mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-19 04:57:53 +00:00
316 lines
7.1 KiB
C++
316 lines
7.1 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* You can be released from the requirements of the license by purchasing
|
|
* a commercial license. Buying such a license is mandatory as soon as you
|
|
* develop commercial closed-source software that incorporates or links
|
|
* directly against ZeroTier software without disclosing the source code
|
|
* of your own application.
|
|
*/
|
|
|
|
#ifndef ZT_RINGBUFFER_H
|
|
#define ZT_RINGBUFFER_H
|
|
|
|
#include <typeinfo>
|
|
#include <cstdint>
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* A revolving (ring) buffer.
|
|
*
|
|
* For fast handling of continuously-evolving variables (such as path quality metrics).
|
|
* Using this, we can maintain longer sliding historical windows for important path
|
|
* metrics without the need for potentially expensive calls to memcpy/memmove.
|
|
*
|
|
* Some basic statistical functionality is implemented here in an attempt
|
|
* to reduce the complexity of code needed to interact with this type of buffer.
|
|
*/
|
|
|
|
template <class T>
|
|
class RingBuffer
|
|
{
|
|
private:
|
|
T * buf;
|
|
size_t size;
|
|
size_t begin;
|
|
size_t end;
|
|
bool wrap;
|
|
|
|
public:
|
|
|
|
/**
|
|
* create a RingBuffer with space for up to size elements.
|
|
*/
|
|
explicit RingBuffer(size_t size)
|
|
: size(size),
|
|
begin(0),
|
|
end(0),
|
|
wrap(false)
|
|
{
|
|
buf = new T[size];
|
|
memset(buf, 0, sizeof(T) * size);
|
|
}
|
|
|
|
/**
|
|
* @return A pointer to the underlying buffer
|
|
*/
|
|
T* get_buf()
|
|
{
|
|
return buf + begin;
|
|
}
|
|
|
|
/**
|
|
* Adjust buffer index pointer as if we copied data in
|
|
* @param n Number of elements to copy in
|
|
* @return Number of elements we copied in
|
|
*/
|
|
size_t produce(size_t n)
|
|
{
|
|
n = std::min(n, getFree());
|
|
if (n == 0) {
|
|
return n;
|
|
}
|
|
const size_t first_chunk = std::min(n, size - end);
|
|
end = (end + first_chunk) % size;
|
|
if (first_chunk < n) {
|
|
const size_t second_chunk = n - first_chunk;
|
|
end = (end + second_chunk) % size;
|
|
}
|
|
if (begin == end) {
|
|
wrap = true;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Fast erase, O(1).
|
|
* Merely reset the buffer pointer, doesn't erase contents
|
|
*/
|
|
void reset()
|
|
{
|
|
consume(count());
|
|
}
|
|
|
|
/**
|
|
* adjust buffer index pointer as if we copied data out
|
|
* @param n Number of elements we copied from the buffer
|
|
* @return Number of elements actually available from the buffer
|
|
*/
|
|
size_t consume(size_t n)
|
|
{
|
|
n = std::min(n, count());
|
|
if (n == 0) {
|
|
return n;
|
|
}
|
|
if (wrap) {
|
|
wrap = false;
|
|
}
|
|
const size_t first_chunk = std::min(n, size - begin);
|
|
begin = (begin + first_chunk) % size;
|
|
if (first_chunk < n) {
|
|
const size_t second_chunk = n - first_chunk;
|
|
begin = (begin + second_chunk) % size;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* @param data Buffer that is to be written to the ring
|
|
* @param n Number of elements to write to the buffer
|
|
*/
|
|
size_t write(const T * data, size_t n)
|
|
{
|
|
n = std::min(n, getFree());
|
|
if (n == 0) {
|
|
return n;
|
|
}
|
|
const size_t first_chunk = std::min(n, size - end);
|
|
memcpy(buf + end, data, first_chunk * sizeof(T));
|
|
end = (end + first_chunk) % size;
|
|
if (first_chunk < n) {
|
|
const size_t second_chunk = n - first_chunk;
|
|
memcpy(buf + end, data + first_chunk, second_chunk * sizeof(T));
|
|
end = (end + second_chunk) % size;
|
|
}
|
|
if (begin == end) {
|
|
wrap = true;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Place a single value on the buffer. If the buffer is full, consume a value first.
|
|
*
|
|
* @param value A single value to be placed in the buffer
|
|
*/
|
|
void push(const T value)
|
|
{
|
|
if (count() == size) {
|
|
consume(1);
|
|
}
|
|
write(&value, 1);
|
|
}
|
|
|
|
/**
|
|
* @param dest Destination buffer
|
|
* @param n Size (in terms of number of elements) of the destination buffer
|
|
* @return Number of elements read from the buffer
|
|
*/
|
|
size_t read(T * dest, size_t n)
|
|
{
|
|
n = std::min(n, count());
|
|
if (n == 0) {
|
|
return n;
|
|
}
|
|
if (wrap) {
|
|
wrap = false;
|
|
}
|
|
const size_t first_chunk = std::min(n, size - begin);
|
|
memcpy(dest, buf + begin, first_chunk * sizeof(T));
|
|
begin = (begin + first_chunk) % size;
|
|
if (first_chunk < n) {
|
|
const size_t second_chunk = n - first_chunk;
|
|
memcpy(dest + first_chunk, buf + begin, second_chunk * sizeof(T));
|
|
begin = (begin + second_chunk) % size;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Return how many elements are in the buffer, O(1).
|
|
*
|
|
* @return The number of elements in the buffer
|
|
*/
|
|
size_t count()
|
|
{
|
|
if (end == begin) {
|
|
return wrap ? size : 0;
|
|
}
|
|
else if (end > begin) {
|
|
return end - begin;
|
|
}
|
|
else {
|
|
return size + end - begin;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return The number of slots that are unused in the buffer
|
|
*/
|
|
size_t getFree()
|
|
{
|
|
return size - count();
|
|
}
|
|
|
|
/**
|
|
* @return The arithmetic mean of the contents of the buffer
|
|
*/
|
|
float mean()
|
|
{
|
|
size_t iterator = begin;
|
|
float mean = 0;
|
|
for (size_t i=0; i<size; i++) {
|
|
iterator = (iterator + size - 1) % size;
|
|
mean += *(buf + iterator);
|
|
}
|
|
return count() ? mean / (float)count() : 0;
|
|
}
|
|
|
|
/**
|
|
* @return The sample standard deviation of the contents of the ring buffer
|
|
*/
|
|
float stddev()
|
|
{
|
|
size_t iterator = begin;
|
|
float cached_mean = mean();
|
|
if (size) {
|
|
T sum_of_squared_deviations = 0;
|
|
for (size_t i=0; i<size; i++) {
|
|
iterator = (iterator + size - 1) % size;
|
|
float deviation = (buf[i] - cached_mean);
|
|
float sdev = deviation*deviation;
|
|
sum_of_squared_deviations += sdev;
|
|
}
|
|
float variance = sum_of_squared_deviations / (size - 1);
|
|
float sd = sqrt(variance);
|
|
return sd;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @return The number of elements of zero value, O(n)
|
|
*/
|
|
size_t zeroCount()
|
|
{
|
|
size_t iterator = begin;
|
|
size_t zeros = 0;
|
|
for (size_t i=0; i<size; i++) {
|
|
iterator = (iterator + size - 1) % size;
|
|
if (*(buf + iterator) == 0) {
|
|
zeros++;
|
|
}
|
|
}
|
|
return zeros;
|
|
}
|
|
|
|
/**
|
|
* @param value Value to match against in buffer
|
|
* @return The number of values held in the ring buffer which match a given value
|
|
*/
|
|
size_t countValue(T value)
|
|
{
|
|
size_t iterator = begin;
|
|
size_t count = 0;
|
|
for (size_t i=0; i<size; i++) {
|
|
iterator = (iterator + size - 1) % size;
|
|
if (*(buf + iterator) == value) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* Print the contents of the buffer
|
|
*/
|
|
void dump()
|
|
{
|
|
size_t iterator = begin;
|
|
for (size_t i=0; i<size; i++) {
|
|
iterator = (iterator + size - 1) % size;
|
|
if (typeid(T) == typeid(int)) {
|
|
// DEBUG_INFO("buf[%2zu]=%2d", iterator, (int)*(buf + iterator));
|
|
}
|
|
else {
|
|
// DEBUG_INFO("buf[%2zu]=%2f", iterator, (float)*(buf + iterator));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|