ZeroTierOne/node/Peer.hpp

613 lines
18 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_PEER_HPP
#define ZT_PEER_HPP
#include <vector>
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Path.hpp"
#include "Address.hpp"
#include "Utils.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Packet.hpp"
#include "SharedPtr.hpp"
#include "AtomicCounter.hpp"
#include "Hashtable.hpp"
#include "Mutex.hpp"
#include "Bond.hpp"
#include "BondController.hpp"
#include "AES.hpp"
#define ZT_PEER_MAX_SERIALIZED_STATE_SIZE (sizeof(Peer) + 32 + (sizeof(Path) * 2))
namespace ZeroTier {
/**
* Peer on P2P Network (virtual layer 1)
*/
class Peer
{
friend class SharedPtr<Peer>;
friend class SharedPtr<Bond>;
friend class Switch;
friend class Bond;
private:
Peer() {} // disabled to prevent bugs -- should not be constructed uninitialized
public:
~Peer() { Utils::burn(_key,sizeof(_key)); }
/**
* Construct a new peer
*
* @param renv Runtime environment
* @param myIdentity Identity of THIS node (for key agreement)
* @param peerIdentity Identity of peer
* @throws std::runtime_error Key agreement with peer's identity failed
*/
Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity);
/**
* @return This peer's ZT address (short for identity().address())
*/
inline const Address &address() const { return _id.address(); }
/**
* @return This peer's identity
*/
inline const Identity &identity() const { return _id; }
/**
* Log receipt of an authenticated packet
*
* This is called by the decode pipe when a packet is proven to be authentic
* and appears to be valid.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param path Path over which packet was received
* @param hops ZeroTier (not IP) hops
* @param packetId Packet ID
* @param verb Packet verb
* @param inRePacketId Packet ID in reply to (default: none)
* @param inReVerb Verb in reply to (for OK/ERROR, default: VERB_NOP)
* @param trustEstablished If true, some form of non-trivial trust (like allowed in network) has been established
* @param networkId Network ID if this pertains to a network, or 0 otherwise
*/
void received(
void *tPtr,
const SharedPtr<Path> &path,
const unsigned int hops,
const uint64_t packetId,
const unsigned int payloadLength,
const Packet::Verb verb,
const uint64_t inRePacketId,
const Packet::Verb inReVerb,
const bool trustEstablished,
const uint64_t networkId,
const int32_t flowId);
/**
* Check whether we have an active path to this peer via the given address
*
* @param now Current time
* @param addr Remote address
* @return True if we have an active path to this destination
*/
inline bool hasActivePathTo(int64_t now,const InetAddress &addr) const
{
Mutex::Lock _l(_paths_m);
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i].p) {
if (((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)&&(_paths[i].p->address() == addr))
return true;
} else break;
}
return false;
}
/**
* Send via best direct path
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param data Packet data
* @param len Packet length
* @param now Current time
* @param force If true, send even if path is not alive
* @return True if we actually sent something
*/
inline bool sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force)
{
SharedPtr<Path> bp(getAppropriatePath(now,force));
if (bp)
return bp->send(RR,tPtr,data,len,now);
return false;
}
/**
* Record incoming packets to
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param path Path over which packet was received
* @param packetId Packet ID
* @param payloadLength Length of packet data payload
* @param verb Packet verb
* @param flowId Flow ID
* @param now Current time
*/
void recordIncomingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now);
/**
*
* @param path Path over which packet is being sent
* @param packetId Packet ID
* @param payloadLength Length of packet data payload
* @param verb Packet verb
* @param flowId Flow ID
* @param now Current time
*/
void recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now);
/**
* Record an invalid incoming packet. This packet failed
* MAC/compression/cipher checks and will now contribute to a
* Packet Error Ratio (PER).
*
* @param path Path over which packet was received
*/
void recordIncomingInvalidPacket(const SharedPtr<Path>& path);
/**
* Get the most appropriate direct path based on current multipath and QoS configuration
*
* @param now Current time
* @param includeExpired If true, include even expired paths
* @return Best current path or NULL if none
*/
SharedPtr<Path> getAppropriatePath(int64_t now, bool includeExpired, int32_t flowId = -1);
/**
* Send VERB_RENDEZVOUS to this and another peer via the best common IP scope and path
*/
void introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const;
/**
* Send a HELLO to this peer at a specified physical address
*
* No statistics or sent times are updated here.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param localSocket Local source socket
* @param atAddress Destination address
* @param now Current time
*/
void sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now);
/**
* Send ECHO (or HELLO for older peers) to this peer at the given address
*
* No statistics or sent times are updated here.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param localSocket Local source socket
* @param atAddress Destination address
* @param now Current time
* @param sendFullHello If true, always send a full HELLO instead of just an ECHO
*/
void attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello);
/**
* Try a memorized or statically defined path if any are known
*
* Under the hood this is done periodically based on ZT_TRY_MEMORIZED_PATH_INTERVAL.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time
*/
void tryMemorizedPath(void *tPtr,int64_t now);
/**
* A check to be performed periodically which determines whether multipath communication is
* possible with this peer. This check should be performed early in the life-cycle of the peer
* as well as during the process of learning new paths.
*/
void performMultipathStateCheck(void *tPtr, int64_t now);
/**
* Send pings or keepalives depending on configured timeouts
*
* This also cleans up some internal data structures. It's called periodically from Node.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time
* @param inetAddressFamily Keep this address family alive, or -1 for any
* @return 0 if nothing sent or bit mask: bit 0x1 if IPv4 sent, bit 0x2 if IPv6 sent (0x3 means both sent)
*/
unsigned int doPingAndKeepalive(void *tPtr,int64_t now);
/**
* Process a cluster redirect sent by this peer
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param originatingPath Path from which redirect originated
* @param remoteAddress Remote address
* @param now Current time
*/
void clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now);
/**
* Reset paths within a given IP scope and address family
*
* Resetting a path involves sending an ECHO to it and then deactivating
* it until or unless it responds. This is done when we detect a change
* to our external IP or another system change that might invalidate
* many or all current paths.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param scope IP scope
* @param inetAddressFamily Family e.g. AF_INET
* @param now Current time
*/
void resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now);
/**
* @param now Current time
* @return All known paths to this peer
*/
inline std::vector< SharedPtr<Path> > paths(const int64_t now) const
{
std::vector< SharedPtr<Path> > pp;
Mutex::Lock _l(_paths_m);
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i].p) break;
pp.push_back(_paths[i].p);
}
return pp;
}
/**
* @return Time of last receive of anything, whether direct or relayed
*/
inline int64_t lastReceive() const { return _lastReceive; }
/**
* @return True if we've heard from this peer in less than ZT_PEER_ACTIVITY_TIMEOUT
*/
inline bool isAlive(const int64_t now) const { return ((now - _lastReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }
/**
* @return True if this peer has sent us real network traffic recently
*/
inline int64_t isActive(int64_t now) const { return ((now - _lastNontrivialReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }
/**
* @return Latency in milliseconds of best/aggregate path or 0xffff if unknown / no paths
*/
inline unsigned int latency(const int64_t now)
{
if (_canUseMultipath) {
return (int)_lastComputedAggregateMeanLatency;
} else {
SharedPtr<Path> bp(getAppropriatePath(now,false));
if (bp)
return bp->latency();
return 0xffff;
}
}
/**
* This computes a quality score for relays and root servers
*
* If we haven't heard anything from these in ZT_PEER_ACTIVITY_TIMEOUT, they
* receive the worst possible quality (max unsigned int). Otherwise the
* quality is a product of latency and the number of potential missed
* pings. This causes roots and relays to switch over a bit faster if they
* fail.
*
* @return Relay quality score computed from latency and other factors, lower is better
*/
inline unsigned int relayQuality(const int64_t now)
{
const uint64_t tsr = now - _lastReceive;
if (tsr >= ZT_PEER_ACTIVITY_TIMEOUT)
return (~(unsigned int)0);
unsigned int l = latency(now);
if (!l)
l = 0xffff;
return (l * (((unsigned int)tsr / (ZT_PEER_PING_PERIOD + 1000)) + 1));
}
/**
* @return 256-bit secret symmetric encryption key
*/
inline const unsigned char *key() const { return _key; }
/**
* Set the currently known remote version of this peer's client
*
* @param vproto Protocol version
* @param vmaj Major version
* @param vmin Minor version
* @param vrev Revision
*/
inline void setRemoteVersion(unsigned int vproto,unsigned int vmaj,unsigned int vmin,unsigned int vrev)
{
_vProto = (uint16_t)vproto;
_vMajor = (uint16_t)vmaj;
_vMinor = (uint16_t)vmin;
_vRevision = (uint16_t)vrev;
}
inline unsigned int remoteVersionProtocol() const { return _vProto; }
inline unsigned int remoteVersionMajor() const { return _vMajor; }
inline unsigned int remoteVersionMinor() const { return _vMinor; }
inline unsigned int remoteVersionRevision() const { return _vRevision; }
inline bool remoteVersionKnown() const { return ((_vMajor > 0)||(_vMinor > 0)||(_vRevision > 0)); }
/**
* @return True if peer has received a trust established packet (e.g. common network membership) in the past ZT_TRUST_EXPIRATION ms
*/
inline bool trustEstablished(const int64_t now) const { return ((now - _lastTrustEstablishedPacketReceived) < ZT_TRUST_EXPIRATION); }
/**
* Rate limit gate for VERB_PUSH_DIRECT_PATHS
*/
inline bool rateGatePushDirectPaths(const int64_t now)
{
if ((now - _lastDirectPathPushReceive) <= ZT_PUSH_DIRECT_PATHS_CUTOFF_TIME)
++_directPathPushCutoffCount;
else _directPathPushCutoffCount = 0;
_lastDirectPathPushReceive = now;
return (_directPathPushCutoffCount < ZT_PUSH_DIRECT_PATHS_CUTOFF_LIMIT);
}
/**
* Rate limit gate for VERB_NETWORK_CREDENTIALS
*/
inline bool rateGateCredentialsReceived(const int64_t now)
{
if ((now - _lastCredentialsReceived) <= ZT_PEER_CREDENTIALS_CUTOFF_TIME)
++_credentialsCutoffCount;
else _credentialsCutoffCount = 0;
_lastCredentialsReceived = now;
return (_directPathPushCutoffCount < ZT_PEER_CREDEITIALS_CUTOFF_LIMIT);
}
/**
* Rate limit gate for sending of ERROR_NEED_MEMBERSHIP_CERTIFICATE
*/
inline bool rateGateRequestCredentials(const int64_t now)
{
if ((now - _lastCredentialRequestSent) >= ZT_PEER_GENERAL_RATE_LIMIT) {
_lastCredentialRequestSent = now;
return true;
}
return false;
}
/**
* Rate limit gate for inbound WHOIS requests
*/
inline bool rateGateInboundWhoisRequest(const int64_t now)
{
if ((now - _lastWhoisRequestReceived) >= ZT_PEER_WHOIS_RATE_LIMIT) {
_lastWhoisRequestReceived = now;
return true;
}
return false;
}
/**
* Rate limit gate for inbound ECHO requests. This rate limiter works
* by draining a certain number of requests per unit time. Each peer may
* theoretically receive up to ZT_ECHO_CUTOFF_LIMIT requests per second.
*/
inline bool rateGateEchoRequest(const int64_t now)
{
/*
// TODO: Rethink this
if (_canUseMultipath) {
_echoRequestCutoffCount++;
int numToDrain = (now - _lastEchoCheck) / ZT_ECHO_DRAINAGE_DIVISOR;
_lastEchoCheck = now;
fprintf(stderr, "ZT_ECHO_CUTOFF_LIMIT=%d, (now - _lastEchoCheck)=%d, numToDrain=%d, ZT_ECHO_DRAINAGE_DIVISOR=%d\n", ZT_ECHO_CUTOFF_LIMIT, (now - _lastEchoCheck), numToDrain, ZT_ECHO_DRAINAGE_DIVISOR);
if (_echoRequestCutoffCount > numToDrain) {
_echoRequestCutoffCount-=numToDrain;
}
else {
_echoRequestCutoffCount = 0;
}
return (_echoRequestCutoffCount < ZT_ECHO_CUTOFF_LIMIT);
} else {
if ((now - _lastEchoRequestReceived) >= (ZT_PEER_GENERAL_RATE_LIMIT)) {
_lastEchoRequestReceived = now;
return true;
}
return false;
}
*/
return true;
}
/**
* Serialize a peer for storage in local cache
*
* This does not serialize everything, just non-ephemeral information.
*/
template<unsigned int C>
inline void serializeForCache(Buffer<C> &b) const
{
b.append((uint8_t)1);
_id.serialize(b);
b.append((uint16_t)_vProto);
b.append((uint16_t)_vMajor);
b.append((uint16_t)_vMinor);
b.append((uint16_t)_vRevision);
{
Mutex::Lock _l(_paths_m);
unsigned int pc = 0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i].p)
++pc;
else break;
}
b.append((uint16_t)pc);
for(unsigned int i=0;i<pc;++i)
_paths[i].p->address().serialize(b);
}
}
template<unsigned int C>
inline static SharedPtr<Peer> deserializeFromCache(int64_t now,void *tPtr,Buffer<C> &b,const RuntimeEnvironment *renv)
{
try {
unsigned int ptr = 0;
if (b[ptr++] != 1)
return SharedPtr<Peer>();
Identity id;
ptr += id.deserialize(b,ptr);
if (!id)
return SharedPtr<Peer>();
SharedPtr<Peer> p(new Peer(renv,renv->identity,id));
p->_vProto = b.template at<uint16_t>(ptr); ptr += 2;
p->_vMajor = b.template at<uint16_t>(ptr); ptr += 2;
p->_vMinor = b.template at<uint16_t>(ptr); ptr += 2;
p->_vRevision = b.template at<uint16_t>(ptr); ptr += 2;
// When we deserialize from the cache we don't actually restore paths. We
// just try them and then re-learn them if they happen to still be up.
// Paths are fairly ephemeral in the real world in most cases.
const unsigned int tryPathCount = b.template at<uint16_t>(ptr); ptr += 2;
for(unsigned int i=0;i<tryPathCount;++i) {
InetAddress inaddr;
try {
ptr += inaddr.deserialize(b,ptr);
if (inaddr)
p->attemptToContactAt(tPtr,-1,inaddr,now,true);
} catch ( ... ) {
break;
}
}
return p;
} catch ( ... ) {
return SharedPtr<Peer>();
}
}
/**
*
* @return
*/
SharedPtr<Bond> bond() { return _bondToPeer; }
/**
*
* @return
*/
inline int8_t bondingPolicy() { return _bondingPolicy; }
const AES *aesKeysIfSupported() const
{ return (const AES *)0; }
//const AES *aesKeysIfSupported() const
//{ return (_vProto >= 10) ? _aesKeys : (const AES *)0; }
private:
struct _PeerPath
{
_PeerPath() : lr(0),p(),priority(1) {}
int64_t lr; // time of last valid ZeroTier packet
SharedPtr<Path> p;
long priority; // >= 1, higher is better
};
uint8_t _key[ZT_PEER_SECRET_KEY_LENGTH];
AES _aesKeys[2];
const RuntimeEnvironment *RR;
int64_t _lastReceive; // direct or indirect
int64_t _lastNontrivialReceive; // frames, things like netconf, etc.
int64_t _lastTriedMemorizedPath;
int64_t _lastDirectPathPushSent;
int64_t _lastDirectPathPushReceive;
int64_t _lastEchoRequestReceived;
int64_t _lastCredentialRequestSent;
int64_t _lastWhoisRequestReceived;
int64_t _lastCredentialsReceived;
int64_t _lastTrustEstablishedPacketReceived;
int64_t _lastSentFullHello;
int64_t _lastEchoCheck;
unsigned char _freeRandomByte;
uint16_t _vProto;
uint16_t _vMajor;
uint16_t _vMinor;
uint16_t _vRevision;
_PeerPath _paths[ZT_MAX_PEER_NETWORK_PATHS];
Mutex _paths_m;
Identity _id;
unsigned int _directPathPushCutoffCount;
unsigned int _credentialsCutoffCount;
unsigned int _echoRequestCutoffCount;
AtomicCounter __refCount;
bool _remotePeerMultipathEnabled;
int _uniqueAlivePathCount;
bool _localMultipathSupported;
bool _remoteMultipathSupported;
bool _canUseMultipath;
volatile bool _shouldCollectPathStatistics;
volatile int8_t _bondingPolicy;
int32_t _lastComputedAggregateMeanLatency;
SharedPtr<Bond> _bondToPeer;
};
} // namespace ZeroTier
// Add a swap() for shared ptr's to peers to speed up peer sorts
namespace std {
template<>
inline void swap(ZeroTier::SharedPtr<ZeroTier::Peer> &a,ZeroTier::SharedPtr<ZeroTier::Peer> &b)
{
a.swap(b);
}
}
#endif