(nwid >> 24);
sin6->sin6_addr.s6_addr[6] = (uint8_t)(nwid >> 16);
sin6->sin6_addr.s6_addr[7] = (uint8_t)(nwid >> 8);
sin6->sin6_addr.s6_addr[8] = (uint8_t)nwid;
sin6->sin6_addr.s6_addr[9] = 0x99;
sin6->sin6_addr.s6_addr[10] = 0x93;
sin6->sin6_addr.s6_addr[11] = (uint8_t)(zeroTierAddress >> 32);
sin6->sin6_addr.s6_addr[12] = (uint8_t)(zeroTierAddress >> 24);
sin6->sin6_addr.s6_addr[13] = (uint8_t)(zeroTierAddress >> 16);
sin6->sin6_addr.s6_addr[14] = (uint8_t)(zeroTierAddress >> 8);
sin6->sin6_addr.s6_addr[15] = (uint8_t)zeroTierAddress;
sin6->sin6_port = Utils::hton((uint16_t)88); // /88 includes 0xfd + network ID, discriminating by device ID below that
return r;
}
InetAddress InetAddress::makeIpv66plane(uint64_t nwid, uint64_t zeroTierAddress)
{
nwid ^= (nwid >> 32);
InetAddress r;
struct sockaddr_in6* const sin6 = reinterpret_cast<struct sockaddr_in6*>(&r);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr.s6_addr[0] = 0xfc;
sin6->sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 24);
sin6->sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 16);
sin6->sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 8);
sin6->sin6_addr.s6_addr[4] = (uint8_t)nwid;
sin6->sin6_addr.s6_addr[5] = (uint8_t)(zeroTierAddress >> 32);
sin6->sin6_addr.s6_addr[6] = (uint8_t)(zeroTierAddress >> 24);
sin6->sin6_addr.s6_addr[7] = (uint8_t)(zeroTierAddress >> 16);
sin6->sin6_addr.s6_addr[8] = (uint8_t)(zeroTierAddress >> 8);
sin6->sin6_addr.s6_addr[9] = (uint8_t)zeroTierAddress;
sin6->sin6_addr.s6_addr[15] = 0x01;
sin6->sin6_port = Utils::hton((uint16_t)40);
return r;
}
} // namespace ZeroTier