mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-25 23:51:06 +00:00
809 lines
25 KiB
C++
809 lines
25 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* You can be released from the requirements of the license by purchasing
|
|
* a commercial license. Buying such a license is mandatory as soon as you
|
|
* develop commercial closed-source software that incorporates or links
|
|
* directly against ZeroTier software without disclosing the source code
|
|
* of your own application.
|
|
*/
|
|
|
|
#include "../version.h"
|
|
|
|
#include "Constants.hpp"
|
|
#include "Peer.hpp"
|
|
#include "Node.hpp"
|
|
#include "Switch.hpp"
|
|
#include "Network.hpp"
|
|
#include "SelfAwareness.hpp"
|
|
#include "Packet.hpp"
|
|
#include "Trace.hpp"
|
|
#include "InetAddress.hpp"
|
|
#include "RingBuffer.hpp"
|
|
|
|
namespace ZeroTier {
|
|
|
|
Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
|
|
RR(renv),
|
|
_lastReceive(0),
|
|
_lastNontrivialReceive(0),
|
|
_lastTriedMemorizedPath(0),
|
|
_lastDirectPathPushSent(0),
|
|
_lastDirectPathPushReceive(0),
|
|
_lastCredentialRequestSent(0),
|
|
_lastWhoisRequestReceived(0),
|
|
_lastEchoRequestReceived(0),
|
|
_lastComRequestReceived(0),
|
|
_lastComRequestSent(0),
|
|
_lastCredentialsReceived(0),
|
|
_lastTrustEstablishedPacketReceived(0),
|
|
_lastSentFullHello(0),
|
|
_vProto(0),
|
|
_vMajor(0),
|
|
_vMinor(0),
|
|
_vRevision(0),
|
|
_id(peerIdentity),
|
|
_directPathPushCutoffCount(0),
|
|
_credentialsCutoffCount(0),
|
|
_linkBalanceStatus(false),
|
|
_linkRedundancyStatus(false)
|
|
{
|
|
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
|
|
throw ZT_EXCEPTION_INVALID_ARGUMENT;
|
|
_pathChoiceHist = new RingBuffer<int>(ZT_MULTIPATH_PROPORTION_WIN_SZ);
|
|
_flowBalanceHist = new RingBuffer<float>(ZT_MULTIPATH_PROPORTION_WIN_SZ);
|
|
}
|
|
|
|
void Peer::received(
|
|
void *tPtr,
|
|
const SharedPtr<Path> &path,
|
|
const unsigned int hops,
|
|
const uint64_t packetId,
|
|
const Packet::Verb verb,
|
|
const uint64_t inRePacketId,
|
|
const Packet::Verb inReVerb,
|
|
const bool trustEstablished,
|
|
const uint64_t networkId)
|
|
{
|
|
const int64_t now = RR->node->now();
|
|
|
|
_lastReceive = now;
|
|
switch (verb) {
|
|
case Packet::VERB_FRAME:
|
|
case Packet::VERB_EXT_FRAME:
|
|
case Packet::VERB_NETWORK_CONFIG_REQUEST:
|
|
case Packet::VERB_NETWORK_CONFIG:
|
|
case Packet::VERB_MULTICAST_FRAME:
|
|
_lastNontrivialReceive = now;
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
if (trustEstablished) {
|
|
_lastTrustEstablishedPacketReceived = now;
|
|
path->trustedPacketReceived(now);
|
|
}
|
|
|
|
{
|
|
Mutex::Lock _l(_paths_m);
|
|
if (RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) {
|
|
if ((now - _lastPathPrune) > ZT_CLOSED_PATH_PRUNING_INTERVAL) {
|
|
_lastPathPrune = now;
|
|
prunePaths();
|
|
}
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
_paths[i].p->measureLink(now);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hops == 0) {
|
|
// If this is a direct packet (no hops), update existing paths or learn new ones
|
|
|
|
bool havePath = false;
|
|
{
|
|
Mutex::Lock _l(_paths_m);
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if (_paths[i].p == path) {
|
|
_paths[i].lr = now;
|
|
havePath = true;
|
|
break;
|
|
}
|
|
} else break;
|
|
}
|
|
}
|
|
|
|
bool attemptToContact = false;
|
|
if ((!havePath)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) {
|
|
Mutex::Lock _l(_paths_m);
|
|
|
|
// Paths are redunant if they duplicate an alive path to the same IP or
|
|
// with the same local socket and address family.
|
|
bool redundant = false;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if ( (_paths[i].p->alive(now)) && ( ((_paths[i].p->localSocket() == path->localSocket())&&(_paths[i].p->address().ss_family == path->address().ss_family)) || (_paths[i].p->address().ipsEqual2(path->address())) ) ) {
|
|
redundant = true;
|
|
break;
|
|
}
|
|
} else break;
|
|
}
|
|
|
|
if (!redundant) {
|
|
unsigned int replacePath = ZT_MAX_PEER_NETWORK_PATHS;
|
|
int replacePathQuality = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
const int q = _paths[i].p->quality(now);
|
|
if (q > replacePathQuality) {
|
|
replacePathQuality = q;
|
|
replacePath = i;
|
|
}
|
|
} else {
|
|
replacePath = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (replacePath != ZT_MAX_PEER_NETWORK_PATHS) {
|
|
if (verb == Packet::VERB_OK) {
|
|
RR->t->peerLearnedNewPath(tPtr,networkId,*this,path,packetId);
|
|
_paths[replacePath].lr = now;
|
|
_paths[replacePath].p = path;
|
|
_paths[replacePath].priority = 1;
|
|
} else {
|
|
attemptToContact = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (attemptToContact) {
|
|
attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true);
|
|
path->sent(now);
|
|
RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
|
|
}
|
|
}
|
|
|
|
// If we have a trust relationship periodically push a message enumerating
|
|
// all known external addresses for ourselves. We now do this even if we
|
|
// have a current path since we'll want to use new ones too.
|
|
if (this->trustEstablished(now)) {
|
|
if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
|
|
_lastDirectPathPushSent = now;
|
|
|
|
std::vector<InetAddress> pathsToPush;
|
|
|
|
std::vector<InetAddress> dps(RR->node->directPaths());
|
|
for(std::vector<InetAddress>::const_iterator i(dps.begin());i!=dps.end();++i)
|
|
pathsToPush.push_back(*i);
|
|
|
|
// Do symmetric NAT prediction if we are communicating indirectly.
|
|
if (hops > 0) {
|
|
std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
|
|
for(unsigned long i=0,added=0;i<sym.size();++i) {
|
|
InetAddress tmp(sym[(unsigned long)RR->node->prng() % sym.size()]);
|
|
if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) {
|
|
pathsToPush.push_back(tmp);
|
|
if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pathsToPush.size() > 0) {
|
|
std::vector<InetAddress>::const_iterator p(pathsToPush.begin());
|
|
while (p != pathsToPush.end()) {
|
|
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
|
|
outp.addSize(2); // leave room for count
|
|
|
|
unsigned int count = 0;
|
|
while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) {
|
|
uint8_t addressType = 4;
|
|
switch(p->ss_family) {
|
|
case AF_INET:
|
|
break;
|
|
case AF_INET6:
|
|
addressType = 6;
|
|
break;
|
|
default: // we currently only push IP addresses
|
|
++p;
|
|
continue;
|
|
}
|
|
|
|
outp.append((uint8_t)0); // no flags
|
|
outp.append((uint16_t)0); // no extensions
|
|
outp.append(addressType);
|
|
outp.append((uint8_t)((addressType == 4) ? 6 : 18));
|
|
outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
|
|
outp.append((uint16_t)p->port());
|
|
|
|
++count;
|
|
++p;
|
|
}
|
|
|
|
if (count) {
|
|
outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
|
|
outp.armor(_key,true);
|
|
path->send(RR,tPtr,outp.data(),outp.size(),now);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SharedPtr<Path> Peer::getAppropriatePath(int64_t now, bool includeExpired)
|
|
{
|
|
Mutex::Lock _l(_paths_m);
|
|
unsigned int bestPath = ZT_MAX_PEER_NETWORK_PATHS;
|
|
|
|
/**
|
|
* Send traffic across the highest quality path only. This algorithm will still
|
|
* use the old path quality metric.
|
|
*/
|
|
if (RR->node->getMultipathMode() == ZT_MULTIPATH_NONE) {
|
|
long bestPathQuality = 2147483647;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p && _paths[i].p->isValidState()) {
|
|
if ((includeExpired)||((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {
|
|
const long q = _paths[i].p->quality(now) / _paths[i].priority;
|
|
if (q <= bestPathQuality) {
|
|
bestPathQuality = q;
|
|
bestPath = i;
|
|
}
|
|
}
|
|
} else break;
|
|
}
|
|
if (bestPath != ZT_MAX_PEER_NETWORK_PATHS) {
|
|
return _paths[bestPath].p;
|
|
}
|
|
return SharedPtr<Path>();
|
|
}
|
|
|
|
if ((now - _lastPathPrune) > ZT_CLOSED_PATH_PRUNING_INTERVAL) {
|
|
_lastPathPrune = now;
|
|
prunePaths();
|
|
}
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
_paths[i].p->measureLink(now);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Randomly distribute traffic across all paths
|
|
*
|
|
* Behavior:
|
|
* - If path DOWN: Stop randomly choosing that path
|
|
* - If path UP: Start randomly choosing that path
|
|
* - If all paths are unresponsive: randomly choose from all paths
|
|
*/
|
|
int numAlivePaths = 0;
|
|
int numStalePaths = 0;
|
|
if (RR->node->getMultipathMode() == ZT_MULTIPATH_RANDOM) {
|
|
int alivePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
|
int stalePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
|
memset(&alivePaths, -1, sizeof(alivePaths));
|
|
memset(&stalePaths, -1, sizeof(stalePaths));
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if (_paths[i].p->isValidState()) {
|
|
if (_paths[i].p->alive(now)) {
|
|
alivePaths[numAlivePaths] = i;
|
|
numAlivePaths++;
|
|
}
|
|
else {
|
|
stalePaths[numStalePaths] = i;
|
|
numStalePaths++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
unsigned int r;
|
|
Utils::getSecureRandom(&r, 1);
|
|
if (numAlivePaths > 0) {
|
|
// pick a random out of the set deemed "alive"
|
|
int rf = r % numAlivePaths;
|
|
return _paths[alivePaths[rf]].p;
|
|
}
|
|
else if(numStalePaths > 0) {
|
|
// resort to trying any non-expired path
|
|
int rf = r % numStalePaths;
|
|
return _paths[stalePaths[rf]].p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Proportionally allocate traffic according to dynamic path quality measurements
|
|
*/
|
|
if (RR->node->getMultipathMode() == ZT_MULTIPATH_PROPORTIONALLY_BALANCED) {
|
|
float relq[ZT_MAX_PEER_NETWORK_PATHS];
|
|
memset(&relq, 0, sizeof(relq));
|
|
float alloc[ZT_MAX_PEER_NETWORK_PATHS];
|
|
memset(&alloc, 0, sizeof(alloc));
|
|
|
|
// Survey
|
|
//
|
|
// Take a survey of all available link qualities. We use this to determine if we
|
|
// can skip this algorithm altogether and if not, to establish baseline for physical
|
|
// link quality used in later calculations.
|
|
//
|
|
// We find the min/max quality of our currently-active links so
|
|
// that we can form a relative scale to rank each link proportionally
|
|
// to each other link.
|
|
uint16_t alivePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
|
uint16_t stalePaths[ZT_MAX_PEER_NETWORK_PATHS];
|
|
memset(&alivePaths, -1, sizeof(alivePaths));
|
|
memset(&stalePaths, -1, sizeof(stalePaths));
|
|
uint16_t numAlivePaths = 0;
|
|
uint16_t numStalePaths = 0;
|
|
float minQuality = 10000;
|
|
float maxQuality = -1;
|
|
float currQuality;
|
|
for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p && _paths[i].p->isValidState()) {
|
|
if (!_paths[i].p->monitorsReady()) {
|
|
// TODO: This should fix itself anyway but we should test whether forcing the use of a new path will
|
|
// aid in establishing flow balance more quickly.
|
|
}
|
|
// Compute quality here, going forward we will use lastComputedQuality()
|
|
currQuality = _paths[i].p->computeQuality(now);
|
|
if (!_paths[i].p->stale(now)) {
|
|
numAlivePaths++;
|
|
}
|
|
else {
|
|
numStalePaths++;
|
|
}
|
|
if (currQuality > maxQuality) {
|
|
maxQuality = currQuality;
|
|
bestPath = i;
|
|
}
|
|
if (currQuality < minQuality) {
|
|
minQuality = currQuality;
|
|
}
|
|
relq[i] = currQuality;
|
|
}
|
|
}
|
|
|
|
// Attempt to find an excuse not to use the rest of this algorithm
|
|
if (bestPath == ZT_MAX_PEER_NETWORK_PATHS || (numAlivePaths == 0 && numStalePaths == 0)) {
|
|
return SharedPtr<Path>();
|
|
} if (numAlivePaths == 1) {
|
|
//return _paths[bestPath].p;
|
|
} if (numStalePaths == 1) {
|
|
//return _paths[bestPath].p;
|
|
}
|
|
|
|
// Relative quality
|
|
//
|
|
// The strongest link will have a value of 1.0 whereas every other
|
|
// link will have a value which represents some fraction of the strongest link.
|
|
float totalRelativeQuality = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p && _paths[i].p->isValidState()) {
|
|
relq[i] /= maxQuality ? maxQuality : 1;
|
|
totalRelativeQuality += relq[i];
|
|
}
|
|
}
|
|
|
|
// Convert the relative quality values into flow allocations.
|
|
// Additionally, determine whether each path in the flow is
|
|
// contributing more or less than its target allocation. If
|
|
// it is contributing more than required, don't allow it to be
|
|
// randomly selected for the next packet. If however the path
|
|
// needs to contribute more to the flow, we should record
|
|
float imbalance = 0;
|
|
float qualityScalingFactor = (float)1.0 / totalRelativeQuality;
|
|
for(uint16_t i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
// Out of the last N packets to this peer, how many were sent by this path?
|
|
int numPktSentWithinWin = (int)_pathChoiceHist->countValue(i);
|
|
// Compute traffic allocation for each path in the flow
|
|
if (_paths[i].p && _paths[i].p->isValidState()) {
|
|
// Allocation
|
|
// This is the percentage of traffic we want to send over a given path
|
|
alloc[i] = relq[i] * qualityScalingFactor;
|
|
float currProportion = numPktSentWithinWin / (float)ZT_MULTIPATH_PROPORTION_WIN_SZ;
|
|
float targetProportion = alloc[i];
|
|
float diffProportion = currProportion - targetProportion;
|
|
// Imbalance
|
|
//
|
|
// This is the sum of the distances of each path's currently observed flow contributions
|
|
// from its most recent target allocation. In other words, this is a measure of how closely we
|
|
// are adhering to our desired allocations. It is worth noting that this value can be greater
|
|
// than 1.0 if a significant change to allocations is made by the algorithm, this will
|
|
// eventually correct itself.
|
|
imbalance += fabs(diffProportion);
|
|
if (diffProportion < 0) {
|
|
alloc[i] = targetProportion;
|
|
}
|
|
else {
|
|
alloc[i] = targetProportion;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute and record current flow balance
|
|
float balance = (float)1.0 - imbalance;
|
|
if (balance >= ZT_MULTIPATH_FLOW_BALANCE_THESHOLD) {
|
|
if (!_linkBalanceStatus) {
|
|
_linkBalanceStatus = true;
|
|
RR->t->peerLinkBalanced(NULL,0,*this);
|
|
}
|
|
}
|
|
else {
|
|
if (_linkBalanceStatus) {
|
|
_linkBalanceStatus = false;
|
|
RR->t->peerLinkImbalanced(NULL,0,*this);
|
|
}
|
|
}
|
|
|
|
// Record the current flow balance. Later used for computing a mean flow balance value.
|
|
_flowBalanceHist->push(balance);
|
|
|
|
// Randomly choose path from allocated candidates
|
|
unsigned int r;
|
|
Utils::getSecureRandom(&r, 1);
|
|
float rf = (float)(r %= 100) / 100;
|
|
for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p && _paths[i].p->isValidState() && _paths[i].p->address().isV4()) {
|
|
if (alloc[i] > 0 && rf < alloc[i]) {
|
|
bestPath = i;
|
|
_pathChoiceHist->push(bestPath); // Record which path we chose
|
|
break;
|
|
}
|
|
if (alloc[i] > 0) {
|
|
rf -= alloc[i];
|
|
}
|
|
else {
|
|
rf -= alloc[i]*-1;
|
|
}
|
|
}
|
|
}
|
|
if (bestPath < ZT_MAX_PEER_NETWORK_PATHS) {
|
|
return _paths[bestPath].p;
|
|
}
|
|
return SharedPtr<Path>();
|
|
}
|
|
|
|
// Adhere to a user-defined interface/allocation scheme
|
|
if (RR->node->getMultipathMode() == ZT_MULTIPATH_MANUALLY_BALANCED) {
|
|
// TODO
|
|
}
|
|
|
|
return SharedPtr<Path>();
|
|
}
|
|
|
|
void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const
|
|
{
|
|
unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
long myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
long myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
long theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
long theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
|
for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {
|
|
myBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
|
|
myBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
|
|
myBestV4QualityByScope[i] = 2147483647;
|
|
myBestV6QualityByScope[i] = 2147483647;
|
|
theirBestV4ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
|
|
theirBestV6ByScope[i] = ZT_MAX_PEER_NETWORK_PATHS;
|
|
theirBestV4QualityByScope[i] = 2147483647;
|
|
theirBestV6QualityByScope[i] = 2147483647;
|
|
}
|
|
|
|
Mutex::Lock _l1(_paths_m);
|
|
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
const long q = _paths[i].p->quality(now) / _paths[i].priority;
|
|
const unsigned int s = (unsigned int)_paths[i].p->ipScope();
|
|
switch(_paths[i].p->address().ss_family) {
|
|
case AF_INET:
|
|
if (q <= myBestV4QualityByScope[s]) {
|
|
myBestV4QualityByScope[s] = q;
|
|
myBestV4ByScope[s] = i;
|
|
}
|
|
break;
|
|
case AF_INET6:
|
|
if (q <= myBestV6QualityByScope[s]) {
|
|
myBestV6QualityByScope[s] = q;
|
|
myBestV6ByScope[s] = i;
|
|
}
|
|
break;
|
|
}
|
|
} else break;
|
|
}
|
|
|
|
Mutex::Lock _l2(other->_paths_m);
|
|
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (other->_paths[i].p) {
|
|
const long q = other->_paths[i].p->quality(now) / other->_paths[i].priority;
|
|
const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();
|
|
switch(other->_paths[i].p->address().ss_family) {
|
|
case AF_INET:
|
|
if (q <= theirBestV4QualityByScope[s]) {
|
|
theirBestV4QualityByScope[s] = q;
|
|
theirBestV4ByScope[s] = i;
|
|
}
|
|
break;
|
|
case AF_INET6:
|
|
if (q <= theirBestV6QualityByScope[s]) {
|
|
theirBestV6QualityByScope[s] = q;
|
|
theirBestV6ByScope[s] = i;
|
|
}
|
|
break;
|
|
}
|
|
} else break;
|
|
}
|
|
|
|
unsigned int mine = ZT_MAX_PEER_NETWORK_PATHS;
|
|
unsigned int theirs = ZT_MAX_PEER_NETWORK_PATHS;
|
|
|
|
for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {
|
|
if ((myBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV6ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
|
|
mine = myBestV6ByScope[s];
|
|
theirs = theirBestV6ByScope[s];
|
|
break;
|
|
}
|
|
if ((myBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)&&(theirBestV4ByScope[s] != ZT_MAX_PEER_NETWORK_PATHS)) {
|
|
mine = myBestV4ByScope[s];
|
|
theirs = theirBestV4ByScope[s];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mine != ZT_MAX_PEER_NETWORK_PATHS) {
|
|
unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons
|
|
const unsigned int completed = alt + 2;
|
|
while (alt != completed) {
|
|
if ((alt & 1) == 0) {
|
|
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
outp.append((uint8_t)0);
|
|
other->_id.address().appendTo(outp);
|
|
outp.append((uint16_t)other->_paths[theirs].p->address().port());
|
|
if (other->_paths[theirs].p->address().ss_family == AF_INET6) {
|
|
outp.append((uint8_t)16);
|
|
outp.append(other->_paths[theirs].p->address().rawIpData(),16);
|
|
} else {
|
|
outp.append((uint8_t)4);
|
|
outp.append(other->_paths[theirs].p->address().rawIpData(),4);
|
|
}
|
|
outp.armor(_key,true);
|
|
_paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now);
|
|
} else {
|
|
Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
outp.append((uint8_t)0);
|
|
_id.address().appendTo(outp);
|
|
outp.append((uint16_t)_paths[mine].p->address().port());
|
|
if (_paths[mine].p->address().ss_family == AF_INET6) {
|
|
outp.append((uint8_t)16);
|
|
outp.append(_paths[mine].p->address().rawIpData(),16);
|
|
} else {
|
|
outp.append((uint8_t)4);
|
|
outp.append(_paths[mine].p->address().rawIpData(),4);
|
|
}
|
|
outp.armor(other->_key,true);
|
|
other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now);
|
|
}
|
|
++alt;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
|
|
{
|
|
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
|
|
|
|
outp.append((unsigned char)ZT_PROTO_VERSION);
|
|
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
|
|
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
|
|
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
|
|
outp.append(now);
|
|
RR->identity.serialize(outp,false);
|
|
atAddress.serialize(outp);
|
|
|
|
outp.append((uint64_t)RR->topology->planetWorldId());
|
|
outp.append((uint64_t)RR->topology->planetWorldTimestamp());
|
|
|
|
const unsigned int startCryptedPortionAt = outp.size();
|
|
|
|
std::vector<World> moons(RR->topology->moons());
|
|
std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
|
|
outp.append((uint16_t)(moons.size() + moonsWanted.size()));
|
|
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
|
|
outp.append((uint8_t)m->type());
|
|
outp.append((uint64_t)m->id());
|
|
outp.append((uint64_t)m->timestamp());
|
|
}
|
|
for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
|
|
outp.append((uint8_t)World::TYPE_MOON);
|
|
outp.append(*m);
|
|
outp.append((uint64_t)0);
|
|
}
|
|
|
|
outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);
|
|
|
|
RR->node->expectReplyTo(outp.packetId());
|
|
|
|
if (atAddress) {
|
|
outp.armor(_key,false); // false == don't encrypt full payload, but add MAC
|
|
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
|
|
} else {
|
|
RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
|
|
}
|
|
}
|
|
|
|
void Peer::attemptToContactAt(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,bool sendFullHello)
|
|
{
|
|
if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {
|
|
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
|
|
RR->node->expectReplyTo(outp.packetId());
|
|
outp.armor(_key,true);
|
|
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
|
|
} else {
|
|
sendHELLO(tPtr,localSocket,atAddress,now);
|
|
}
|
|
}
|
|
|
|
void Peer::tryMemorizedPath(void *tPtr,int64_t now)
|
|
{
|
|
if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
|
|
_lastTriedMemorizedPath = now;
|
|
InetAddress mp;
|
|
if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp))
|
|
attemptToContactAt(tPtr,-1,mp,now,true);
|
|
}
|
|
}
|
|
|
|
unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now)
|
|
{
|
|
unsigned int sent = 0;
|
|
|
|
Mutex::Lock _l(_paths_m);
|
|
|
|
const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);
|
|
_lastSentFullHello = now;
|
|
|
|
// Right now we only keep pinging links that have the maximum priority. The
|
|
// priority is used to track cluster redirections, meaning that when a cluster
|
|
// redirects us its redirect target links override all other links and we
|
|
// let those old links expire.
|
|
long maxPriority = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p)
|
|
maxPriority = std::max(_paths[i].priority,maxPriority);
|
|
else break;
|
|
}
|
|
|
|
unsigned int j = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
// Clean expired and reduced priority paths
|
|
if ( ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) && (_paths[i].priority == maxPriority) ) {
|
|
if ((sendFullHello)||(_paths[i].p->needsHeartbeat(now))) {
|
|
attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello);
|
|
_paths[i].p->sent(now);
|
|
sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;
|
|
}
|
|
if (i != j)
|
|
_paths[j] = _paths[i];
|
|
++j;
|
|
}
|
|
} else break;
|
|
}
|
|
if (RR->node->getMultipathMode() != ZT_MULTIPATH_NONE) {
|
|
while(j < ZT_MAX_PEER_NETWORK_PATHS) {
|
|
_paths[j].lr = 0;
|
|
_paths[j].p.zero();
|
|
_paths[j].priority = 1;
|
|
++j;
|
|
}
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
unsigned int Peer::prunePaths()
|
|
{
|
|
unsigned int pruned = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if(_paths[i].p->isClosed() || !_paths[i].p->isValidState()) {
|
|
_paths[i].lr = 0;
|
|
_paths[i].p.zero();
|
|
_paths[i].priority = 1;
|
|
pruned++;
|
|
}
|
|
}
|
|
}
|
|
return pruned;
|
|
}
|
|
|
|
void Peer::clusterRedirect(void *tPtr,const SharedPtr<Path> &originatingPath,const InetAddress &remoteAddress,const int64_t now)
|
|
{
|
|
SharedPtr<Path> np(RR->topology->getPath(originatingPath->localSocket(),remoteAddress));
|
|
RR->t->peerRedirected(tPtr,0,*this,np);
|
|
|
|
attemptToContactAt(tPtr,originatingPath->localSocket(),remoteAddress,now,true);
|
|
|
|
{
|
|
Mutex::Lock _l(_paths_m);
|
|
|
|
// New priority is higher than the priority of the originating path (if known)
|
|
long newPriority = 1;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if (_paths[i].p == originatingPath) {
|
|
newPriority = _paths[i].priority;
|
|
break;
|
|
}
|
|
} else break;
|
|
}
|
|
newPriority += 2;
|
|
|
|
// Erase any paths with lower priority than this one or that are duplicate
|
|
// IPs and add this path.
|
|
unsigned int j = 0;
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if ((_paths[i].priority >= newPriority)&&(!_paths[i].p->address().ipsEqual2(remoteAddress))) {
|
|
if (i != j)
|
|
_paths[j] = _paths[i];
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
if (j < ZT_MAX_PEER_NETWORK_PATHS) {
|
|
_paths[j].lr = now;
|
|
_paths[j].p = np;
|
|
_paths[j].priority = newPriority;
|
|
++j;
|
|
while (j < ZT_MAX_PEER_NETWORK_PATHS) {
|
|
_paths[j].lr = 0;
|
|
_paths[j].p.zero();
|
|
_paths[j].priority = 1;
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
|
|
{
|
|
Mutex::Lock _l(_paths_m);
|
|
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
|
|
if (_paths[i].p) {
|
|
if ((_paths[i].p->address().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) {
|
|
attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false);
|
|
_paths[i].p->sent(now);
|
|
_paths[i].lr = 0; // path will not be used unless it speaks again
|
|
}
|
|
} else break;
|
|
}
|
|
}
|
|
|
|
} // namespace ZeroTier
|