ZeroTierOne/node/NetworkConfig.hpp
Adam Ierymenko ca88e1f1cf fix size
2016-06-07 10:47:22 -07:00

751 lines
22 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ZT_NETWORKCONFIG_HPP
#define ZT_NETWORKCONFIG_HPP
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <vector>
#include <stdexcept>
#include <algorithm>
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "Buffer.hpp"
#include "InetAddress.hpp"
#include "MulticastGroup.hpp"
#include "Address.hpp"
#include "CertificateOfMembership.hpp"
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
#include "Dictionary.hpp"
#include <string>
#endif
/**
* Flag: allow passive bridging (experimental)
*/
#define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0001
/**
* Flag: enable broadcast
*/
#define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002
/**
* Device is a network preferred relay
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY 0x0000010000000000ULL
/**
* Device is an active bridge
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE 0x0000020000000000ULL
/**
* An anchor is a device that is willing to be one and has been online/stable for a long time on this network
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ANCHOR 0x0000040000000000ULL
namespace ZeroTier {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
// Fields for meta-data sent with network config requests
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION "majv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION "minv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION "revv"
// These dictionary keys are short so they don't take up much room in
// netconf response packets.
// integer(hex)[,integer(hex),...]
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES "et"
// network ID
#define ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID "nwid"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP "ts"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_REVISION "r"
// address of member
#define ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO "id"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT "ml"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE "p"
// text
#define ZT_NETWORKCONFIG_DICT_KEY_NAME "n"
// text
#define ZT_NETWORKCONFIG_DICT_KEY_DESC "d"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC "v4s"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC "v6s"
// serialized CertificateOfMembership
#define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP "com"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST "eb"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING "pb"
// node[,node,...]
#define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES "ab"
// node;IP/port[,node;IP/port]
#define ZT_NETWORKCONFIG_DICT_KEY_RELAYS "rl"
// IP/metric[,IP/metric,...]
#define ZT_NETWORKCONFIG_DICT_KEY_GATEWAYS "gw"
#endif // ZT_SUPPORT_OLD_STYLE_NETCONF
/**
* Network configuration received from network controller nodes
*
* This is a memcpy()'able structure and is safe (in a crash sense) to modify
* without locks.
*/
class NetworkConfig
{
public:
/**
* Network preferred relay with optional physical endpoint addresses
*
* This is used by the convenience relays() method.
*/
struct Relay
{
Address address;
InetAddress phy4,phy6;
};
/**
* Create an instance of a NetworkConfig for the test network ID
*
* The test network ID is defined as ZT_TEST_NETWORK_ID. This is a
* "fake" network with no real controller and default options.
*
* @param self This node's ZT address
* @return Configuration for test network ID
*/
static inline NetworkConfig createTestNetworkConfig(const Address &self)
{
NetworkConfig nc;
nc.networkId = ZT_TEST_NETWORK_ID;
nc.timestamp = 1;
nc.revision = 1;
nc.issuedTo = self;
nc.multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT;
nc.flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
nc.type = ZT_NETWORK_TYPE_PUBLIC;
nc.rules[0].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
nc.ruleCount = 1;
Utils::snprintf(nc.name,sizeof(nc.name),"ZT_TEST_NETWORK");
// Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no
// guarantee of uniqueness but collisions are unlikely.
uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x
if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255
if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0
nc.staticIps[0] = InetAddress(Utils::hton(ip),8);
// Assign an RFC4193-compliant IPv6 address -- will never collide
nc.staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt());
nc.staticIpCount = 2;
return nc;
}
NetworkConfig()
{
memset(this,0,sizeof(NetworkConfig));
}
NetworkConfig(const NetworkConfig &nc)
{
memcpy(this,&nc,sizeof(NetworkConfig));
}
inline NetworkConfig &operator=(const NetworkConfig &nc)
{
memcpy(this,&nc,sizeof(NetworkConfig));
return *this;
}
/**
* @param etherType Ethernet frame type to check
* @return True if allowed on this network
*/
inline bool permitsEtherType(unsigned int etherType) const
{
unsigned int et = 0;
for(unsigned int i=0;i<ruleCount;++i) {
ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f);
if (rt == ZT_NETWORK_RULE_MATCH_ETHERTYPE) {
et = rules[i].v.etherType;
} else if (rt == ZT_NETWORK_RULE_ACTION_ACCEPT) {
if ((!et)||(et == etherType))
return true;
et = 0;
}
}
return false;
}
/**
* @return True if passive bridging is allowed (experimental)
*/
inline bool allowPassiveBridging() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0); }
/**
* @return True if broadcast (ff:ff:ff:ff:ff:ff) address should work on this network
*/
inline bool enableBroadcast() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST) != 0); }
/**
* @return Network type is public (no access control)
*/
inline bool isPublic() const throw() { return (this->type == ZT_NETWORK_TYPE_PUBLIC); }
/**
* @return Network type is private (certificate access control)
*/
inline bool isPrivate() const throw() { return (this->type == ZT_NETWORK_TYPE_PRIVATE); }
/**
* @return ZeroTier addresses of devices on this network designated as active bridges
*/
inline std::vector<Address> activeBridges() const
{
std::vector<Address> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
r.push_back(Address(specialists[i]));
}
return r;
}
/**
* @return ZeroTier addresses of "anchor" devices on this network
*/
inline std::vector<Address> anchors() const
{
std::vector<Address> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ANCHOR) != 0)
r.push_back(Address(specialists[i]));
}
return r;
}
/**
* Get pinned physical address for a given ZeroTier address, if any
*
* @param zt ZeroTier address
* @param af Address family (e.g. AF_INET) or 0 for the first we find of any type
* @return Physical address, if any
*/
inline InetAddress findPinnedAddress(const Address &zt,unsigned int af) const
{
for(unsigned int i=0;i<pinnedCount;++i) {
if (pinned[i].zt == zt) {
if ((af == 0)||((unsigned int)pinned[i].phy.ss_family == af))
return pinned[i].phy;
}
}
return InetAddress();
}
/**
* This gets network preferred relays with their static physical address if one is defined
*
* @return Network-preferred relays for this network (if none, only roots will be used)
*/
inline std::vector<Relay> relays() const
{
std::vector<Relay> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
r.push_back(Relay());
r.back().address = specialists[i];
r.back().phy4 = findPinnedAddress(r.back().address,AF_INET);
r.back().phy6 = findPinnedAddress(r.back().address,AF_INET6);
}
}
return r;
}
/**
* @param fromPeer Peer attempting to bridge other Ethernet peers onto network
* @return True if this network allows bridging
*/
inline bool permitsBridging(const Address &fromPeer) const
{
if ((flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0)
return true;
for(unsigned int i=0;i<specialistCount;++i) {
if ((fromPeer == specialists[i])&&((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0))
return true;
}
return false;
}
/**
* Iterate through relays efficiently
*
* @param ptr Value-result parameter -- start by initializing with zero, then call until return is null
* @return Address of relay or NULL if no more
*/
Address nextRelay(unsigned int &ptr) const
{
while (ptr < specialistCount) {
if ((specialists[ptr] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
return Address(specialists[ptr]);
}
++ptr;
}
return Address();
}
/**
* @param zt ZeroTier address
* @return True if this address is a relay
*/
bool isRelay(const Address &zt) const
{
for(unsigned int i=0;i<specialistCount;++i) {
if ((zt == specialists[i])&&((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0))
return true;
}
return false;
}
/**
* @return True if this network config is non-NULL
*/
inline operator bool() const throw() { return (networkId != 0); }
inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); }
inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); }
template<unsigned int C>
inline void serialize(Buffer<C> &b) const
{
b.append((uint16_t)1); // version
b.append((uint64_t)networkId);
b.append((uint64_t)timestamp);
b.append((uint64_t)revision);
issuedTo.appendTo(b);
b.append((uint64_t)flags);
b.append((uint32_t)multicastLimit);
b.append((uint8_t)type);
unsigned int nl = (unsigned int)strlen(name);
if (nl > 255) nl = 255; // sanity check
b.append((uint8_t)nl);
b.append((const void *)name,nl);
b.append((uint16_t)specialistCount);
for(unsigned int i=0;i<specialistCount;++i)
b.append((uint64_t)specialists[i]);
b.append((uint16_t)routeCount);
for(unsigned int i=0;i<routeCount;++i) {
reinterpret_cast<const InetAddress *>(&(routes[i].target))->serialize(b);
reinterpret_cast<const InetAddress *>(&(routes[i].via))->serialize(b);
}
b.append((uint16_t)staticIpCount);
for(unsigned int i=0;i<staticIpCount;++i)
staticIps[i].serialize(b);
b.append((uint16_t)pinnedCount);
for(unsigned int i=0;i<pinnedCount;++i) {
pinned[i].zt.appendTo(b);
pinned[i].phy.serialize(b);
}
b.append((uint16_t)ruleCount);
for(unsigned int i=0;i<ruleCount;++i) {
b.append((uint8_t)rules[i].t);
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
b.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
b.append((uint8_t)5);
Address(rules[i].v.zt).appendTo(b);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
b.append((uint8_t)6);
b.append(rules[i].v.mac,6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
b.append((uint8_t)5);
b.append(&(rules[i].v.ipv4.ip),4);
b.append((uint8_t)rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
b.append((uint8_t)17);
b.append(rules[i].v.ipv6.ip,16);
b.append((uint8_t)rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipTos);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.port[0]);
b.append((uint16_t)rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
b.append((uint8_t)8);
b.append((uint64_t)rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.frameSize[0]);
b.append((uint16_t)rules[i].v.frameSize[1]);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
b.append((uint8_t)8);
b.append((uint32_t)rules[i].v.tcpseq[0]);
b.append((uint32_t)rules[i].v.tcpseq[1]);
break;
}
}
this->com.serialize(b);
b.append((uint16_t)0); // extended bytes, currently 0 since unused
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
memset(this,0,sizeof(NetworkConfig));
unsigned int p = startAt;
if (b.template at<uint16_t>(p) != 1)
throw std::invalid_argument("unrecognized version");
p += 2;
networkId = b.template at<uint64_t>(p); p += 8;
timestamp = b.template at<uint64_t>(p); p += 8;
revision = b.template at<uint64_t>(p); p += 8;
issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
flags = b.template at<uint64_t>(p); p += 8;
multicastLimit = (unsigned int)b.template at<uint32_t>(p); p += 4;
type = (ZT_VirtualNetworkType)b[p++];
unsigned int nl = (unsigned int)b[p++];
memcpy(this->name,b.field(p,nl),std::min(nl,(unsigned int)ZT_MAX_NETWORK_SHORT_NAME_LENGTH));
p += nl;
// _name will always be null terminated since field size is ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1
specialistCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (specialistCount > ZT_MAX_NETWORK_SPECIALISTS)
throw std::invalid_argument("overflow (specialists)");
for(unsigned int i=0;i<specialistCount;++i) {
specialists[i] = b.template at<uint64_t>(p); p += 8;
}
routeCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (routeCount > ZT_MAX_NETWORK_ROUTES)
throw std::invalid_argument("overflow (routes)");
for(unsigned int i=0;i<routeCount;++i) {
p += reinterpret_cast<InetAddress *>(&(routes[i].target))->deserialize(b,p);
p += reinterpret_cast<InetAddress *>(&(routes[i].via))->deserialize(b,p);
}
staticIpCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (staticIpCount > ZT_MAX_ZT_ASSIGNED_ADDRESSES)
throw std::invalid_argument("overflow (static IPs)");
for(unsigned int i=0;i<staticIpCount;++i) {
p += staticIps[i].deserialize(b,p);
}
pinnedCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (pinnedCount > ZT_MAX_NETWORK_PINNED)
throw std::invalid_argument("overflow (static addresses)");
for(unsigned int i=0;i<pinnedCount;++i) {
pinned[i].zt.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
p += pinned[i].phy.deserialize(b,p);
}
ruleCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (ruleCount > ZT_MAX_NETWORK_RULES)
throw std::invalid_argument("overflow (rules)");
for(unsigned int i=0;i<ruleCount;++i) {
rules[i].t = (uint8_t)b[p++];
unsigned int rlen = (unsigned int)b[p++];
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: {
Address tmp;
tmp.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
rules[i].v.zt = tmp.toInt();
} break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
rules[i].v.vlanId = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
rules[i].v.vlanPcp = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
rules[i].v.vlanDei = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
rules[i].v.etherType = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(rules[i].v.mac,b.field(p,6),6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(rules[i].v.ipv4.ip),b.field(p,4),4);
rules[i].v.ipv4.mask = (uint8_t)b[p+4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(rules[i].v.ipv6.ip,b.field(p,16),16);
rules[i].v.ipv6.mask = (uint8_t)b[p+16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
rules[i].v.ipTos = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
rules[i].v.ipProtocol = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
rules[i].v.port[0] = b.template at<uint16_t>(p);
rules[i].v.port[1] = b.template at<uint16_t>(p+2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
rules[i].v.characteristics = b.template at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
rules[i].v.frameSize[0] = b.template at<uint16_t>(p);
rules[i].v.frameSize[1] = b.template at<uint16_t>(p+2);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
rules[i].v.tcpseq[0] = b.template at<uint32_t>(p);
rules[i].v.tcpseq[1] = b.template at<uint32_t>(p + 4);
break;
}
p += rlen;
}
p += this->com.deserialize(b,p);
p += b.template at<uint16_t>(p) + 2;
return (p - startAt);
}
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
void fromDictionary(const char *ds,unsigned int dslen);
#endif
/*
inline void dump() const
{
printf("networkId==%.16llx\n",networkId);
printf("timestamp==%llu\n",timestamp);
printf("revision==%llu\n",revision);
printf("issuedTo==%.10llx\n",issuedTo.toInt());
printf("multicastLimit==%u\n",multicastLimit);
printf("flags=%.8lx\n",(unsigned long)flags);
printf("specialistCount==%u\n",specialistCount);
for(unsigned int i=0;i<specialistCount;++i)
printf(" specialists[%u]==%.16llx\n",i,specialists[i]);
printf("routeCount==%u\n",routeCount);
for(unsigned int i=0;i<routeCount;++i) {
printf(" routes[i].target==%s\n",reinterpret_cast<const struct sockaddr_storage *>(&(routes[i].target))->toString().c_str());
printf(" routes[i].via==%s\n",reinterpret_cast<const struct sockaddr_storage *>(&(routes[i].via))->toString().c_str());
}
printf("staticIpCount==%u\n",staticIpCount);
for(unsigned int i=0;i<staticIpCount;++i)
printf(" staticIps[i]==%s\n",staticIps[i].toString().c_str());
printf("pinnedCount==%u\n",pinnedCount);
for(unsigned int i=0;i<pinnedCount;++i) {
printf(" pinned[i].zt==%s\n",pinned[i].zt->toString().c_str());
printf(" pinned[i].phy==%s\n",pinned[i].zt->toString().c_str());
}
printf("ruleCount==%u\n",ruleCount);
printf("name==%s\n",name);
printf("com==%s\n",com.toString().c_str());
}
*/
/**
* Network ID that this configuration applies to
*/
uint64_t networkId;
/**
* Controller-side time of config generation/issue
*/
uint64_t timestamp;
/**
* Controller-side revision counter for this configuration
*/
uint64_t revision;
/**
* Address of device to which this config is issued
*/
Address issuedTo;
/**
* Flags (64-bit)
*/
uint64_t flags;
/**
* Maximum number of recipients per multicast (not including active bridges)
*/
unsigned int multicastLimit;
/**
* Number of specialists
*/
unsigned int specialistCount;
/**
* Number of routes
*/
unsigned int routeCount;
/**
* Number of ZT-managed static IP assignments
*/
unsigned int staticIpCount;
/**
* Number of pinned devices (devices with physical address hints)
*/
unsigned int pinnedCount;
/**
* Number of rule table entries
*/
unsigned int ruleCount;
/**
* Specialist devices
*
* For each entry the least significant 40 bits are the device's ZeroTier
* address and the most significant 24 bits are flags indicating its role.
*/
uint64_t specialists[ZT_MAX_NETWORK_SPECIALISTS];
/**
* Statically defined "pushed" routes (including default gateways)
*/
ZT_VirtualNetworkRoute routes[ZT_MAX_NETWORK_ROUTES];
/**
* Static IP assignments
*/
InetAddress staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES];
/**
* Pinned devices with physical address hints
*
* These can be used to specify a physical address where a given device
* can be reached. It's usually used with network relays (specialists).
*/
struct {
Address zt;
InetAddress phy;
} pinned[ZT_MAX_NETWORK_PINNED];
/**
* Rules table
*/
ZT_VirtualNetworkRule rules[ZT_MAX_NETWORK_RULES];
/**
* Network type (currently just public or private)
*/
ZT_VirtualNetworkType type;
/**
* Network short name or empty string if not defined
*/
char name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1];
/**
* Certficiate of membership (for private networks)
*/
CertificateOfMembership com;
};
} // namespace ZeroTier
#endif