ZeroTierOne/node/Bond.cpp

1777 lines
60 KiB
C++

/*
* Copyright (c)2013-2021 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Bond.hpp"
#include "Switch.hpp"
#include <cmath>
#include <string>
#include <cstdio>
namespace ZeroTier {
static unsigned char s_freeRandomByteCounter = 0;
int Bond::_minReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;
uint8_t Bond::_defaultPolicy = ZT_BOND_POLICY_NONE;
Phy<Bond*>* Bond::_phy;
Mutex Bond::_bonds_m;
Mutex Bond::_links_m;
std::string Bond::_defaultPolicyStr;
std::map<int64_t, SharedPtr<Bond> > Bond::_bonds;
std::map<int64_t, std::string> Bond::_policyTemplateAssignments;
std::map<std::string, SharedPtr<Bond> > Bond::_bondPolicyTemplates;
std::map<std::string, std::vector<SharedPtr<Link> > > Bond::_linkDefinitions;
std::map<std::string, std::map<std::string, SharedPtr<Link> > > Bond::_interfaceToLinkMap;
bool Bond::linkAllowed(std::string& policyAlias, SharedPtr<Link> link)
{
bool foundInDefinitions = false;
if (_linkDefinitions.count(policyAlias)) {
auto it = _linkDefinitions[policyAlias].begin();
while (it != _linkDefinitions[policyAlias].end()) {
if (link->ifname() == (*it)->ifname()) {
foundInDefinitions = true;
break;
}
++it;
}
}
return _linkDefinitions[policyAlias].empty() || foundInDefinitions;
}
void Bond::addCustomLink(std::string& policyAlias, SharedPtr<Link> link)
{
Mutex::Lock _l(_links_m);
_linkDefinitions[policyAlias].push_back(link);
auto search = _interfaceToLinkMap[policyAlias].find(link->ifname());
if (search == _interfaceToLinkMap[policyAlias].end()) {
link->setAsUserSpecified(true);
_interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(link->ifname(), link));
}
}
bool Bond::addCustomPolicy(const SharedPtr<Bond>& newBond)
{
Mutex::Lock _l(_bonds_m);
if (! _bondPolicyTemplates.count(newBond->policyAlias())) {
_bondPolicyTemplates[newBond->policyAlias()] = newBond;
return true;
}
return false;
}
bool Bond::assignBondingPolicyToPeer(int64_t identity, const std::string& policyAlias)
{
Mutex::Lock _l(_bonds_m);
if (! _policyTemplateAssignments.count(identity)) {
_policyTemplateAssignments[identity] = policyAlias;
return true;
}
return false;
}
SharedPtr<Bond> Bond::getBondByPeerId(int64_t identity)
{
Mutex::Lock _l(_bonds_m);
return _bonds.count(identity) ? _bonds[identity] : SharedPtr<Bond>();
}
SharedPtr<Bond> Bond::createBond(const RuntimeEnvironment* renv, const SharedPtr<Peer>& peer)
{
Mutex::Lock _l(_bonds_m);
int64_t identity = peer->identity().address().toInt();
Bond* bond = nullptr;
if (! _bonds.count(identity)) {
if (! _policyTemplateAssignments.count(identity)) {
if (_defaultPolicy) {
bond = new Bond(renv, _defaultPolicy, peer);
bond->debug("new default bond");
}
if (! _defaultPolicy && _defaultPolicyStr.length()) {
bond = new Bond(renv, _bondPolicyTemplates[_defaultPolicyStr].ptr(), peer);
bond->debug("new default custom bond (based on %s)", bond->getPolicyStrByCode(bond->policy()).c_str());
}
}
else {
if (! _bondPolicyTemplates[_policyTemplateAssignments[identity]]) {
bond = new Bond(renv, _defaultPolicy, peer);
bond->debug("peer-specific bond, was specified as %s but the bond definition was not found, using default %s", _policyTemplateAssignments[identity].c_str(), getPolicyStrByCode(_defaultPolicy).c_str());
}
else {
bond = new Bond(renv, _bondPolicyTemplates[_policyTemplateAssignments[identity]].ptr(), peer);
bond->debug("new default bond");
}
}
}
if (bond) {
_bonds[identity] = bond;
/**
* Determine if user has specified anything that could affect the bonding policy's decisions
*/
if (_interfaceToLinkMap.count(bond->policyAlias())) {
std::map<std::string, SharedPtr<Link> >::iterator it = _interfaceToLinkMap[bond->policyAlias()].begin();
while (it != _interfaceToLinkMap[bond->policyAlias()].end()) {
if (it->second->isUserSpecified()) {
bond->_userHasSpecifiedLinks = true;
}
if (it->second->isUserSpecified() && it->second->primary()) {
bond->_userHasSpecifiedPrimaryLink = true;
}
if (it->second->isUserSpecified() && it->second->userHasSpecifiedFailoverInstructions()) {
bond->_userHasSpecifiedFailoverInstructions = true;
}
if (it->second->isUserSpecified() && (it->second->speed() > 0)) {
bond->_userHasSpecifiedLinkSpeeds = true;
}
++it;
}
}
return bond;
}
return SharedPtr<Bond>();
}
void Bond::destroyBond(uint64_t peerId)
{
Mutex::Lock _l(_bonds_m);
_bonds.erase(peerId);
}
SharedPtr<Link> Bond::getLinkBySocket(const std::string& policyAlias, uint64_t localSocket)
{
Mutex::Lock _l(_links_m);
char ifname[64] = { 0 };
_phy->getIfName((PhySocket*)((uintptr_t)localSocket), ifname, sizeof(ifname) - 1);
std::string ifnameStr(ifname);
auto search = _interfaceToLinkMap[policyAlias].find(ifnameStr);
if (search == _interfaceToLinkMap[policyAlias].end()) {
// If the link wasn't already known, add a new entry
SharedPtr<Link> s = new Link(ifnameStr, 0, 0, true, ZT_BOND_SLAVE_MODE_SPARE, "", 0.0);
_interfaceToLinkMap[policyAlias].insert(std::pair<std::string, SharedPtr<Link> >(ifnameStr, s));
return s;
}
else {
return search->second;
}
}
SharedPtr<Link> Bond::getLinkByName(const std::string& policyAlias, const std::string& ifname)
{
Mutex::Lock _l(_links_m);
auto search = _interfaceToLinkMap[policyAlias].find(ifname);
if (search != _interfaceToLinkMap[policyAlias].end()) {
return search->second;
}
return SharedPtr<Link>();
}
void Bond::processBackgroundTasks(void* tPtr, const int64_t now)
{
unsigned long _currMinReqMonitorInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;
Mutex::Lock _l(_bonds_m);
std::map<int64_t, SharedPtr<Bond> >::iterator bondItr = _bonds.begin();
while (bondItr != _bonds.end()) {
// Update Bond Controller's background processing timer
_currMinReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)(bondItr->second->monitorInterval()));
bondItr->second->processBackgroundBondTasks(tPtr, now);
++bondItr;
}
_minReqMonitorInterval = std::min(_currMinReqMonitorInterval, (unsigned long)ZT_BOND_FAILOVER_DEFAULT_INTERVAL);
}
Bond::Bond(const RuntimeEnvironment* renv) : RR(renv)
{
initTimers();
}
Bond::Bond(const RuntimeEnvironment* renv, int policy, const SharedPtr<Peer>& peer) : RR(renv), _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter), _peer(peer), _peerId(_peer->_id.address().toInt())
{
initTimers();
setBondParameters(policy, SharedPtr<Bond>(), false);
_policyAlias = getPolicyStrByCode(policy);
}
Bond::Bond(const RuntimeEnvironment* renv, std::string& basePolicy, std::string& policyAlias, const SharedPtr<Peer>& peer) : RR(renv), _policyAlias(policyAlias), _peer(peer)
{
initTimers();
setBondParameters(getPolicyCodeByStr(basePolicy), SharedPtr<Bond>(), false);
}
Bond::Bond(const RuntimeEnvironment* renv, SharedPtr<Bond> originalBond, const SharedPtr<Peer>& peer)
: RR(renv)
, _freeRandomByte((unsigned char)((uintptr_t)this >> 4) ^ ++s_freeRandomByteCounter)
, _peer(peer)
, _peerId(_peer->_id.address().toInt())
{
initTimers();
setBondParameters(originalBond->_policy, originalBond, true);
}
void Bond::nominatePathToBond(const SharedPtr<Path>& path, int64_t now)
{
Mutex::Lock _l(_paths_m);
/**
* Ensure the link is allowed and the path is not already present
*/
if (! RR->bc->linkAllowed(_policyAlias, getLink(path))) {
return;
}
bool alreadyPresent = false;
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
// Sanity check
if (path.ptr() == _paths[i].p.ptr()) {
alreadyPresent = true;
break;
}
}
if (! alreadyPresent) {
/**
* Find somewhere to stick it
*/
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
_paths[i].set(now, path);
/**
* Set user preferences and update state variables of other paths on the same link
*/
SharedPtr<Link> sl = getLink(_paths[i].p);
if (sl) {
// Determine if there are any other paths on this link
bool bFoundCommonLink = false;
SharedPtr<Link> commonLink = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
for (unsigned int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; ++j) {
if (_paths[j].p && _paths[j].p.ptr() != _paths[i].p.ptr()) {
if (RR->bc->getLinkBySocket(_policyAlias, _paths[j].p->localSocket()) == commonLink) {
bFoundCommonLink = true;
_paths[j].onlyPathOnLink = false;
}
}
}
_paths[i].ipvPref = sl->ipvPref();
_paths[i].mode = sl->mode();
_paths[i].enabled = sl->enabled();
_paths[i].onlyPathOnLink = ! bFoundCommonLink;
}
log("nominate link %s", pathToStr(path).c_str());
break;
}
}
}
curateBond(now, true);
estimatePathQuality(now);
}
void Bond::addPathToBond(int nominatedIdx, int bondedIdx)
{
// Map bonded set to nominated set
_bondIdxMap[bondedIdx] = nominatedIdx;
// Tell the bonding layer that we can now use this bond for traffic
_paths[nominatedIdx].bonded = true;
}
SharedPtr<Path> Bond::getAppropriatePath(int64_t now, int32_t flowId)
{
Mutex::Lock _l(_paths_m);
/**
* active-backup
*/
if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && _paths[_abPathIdx].p) {
return _paths[_abPathIdx].p;
}
}
/**
* broadcast
*/
if (_policy == ZT_BOND_POLICY_BROADCAST) {
return SharedPtr<Path>(); // Handled in Switch::_trySend()
}
if (! _numBondedPaths) {
return SharedPtr<Path>(); // No paths assigned to bond yet, cannot balance traffic
}
/**
* balance-rr
*/
if (_policy == ZT_BOND_POLICY_BALANCE_RR) {
if (! _allowFlowHashing) {
if (_packetsPerLink == 0) {
// Randomly select a path
return _paths[_bondIdxMap[_freeRandomByte % _numBondedPaths]].p;
}
if (_rrPacketsSentOnCurrLink < _packetsPerLink) {
// Continue to use this link
++_rrPacketsSentOnCurrLink;
return _paths[_bondIdxMap[_rrIdx]].p;
}
// Reset striping counter
_rrPacketsSentOnCurrLink = 0;
if (_numBondedPaths == 1 || _rrIdx >= (ZT_MAX_PEER_NETWORK_PATHS-1)) {
_rrIdx = 0;
}
else {
int _tempIdx = _rrIdx;
for (int searchCount = 0; searchCount < (_numBondedPaths - 1); searchCount++) {
_tempIdx = (_tempIdx == (_numBondedPaths - 1)) ? 0 : _tempIdx + 1;
if (_bondIdxMap[_tempIdx] != ZT_MAX_PEER_NETWORK_PATHS) {
if (_paths[_bondIdxMap[_tempIdx]].p && _paths[_bondIdxMap[_tempIdx]].eligible) {
_rrIdx = _tempIdx;
break;
}
}
}
}
if (_paths[_bondIdxMap[_rrIdx]].p) {
return _paths[_bondIdxMap[_rrIdx]].p;
}
}
}
/**
* balance-xor
*/
if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {
if (! _allowFlowHashing || flowId == -1) {
// No specific path required for unclassified traffic, send on anything
int m_idx = _bondIdxMap[_freeRandomByte % _numBondedPaths];
return _paths[m_idx].p;
}
else if (_allowFlowHashing) {
Mutex::Lock _l(_flows_m);
SharedPtr<Flow> flow;
if (_flows.count(flowId)) {
flow = _flows[flowId];
flow->lastActivity = now;
}
else {
unsigned char entropy;
Utils::getSecureRandom(&entropy, 1);
flow = createFlow(ZT_MAX_PEER_NETWORK_PATHS, flowId, entropy, now);
}
if (flow) {
return _paths[flow->assignedPath].p;
}
}
}
return SharedPtr<Path>();
}
void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
{
Mutex::Lock _l(_paths_m);
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p == path) {
//_paths[i].packetValiditySamples.push(false);
}
}
}
void Bond::recordOutgoingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
_freeRandomByte += (unsigned char)(packetId >> 8); // Grab entropy to use in path selection logic
bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));
if (isFrame || shouldRecord) {
Mutex::Lock _l(_paths_m);
int pathIdx = getNominatedPathIdx(path);
if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
return;
}
if (isFrame) {
++(_paths[pathIdx].packetsOut);
_lastFrame = now;
}
if (shouldRecord) {
//_paths[pathIdx].unackedBytes += payloadLength;
// Take note that we're expecting a VERB_ACK on this path as of a specific time
if (_paths[pathIdx].qosStatsOut.size() < ZT_QOS_MAX_PENDING_RECORDS) {
_paths[pathIdx].qosStatsOut[packetId] = now;
}
}
}
if (_allowFlowHashing && (flowId != ZT_QOS_NO_FLOW)) {
Mutex::Lock _l(_flows_m);
if (_flows.count(flowId)) {
_flows[flowId]->bytesOut += payloadLength;
}
}
}
void Bond::recordIncomingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength, Packet::Verb verb, int32_t flowId, int64_t now)
{
bool isFrame = (verb == Packet::Packet::VERB_ECHO || verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1) && (verb != Packet::VERB_ACK) && (verb != Packet::VERB_QOS_MEASUREMENT));
Mutex::Lock _l(_paths_m);
int pathIdx = getNominatedPathIdx(path);
if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
return;
}
// Take note of the time that this previously-dead path received a packet
if (! _paths[pathIdx].alive) {
_paths[pathIdx].lastAliveToggle = now;
}
if (isFrame || shouldRecord) {
if (_paths[pathIdx].allowed()) {
if (isFrame) {
++(_paths[pathIdx].packetsIn);
_lastFrame = now;
}
if (shouldRecord) {
if (_paths[pathIdx].qosStatsIn.size() < ZT_QOS_MAX_PENDING_RECORDS) {
_paths[pathIdx].qosStatsIn[packetId] = now;
++(_paths[pathIdx].packetsReceivedSinceLastQoS);
//_paths[pathIdx].packetValiditySamples.push(true);
}
}
}
}
/**
* Learn new flows and pro-actively create entries for them in the bond so
* that the next time we send a packet out that is part of a flow we know
* which path to use.
*/
if ((flowId != ZT_QOS_NO_FLOW) && (_policy == ZT_BOND_POLICY_BALANCE_RR || _policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE)) {
Mutex::Lock _l(_flows_m);
SharedPtr<Flow> flow;
if (! _flows.count(flowId)) {
flow = createFlow(pathIdx, flowId, 0, now);
}
else {
flow = _flows[flowId];
}
if (flow) {
flow->bytesIn += payloadLength;
}
}
}
void Bond::receivedQoS(const SharedPtr<Path>& path, int64_t now, int count, uint64_t* rx_id, uint16_t* rx_ts)
{
Mutex::Lock _l(_paths_m);
int pathIdx = getNominatedPathIdx(path);
if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
return;
}
// debug("received QoS packet (sampling %d frames) via %s", count, pathToStr(path).c_str());
// Look up egress times and compute latency values for each record
std::map<uint64_t, uint64_t>::iterator it;
for (int j = 0; j < count; j++) {
it = _paths[pathIdx].qosStatsOut.find(rx_id[j]);
if (it != _paths[pathIdx].qosStatsOut.end()) {
_paths[pathIdx].latencySamples.push(((uint16_t)(now - it->second) - rx_ts[j]) / 2);
_paths[pathIdx].qosStatsOut.erase(it);
}
}
_paths[pathIdx].qosRecordSize.push(count);
}
int32_t Bond::generateQoSPacket(int pathIdx, int64_t now, char* qosBuffer)
{
int32_t len = 0;
std::map<uint64_t, uint64_t>::iterator it = _paths[pathIdx].qosStatsIn.begin();
int i = 0;
int numRecords = std::min(_paths[pathIdx].packetsReceivedSinceLastQoS, ZT_QOS_TABLE_SIZE);
while (i < numRecords && it != _paths[pathIdx].qosStatsIn.end()) {
uint64_t id = it->first;
memcpy(qosBuffer, &id, sizeof(uint64_t));
qosBuffer += sizeof(uint64_t);
uint16_t holdingTime = (uint16_t)(now - it->second);
memcpy(qosBuffer, &holdingTime, sizeof(uint16_t));
qosBuffer += sizeof(uint16_t);
len += sizeof(uint64_t) + sizeof(uint16_t);
_paths[pathIdx].qosStatsIn.erase(it++);
++i;
}
return len;
}
bool Bond::assignFlowToBondedPath(SharedPtr<Flow>& flow, int64_t now)
{
if (! _numBondedPaths) {
debug("unable to assign flow %x (bond has no links)\n", flow->id);
return false;
}
unsigned int idx = ZT_MAX_PEER_NETWORK_PATHS;
if (_policy == ZT_BOND_POLICY_BALANCE_XOR) {
idx = abs((int)(flow->id % (_numBondedPaths)));
flow->assignPath(_bondIdxMap[idx], now);
++(_paths[_bondIdxMap[idx]].assignedFlowCount);
}
if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {
unsigned char entropy;
Utils::getSecureRandom(&entropy, 1);
if (_totalBondUnderload) {
entropy %= _totalBondUnderload;
}
/* Since there may be scenarios where a path is removed before we can re-estimate
relative qualities (and thus allocations) we need to down-modulate the entropy
value that we use to randomly assign among the surviving paths, otherwise we risk
not being able to find a path to assign this flow to. */
int totalIncompleteAllocation = 0;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].bonded) {
totalIncompleteAllocation += _paths[i].allocation;
}
}
entropy %= totalIncompleteAllocation;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].bonded) {
uint8_t probabilitySegment = (_totalBondUnderload > 0) ? _paths[i].affinity : _paths[i].allocation;
if (entropy <= probabilitySegment) {
idx = i;
break;
}
entropy -= probabilitySegment;
}
}
if (idx < ZT_MAX_PEER_NETWORK_PATHS) {
flow->assignPath(idx, now);
++(_paths[idx].assignedFlowCount);
}
else {
debug("unable to assign out-flow %x (unknown reason)", flow->id);
return false;
}
}
if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
debug("unable to assign out-flow %x (no active backup link)", flow->id);
}
flow->assignPath(_abPathIdx, now);
}
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[flow->assignedPath].p->localSocket());
debug("assign out-flow %04x to link %s (%lu / %lu flows)", flow->id, pathToStr(_paths[flow->assignedPath].p).c_str(), _paths[flow->assignedPath].assignedFlowCount, (unsigned long)_flows.size());
return true;
}
SharedPtr<Bond::Flow> Bond::createFlow(int pathIdx, int32_t flowId, unsigned char entropy, int64_t now)
{
if (! _numBondedPaths) {
debug("unable to assign flow %x (bond has no links)\n", flowId);
return SharedPtr<Flow>();
}
if (_flows.size() >= ZT_FLOW_MAX_COUNT) {
debug("forget oldest flow (max flows reached: %d)\n", ZT_FLOW_MAX_COUNT);
forgetFlowsWhenNecessary(0, true, now);
}
SharedPtr<Flow> flow = new Flow(flowId, now);
_flows[flowId] = flow;
/**
* Add a flow with a given Path already provided. This is the case when a packet
* is received on a path but no flow exists, in this case we simply assign the path
* that the remote peer chose for us.
*/
if (pathIdx != ZT_MAX_PEER_NETWORK_PATHS) {
flow->assignPath(pathIdx, now);
_paths[pathIdx].assignedFlowCount++;
debug("assign in-flow %x to link %s (%lu / %lu)", flow->id, pathToStr(_paths[pathIdx].p).c_str(), _paths[pathIdx].assignedFlowCount, (unsigned long)_flows.size());
}
/**
* Add a flow when no path was provided. This means that it is an outgoing packet
* and that it is up to the local peer to decide how to load-balance its transmission.
*/
else {
assignFlowToBondedPath(flow, now);
}
return flow;
}
void Bond::forgetFlowsWhenNecessary(uint64_t age, bool oldest, int64_t now)
{
std::map<int32_t, SharedPtr<Flow> >::iterator it = _flows.begin();
std::map<int32_t, SharedPtr<Flow> >::iterator oldestFlow = _flows.end();
SharedPtr<Flow> expiredFlow;
if (age) { // Remove by specific age
while (it != _flows.end()) {
if (it->second->age(now) > age) {
debug("forget flow %x (age %llu) (%lu / %lu)", it->first, (unsigned long long)it->second->age(now), _paths[it->second->assignedPath].assignedFlowCount, (unsigned long)(_flows.size() - 1));
_paths[it->second->assignedPath].assignedFlowCount--;
it = _flows.erase(it);
}
else {
++it;
}
}
}
else if (oldest) { // Remove single oldest by natural expiration
uint64_t maxAge = 0;
while (it != _flows.end()) {
if (it->second->age(now) > maxAge) {
maxAge = (now - it->second->age(now));
oldestFlow = it;
}
++it;
}
if (oldestFlow != _flows.end()) {
debug("forget oldest flow %x (age %llu) (total flows: %lu)", oldestFlow->first, (unsigned long long)oldestFlow->second->age(now), (unsigned long)(_flows.size() - 1));
_paths[oldestFlow->second->assignedPath].assignedFlowCount--;
_flows.erase(oldestFlow);
}
}
}
void Bond::processIncomingPathNegotiationRequest(uint64_t now, SharedPtr<Path>& path, int16_t remoteUtility)
{
char pathStr[64] = { 0 };
if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
return;
}
Mutex::Lock _l(_paths_m);
int pathIdx = getNominatedPathIdx(path);
if (pathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
return;
}
_paths[pathIdx].p->address().toString(pathStr);
if (! _lastPathNegotiationCheck) {
return;
}
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[pathIdx].p->localSocket());
if (remoteUtility > _localUtility) {
_paths[pathIdx].p->address().toString(pathStr);
debug("peer suggests alternate link %s/%s, remote utility (%d) greater than local utility (%d), switching to suggested link\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
_negotiatedPathIdx = pathIdx;
}
if (remoteUtility < _localUtility) {
debug("peer suggests alternate link %s/%s, remote utility (%d) less than local utility (%d), not switching\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
}
if (remoteUtility == _localUtility) {
debug("peer suggests alternate link %s/%s, remote utility (%d) equal to local utility (%d)\n", link->ifname().c_str(), pathStr, remoteUtility, _localUtility);
if (_peer->_id.address().toInt() > RR->node->identity().address().toInt()) {
debug("agree with peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);
_negotiatedPathIdx = pathIdx;
}
else {
debug("ignore petition from peer to use alternate link %s/%s\n", link->ifname().c_str(), pathStr);
}
}
}
void Bond::pathNegotiationCheck(void* tPtr, int64_t now)
{
int maxInPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
int maxOutPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
uint64_t maxInCount = 0;
uint64_t maxOutCount = 0;
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
if (_paths[i].packetsIn > maxInCount) {
maxInCount = _paths[i].packetsIn;
maxInPathIdx = i;
}
if (_paths[i].packetsOut > maxOutCount) {
maxOutCount = _paths[i].packetsOut;
maxOutPathIdx = i;
}
_paths[i].resetPacketCounts();
}
bool _peerLinksSynchronized = ((maxInPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxOutPathIdx != ZT_MAX_PEER_NETWORK_PATHS) && (maxInPathIdx != maxOutPathIdx)) ? false : true;
/**
* Determine utility and attempt to petition remote peer to switch to our chosen path
*/
if (! _peerLinksSynchronized) {
_localUtility = _paths[maxOutPathIdx].failoverScore - _paths[maxInPathIdx].failoverScore;
if (_paths[maxOutPathIdx].negotiated) {
_localUtility -= ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;
}
if ((now - _lastSentPathNegotiationRequest) > ZT_PATH_NEGOTIATION_CUTOFF_TIME) {
// fprintf(stderr, "BT: (sync) it's been long enough, sending more requests.\n");
_numSentPathNegotiationRequests = 0;
}
if (_numSentPathNegotiationRequests < ZT_PATH_NEGOTIATION_TRY_COUNT) {
if (_localUtility >= 0) {
// fprintf(stderr, "BT: (sync) paths appear to be out of sync (utility=%d)\n", _localUtility);
sendPATH_NEGOTIATION_REQUEST(tPtr, _paths[maxOutPathIdx].p);
++_numSentPathNegotiationRequests;
_lastSentPathNegotiationRequest = now;
// fprintf(stderr, "sending request to use %s on %s, ls=%llx, utility=%d\n", pathStr, link->ifname().c_str(), _paths[maxOutPathIdx].p->localSocket(), _localUtility);
}
}
/**
* Give up negotiating and consider switching
*/
else if ((now - _lastSentPathNegotiationRequest) > (2 * ZT_BOND_OPTIMIZE_INTERVAL)) {
if (_localUtility == 0) {
// There's no loss to us, just switch without sending a another request
// fprintf(stderr, "BT: (sync) giving up, switching to remote peer's path.\n");
_negotiatedPathIdx = maxInPathIdx;
}
}
}
}
void Bond::sendPATH_NEGOTIATION_REQUEST(void* tPtr, int pathIdx)
{
debug("send link negotiation request to peer via link %s, local utility is %d", pathToStr(_paths[pathIdx].p).c_str(), _localUtility);
if (_abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
return;
}
Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_PATH_NEGOTIATION_REQUEST);
outp.append<int16_t>(_localUtility);
if (_paths[pathIdx].p->address()) {
outp.armor(_peer->key(), false, _peer->aesKeysIfSupported());
RR->node->putPacket(tPtr, _paths[pathIdx].p->localSocket(), _paths[pathIdx].p->address(), outp.data(), outp.size());
_overheadBytes += outp.size();
}
}
void Bond::sendQOS_MEASUREMENT(void* tPtr, int pathIdx, int64_t localSocket, const InetAddress& atAddress, int64_t now)
{
int64_t _now = RR->node->now();
Packet outp(_peer->_id.address(), RR->identity.address(), Packet::VERB_QOS_MEASUREMENT);
char qosData[ZT_QOS_MAX_PACKET_SIZE];
int16_t len = generateQoSPacket(pathIdx, _now, qosData);
if (len) {
outp.append(qosData, len);
if (atAddress) {
outp.armor(_peer->key(), false, _peer->aesKeysIfSupported());
RR->node->putPacket(tPtr, localSocket, atAddress, outp.data(), outp.size());
}
else {
RR->sw->send(tPtr, outp, false);
}
_paths[pathIdx].packetsReceivedSinceLastQoS = 0;
_paths[pathIdx].lastQoSMeasurement = now;
_overheadBytes += outp.size();
}
// debug("send QOS via link %s (len=%d)", pathToStr(_paths[pathIdx].p).c_str(), len);
}
void Bond::processBackgroundBondTasks(void* tPtr, int64_t now)
{
if (! _peer->_localMultipathSupported || (now - _lastBackgroundTaskCheck) < ZT_BOND_BACKGROUND_TASK_MIN_INTERVAL) {
return;
}
_lastBackgroundTaskCheck = now;
Mutex::Lock _l(_paths_m);
curateBond(now, false);
if ((now - _lastQualityEstimation) > _qualityEstimationInterval) {
_lastQualityEstimation = now;
estimatePathQuality(now);
}
dumpInfo(now, false);
// Send ambient monitoring traffic
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].allowed()) {
if (_isLeaf) {
if ((_monitorInterval > 0) && (((now - _paths[i].p->_lastIn) >= (_paths[i].alive ? _monitorInterval : _failoverInterval)))) {
if ((_peer->remoteVersionProtocol() >= 5) && (! ((_peer->remoteVersionMajor() == 1) && (_peer->remoteVersionMinor() == 1) && (_peer->remoteVersionRevision() == 0)))) {
Packet outp(_peer->address(), RR->identity.address(), Packet::VERB_ECHO); // ECHO (this is our bond's heartbeat)
outp.armor(_peer->key(), true, _peer->aesKeysIfSupported());
RR->node->expectReplyTo(outp.packetId());
RR->node->putPacket(tPtr, _paths[i].p->localSocket(), _paths[i].p->address(), outp.data(), outp.size());
_paths[i].p->_lastOut = now;
_overheadBytes += outp.size();
debug("tx: verb 0x%-2x of len %4d via %s (ECHO)", Packet::VERB_ECHO, outp.size(), pathToStr(_paths[i].p).c_str());
}
}
// QOS
if (_paths[i].needsToSendQoS(now, _qosSendInterval)) {
sendQOS_MEASUREMENT(tPtr, i, _paths[i].p->localSocket(), _paths[i].p->address(), now);
}
}
}
}
// Perform periodic background tasks unique to each bonding policy
switch (_policy) {
case ZT_BOND_POLICY_ACTIVE_BACKUP:
processActiveBackupTasks(tPtr, now);
break;
case ZT_BOND_POLICY_BROADCAST:
break;
case ZT_BOND_POLICY_BALANCE_RR:
case ZT_BOND_POLICY_BALANCE_XOR:
case ZT_BOND_POLICY_BALANCE_AWARE:
processBalanceTasks(now);
break;
default:
break;
}
// Check whether or not a path negotiation needs to be performed
if (((now - _lastPathNegotiationCheck) > ZT_BOND_OPTIMIZE_INTERVAL) && _allowPathNegotiation) {
_lastPathNegotiationCheck = now;
pathNegotiationCheck(tPtr, now);
}
}
void Bond::curateBond(int64_t now, bool rebuildBond)
{
uint8_t tmpNumAliveLinks = 0;
uint8_t tmpNumTotalLinks = 0;
/**
* Update path state variables. State variables are used so that critical
* blocks that perform fast packet processing won't need to make as many
* function calls or computations.
*/
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
/**
* Remove expired links from bond
*/
if ((now - _paths[i].p->_lastIn) > (ZT_PEER_EXPIRED_PATH_TRIAL_PERIOD)) {
log("link %s has expired, removing from bond", pathToStr(_paths[i].p).c_str());
_paths[i] = NominatedPath();
_paths[i].p = SharedPtr<Path>();
continue;
}
tmpNumTotalLinks++;
if (_paths[i].eligible) {
tmpNumAliveLinks++;
}
/**
* Determine aliveness
*/
_paths[i].alive = _isLeaf ? (now - _paths[i].p->_lastIn) < _failoverInterval : (now - _paths[i].p->_lastIn) < ZT_PEER_PATH_EXPIRATION;
/**
* Determine current eligibility
*/
bool currEligibility = false;
// Simple RX age (driven by packets of any type and gratuitous VERB_HELLOs)
bool acceptableAge = _isLeaf ? (_paths[i].p->age(now) < (_failoverInterval + _downDelay)) : _paths[i].alive;
// Whether we've waited long enough since the link last came online
bool satisfiedUpDelay = (now - _paths[i].lastAliveToggle) >= _upDelay;
// Whether this path is still in its trial period
bool inTrial = (now - _paths[i].whenNominated) < ZT_BOND_OPTIMIZE_INTERVAL;
// if (includeRefractoryPeriod && _paths[i].refractoryPeriod) {
// As long as the refractory period value has not fully drained this path is not eligible
// currEligibility = false;
//}
currEligibility = _paths[i].allowed() && ((acceptableAge && satisfiedUpDelay) || inTrial);
// debug("[%d] allowed=%d, acceptableAge=%d, satisfiedUpDelay=%d, inTrial=%d ==== %d", i, _paths[i].allowed(), acceptableAge, satisfiedUpDelay, inTrial, currEligibility);
/**
* Note eligibility state change (if any) and take appropriate action
*/
if (currEligibility != _paths[i].eligible) {
if (currEligibility == 0) {
log("link %s is no longer eligible", pathToStr(_paths[i].p).c_str());
}
if (currEligibility == 1) {
log("link %s is eligible", pathToStr(_paths[i].p).c_str());
}
dumpPathStatus(now, i);
if (currEligibility) {
rebuildBond = true;
}
if (! currEligibility) {
_paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, ! currEligibility);
if (_paths[i].bonded) {
if (_allowFlowHashing) {
debug("link %s was bonded, flow reallocation will occur soon", pathToStr(_paths[i].p).c_str());
rebuildBond = true;
_paths[i].shouldReallocateFlows = _paths[i].bonded;
}
_paths[i].bonded = false;
}
}
}
if (currEligibility) {
_paths[i].adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, false);
}
_paths[i].eligible = currEligibility;
}
/**
* Trigger status report if number of links change
*/
_numAliveLinks = tmpNumAliveLinks;
_numTotalLinks = tmpNumTotalLinks;
if ((_numAliveLinks != tmpNumAliveLinks) || (_numTotalLinks != tmpNumTotalLinks)) {
dumpInfo(now, true);
}
/**
* Curate the set of paths that are part of the bond proper. Select a set of paths
* per logical link according to eligibility and user-specified constraints.
*/
if ((_policy == ZT_BOND_POLICY_BALANCE_RR) || (_policy == ZT_BOND_POLICY_BALANCE_XOR) || (_policy == ZT_BOND_POLICY_BALANCE_AWARE)) {
if (! _numBondedPaths) {
rebuildBond = true;
}
if (rebuildBond) {
debug("rebuilding bond");
int updatedBondedPathCount = 0;
// Build map associating paths with local physical links. Will be selected from in next step
std::map<SharedPtr<Link>, std::vector<int> > linkMap;
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
linkMap[link].push_back(i);
}
}
// Re-form bond from link<->path map
std::map<SharedPtr<Link>, std::vector<int> >::iterator it = linkMap.begin();
while (it != linkMap.end()) {
SharedPtr<Link> link = it->first;
int ipvPref = link->ipvPref();
// If user has no address type preference, then use every path we find on a link
if (ipvPref == 0) {
for (int j = 0; j < it->second.size(); j++) {
int idx = it->second.at(j);
if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed()) {
continue;
}
addPathToBond(idx, updatedBondedPathCount);
++updatedBondedPathCount;
debug("add %s (no user addr preference)", pathToStr(_paths[idx].p).c_str());
}
}
// If the user prefers to only use one address type (IPv4 or IPv6)
if (ipvPref == 4 || ipvPref == 6) {
for (int j = 0; j < it->second.size(); j++) {
int idx = it->second.at(j);
if (! _paths[idx].p || ! _paths[idx].eligible) {
continue;
}
if (! _paths[idx].allowed()) {
debug("did not add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
continue;
}
addPathToBond(idx, updatedBondedPathCount);
++updatedBondedPathCount;
debug("add path %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
}
}
// If the users prefers one address type to another, try to find at least
// one path of that type before considering others.
if (ipvPref == 46 || ipvPref == 64) {
bool foundPreferredPath = false;
// Search for preferred paths
for (int j = 0; j < it->second.size(); j++) {
int idx = it->second.at(j);
if (! _paths[idx].p || ! _paths[idx].eligible || ! _paths[idx].allowed()) {
continue;
}
if (_paths[idx].preferred()) {
addPathToBond(idx, updatedBondedPathCount);
++updatedBondedPathCount;
debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
foundPreferredPath = true;
}
}
// Unable to find a path that matches user preference, settle for another address type
if (! foundPreferredPath) {
debug("did not find first-choice path type on link %s (user preference %d)", link->ifname().c_str(), ipvPref);
for (int j = 0; j < it->second.size(); j++) {
int idx = it->second.at(j);
if (! _paths[idx].p || ! _paths[idx].eligible) {
continue;
}
addPathToBond(idx, updatedBondedPathCount);
++updatedBondedPathCount;
debug("add %s (user addr preference %d)", pathToStr(_paths[idx].p).c_str(), ipvPref);
foundPreferredPath = true;
}
}
}
++it; // Next link
}
_numBondedPaths = updatedBondedPathCount;
if (_policy == ZT_BOND_POLICY_BALANCE_RR) {
// Cause a RR reset since the current index might no longer be valid
_rrPacketsSentOnCurrLink = _packetsPerLink;
}
}
}
}
void Bond::estimatePathQuality(int64_t now)
{
uint32_t totUserSpecifiedLinkSpeed = 0;
if (_numBondedPaths) { // Compute relative user-specified speeds of links
for (unsigned int i = 0; i < _numBondedPaths; ++i) {
if (_paths[i].p && _paths[i].allowed()) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
totUserSpecifiedLinkSpeed += link->speed();
}
}
for (unsigned int i = 0; i < _numBondedPaths; ++i) {
if (_paths[i].p && _paths[i].allowed()) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
link->setRelativeSpeed((uint8_t)round(((float)link->speed() / (float)totUserSpecifiedLinkSpeed) * 255));
}
}
}
float lat[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
float pdv[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
float plr[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
float per[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
float maxLAT = 0;
float maxPDV = 0;
float maxPLR = 0;
float maxPER = 0;
float quality[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
uint8_t alloc[ZT_MAX_PEER_NETWORK_PATHS] = { 0 };
float totQuality = 0.0f;
// Compute initial summary statistics
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p || ! _paths[i].allowed()) {
continue;
}
// Compute/Smooth average of real-world observations
_paths[i].latencyMean = _paths[i].latencySamples.mean();
_paths[i].latencyVariance = _paths[i].latencySamples.stddev();
//_paths[i].packetErrorRatio = 1.0 - (_paths[i].packetValiditySamples.count() ? _paths[i].packetValiditySamples.mean() : 1.0);
if (userHasSpecifiedLinkSpeeds()) {
// Use user-reported metrics
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
if (link) {
_paths[i].throughputMean = link->speed();
_paths[i].throughputVariance = 0;
}
}
// Drain unacknowledged QoS records
int qosRecordTimeout = (_qosSendInterval * 3);
std::map<uint64_t, uint64_t>::iterator it = _paths[i].qosStatsOut.begin();
int numDroppedQosOutRecords = 0;
while (it != _paths[i].qosStatsOut.end()) {
if ((now - it->second) >= qosRecordTimeout) {
it = _paths[i].qosStatsOut.erase(it);
++numDroppedQosOutRecords;
}
else {
++it;
}
}
if (numDroppedQosOutRecords) {
log("Dropped %d QOS out-records", numDroppedQosOutRecords);
}
it = _paths[i].qosStatsIn.begin();
int numDroppedQosInRecords = 0;
while (it != _paths[i].qosStatsIn.end()) {
if ((now - it->second) >= qosRecordTimeout) {
it = _paths[i].qosStatsIn.erase(it);
++numDroppedQosInRecords;
}
else {
++it;
}
}
if (numDroppedQosInRecords) {
log("Dropped %d QOS in-records", numDroppedQosInRecords);
}
quality[i] = 0;
totQuality = 0;
// Normalize raw observations according to sane limits and/or user specified values
lat[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyMean, 0, _maxAcceptableLatency, 0, 1));
pdv[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].latencyVariance, 0, _maxAcceptablePacketDelayVariance, 0, 1));
plr[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetLossRatio, 0, _maxAcceptablePacketLossRatio, 0, 1));
per[i] = 1.0 / expf(4 * Utils::normalize(_paths[i].packetErrorRatio, 0, _maxAcceptablePacketErrorRatio, 0, 1));
// Record bond-wide maximums to determine relative values
maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT;
maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV;
maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR;
maxPER = per[i] > maxPER ? per[i] : maxPER;
}
// Convert metrics to relative quantities and apply contribution weights
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].bonded) {
quality[i] += ((maxLAT > 0.0f ? lat[i] / maxLAT : 0.0f) * _qw[ZT_QOS_LAT_IDX]);
quality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qw[ZT_QOS_PDV_IDX]);
quality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qw[ZT_QOS_PLR_IDX]);
quality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qw[ZT_QOS_PER_IDX]);
totQuality += quality[i];
}
}
// Normalize to 8-bit allocation values
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].bonded) {
alloc[i] = (uint8_t)(std::ceil((quality[i] / totQuality) * (float)255));
_paths[i].allocation = alloc[i];
}
}
}
void Bond::processBalanceTasks(int64_t now)
{
if (_allowFlowHashing) {
/**
* Clean up and reset flows if necessary
*/
if ((now - _lastFlowExpirationCheck) > ZT_PEER_PATH_EXPIRATION) {
Mutex::Lock _l(_flows_m);
forgetFlowsWhenNecessary(ZT_PEER_PATH_EXPIRATION, false, now);
std::map<int32_t, SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
it->second->resetByteCounts();
++it;
}
_lastFlowExpirationCheck = now;
}
/**
* Re-allocate flows from dead paths
*/
if (_policy == ZT_BOND_POLICY_BALANCE_XOR || _policy == ZT_BOND_POLICY_BALANCE_AWARE) {
Mutex::Lock _l(_flows_m);
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
if (! _paths[i].eligible && _paths[i].shouldReallocateFlows) {
log("reallocate flows from dead link %s", pathToStr(_paths[i].p).c_str());
std::map<int32_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (_paths[flow_it->second->assignedPath].p == _paths[i].p) {
if (assignFlowToBondedPath(flow_it->second, now)) {
_paths[i].assignedFlowCount--;
}
}
++flow_it;
}
_paths[i].shouldReallocateFlows = false;
}
}
}
/**
* Re-allocate flows from under-performing
* NOTE: This could be part of the above block but was kept separate for clarity.
*/
if (_policy == ZT_BOND_POLICY_BALANCE_AWARE) {
int totalAllocation = 0;
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
if (_paths[i].p && _paths[i].bonded && _paths[i].eligible) {
totalAllocation += _paths[i].allocation;
}
}
unsigned char minimumAllocationValue = (uint8_t)(0.33 * ((float)totalAllocation / (float)_numBondedPaths));
Mutex::Lock _l(_flows_m);
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
if (_paths[i].p && _paths[i].bonded && _paths[i].eligible && (_paths[i].allocation < minimumAllocationValue) && _paths[i].assignedFlowCount) {
log("reallocate flows from under-performing link %s\n", pathToStr(_paths[i].p).c_str());
std::map<int32_t, SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->assignedPath == _paths[i].p) {
if (assignFlowToBondedPath(flow_it->second, now)) {
_paths[i].assignedFlowCount--;
}
}
++flow_it;
}
_paths[i].shouldReallocateFlows = false;
}
}
}
}
}
void Bond::dequeueNextActiveBackupPath(uint64_t now)
{
if (_abFailoverQueue.empty()) {
return;
}
_abPathIdx = _abFailoverQueue.front();
_abFailoverQueue.pop_front();
_lastActiveBackupPathChange = now;
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
_paths[i].resetPacketCounts();
}
}
}
bool Bond::abForciblyRotateLink()
{
if (_policy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
int prevPathIdx = _abPathIdx;
dequeueNextActiveBackupPath(RR->node->now());
log("active link rotated from %s to %s", pathToStr(_paths[prevPathIdx].p).c_str(), pathToStr(_paths[_abPathIdx].p).c_str());
return true;
}
return false;
}
void Bond::processActiveBackupTasks(void* tPtr, int64_t now)
{
int prevActiveBackupPathIdx = _abPathIdx;
int nonPreferredPathIdx;
bool bFoundPrimaryLink = false;
if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS && !_paths[_abPathIdx].p) {
_abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
log("main active-backup path has been removed");
}
/**
* Generate periodic status report
*/
if ((now - _lastBondStatusLog) > ZT_BOND_STATUS_INTERVAL) {
_lastBondStatusLog = now;
if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
log("no active link");
}
else if (_paths[_abPathIdx].p) {
log("active link is %s, failover queue size is %zu", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());
}
if (_abFailoverQueue.empty()) {
log("failover queue is empty, bond is no longer fault-tolerant");
}
}
/**
* Select initial "active" active-backup link
*/
if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
/**
* [Automatic mode]
* The user has not explicitly specified links or their failover schedule,
* the bonding policy will now select the first eligible path and set it as
* its active backup path, if a substantially better path is detected the bonding
* policy will assign it as the new active backup path. If the path fails it will
* simply find the next eligible path.
*/
if (! userHasSpecifiedLinks()) {
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].eligible) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
if (link) {
log("found eligible link %s", pathToStr(_paths[i].p).c_str());
_abPathIdx = i;
break;
}
}
}
}
/**
* [Manual mode]
* The user has specified links or failover rules that the bonding policy should adhere to.
*/
else if (userHasSpecifiedLinks()) {
if (userHasSpecifiedPrimaryLink()) {
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p) {
continue;
}
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
if (_paths[i].eligible && link->primary()) {
if (! _paths[i].preferred()) {
// Found path on primary link, take note in case we don't find a preferred path
nonPreferredPathIdx = i;
bFoundPrimaryLink = true;
}
if (_paths[i].preferred()) {
_abPathIdx = i;
bFoundPrimaryLink = true;
if (_paths[_abPathIdx].p) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());
if (link) {
log("found preferred primary link %s", pathToStr(_paths[_abPathIdx].p).c_str());
}
break; // Found preferred path on primary link
}
}
}
}
if (bFoundPrimaryLink && nonPreferredPathIdx) {
log("found non-preferred primary link");
_abPathIdx = nonPreferredPathIdx;
}
if (_abPathIdx == ZT_MAX_PEER_NETWORK_PATHS) {
log("user-designated primary link is not yet ready");
// TODO: Should wait for some time (failover interval?) and then switch to spare link
}
}
else if (! userHasSpecifiedPrimaryLink()) {
log("user did not specify a primary link, select first available link");
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p && _paths[i].eligible) {
_abPathIdx = i;
break;
}
}
if (_abPathIdx != ZT_MAX_PEER_NETWORK_PATHS) {
if (_paths[_abPathIdx].p) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[_abPathIdx].p->localSocket());
if (link) {
log("select non-primary link %s", pathToStr(_paths[_abPathIdx].p).c_str());
}
}
}
}
}
}
// Short-circuit if we don't have an active link yet. Everything below is optimization from the base case
if (_abPathIdx < 0 || _abPathIdx == ZT_MAX_PEER_NETWORK_PATHS || (!_paths[_abPathIdx].p)) {
return;
}
// Remove ineligible paths from the failover link queue
for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end();) {
if (_paths[(*it)].p && ! _paths[(*it)].eligible) {
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[(*it)].p->localSocket());
it = _abFailoverQueue.erase(it);
if (link) {
log("link %s is ineligible, removing from failover queue (%zu links in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());
}
}
else {
++it;
}
}
/**
* Failover instructions were provided by user, build queue according those as well as IPv
* preference, disregarding performance.
*/
if (userHasSpecifiedFailoverInstructions()) {
/**
* Clear failover scores
*/
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
_paths[i].failoverScore = 0;
}
}
// Follow user-specified failover instructions
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {
continue;
}
SharedPtr<Link> link = RR->bc->getLinkBySocket(_policyAlias, _paths[i].p->localSocket());
int failoverScoreHandicap = _paths[i].failoverScore;
if (_paths[i].preferred()) {
failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PREFERRED;
}
if (link->primary()) {
// If using "optimize" primary re-select mode, ignore user link designations
failoverScoreHandicap += ZT_BOND_FAILOVER_HANDICAP_PRIMARY;
}
if (! _paths[i].failoverScore) {
// If we didn't inherit a failover score from a "parent" that wants to use this path as a failover
int newHandicap = failoverScoreHandicap ? failoverScoreHandicap : _paths[i].allocation;
_paths[i].failoverScore = newHandicap;
}
SharedPtr<Link> failoverLink;
if (link->failoverToLink().length()) {
failoverLink = RR->bc->getLinkByName(_policyAlias, link->failoverToLink());
}
if (failoverLink) {
for (int j = 0; j < ZT_MAX_PEER_NETWORK_PATHS; j++) {
if (_paths[j].p && getLink(_paths[j].p) == failoverLink.ptr()) {
int inheritedHandicap = failoverScoreHandicap - 10;
int newHandicap = _paths[j].failoverScore > inheritedHandicap ? _paths[j].failoverScore : inheritedHandicap;
if (! _paths[j].preferred()) {
newHandicap--;
}
_paths[j].failoverScore = newHandicap;
}
}
}
if (_paths[i].p) {
if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {
bool bFoundPathInQueue = false;
for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {
if (_paths[(*it)].p && (_paths[i].p.ptr() == _paths[(*it)].p.ptr())) {
bFoundPathInQueue = true;
}
}
if (! bFoundPathInQueue) {
_abFailoverQueue.push_front(i);
log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());
addPathToBond(0, i);
}
}
}
}
}
/**
* No failover instructions provided by user, build queue according to performance
* and IPv preference.
*/
else if (! userHasSpecifiedFailoverInstructions()) {
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (! _paths[i].p || ! _paths[i].allowed() || ! _paths[i].eligible) {
continue;
}
int failoverScoreHandicap = 0;
if (_paths[i].preferred()) {
failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PREFERRED;
}
if (! _paths[i].eligible) {
failoverScoreHandicap = -10000;
}
if (getLink(_paths[i].p)->primary() && _abLinkSelectMethod != ZT_BOND_RESELECTION_POLICY_OPTIMIZE) {
// If using "optimize" primary re-select mode, ignore user link designations
failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_PRIMARY;
}
/*
if (_paths[i].p.ptr() == _paths[_negotiatedPathIdx].p.ptr()) {
_paths[i].negotiated = true;
failoverScoreHandicap = ZT_BOND_FAILOVER_HANDICAP_NEGOTIATED;
}
else {
_paths[i].negotiated = false;
}
*/
_paths[i].failoverScore = _paths[i].allocation + failoverScoreHandicap;
if (_paths[i].p.ptr() != _paths[_abPathIdx].p.ptr()) {
bool bFoundPathInQueue = false;
for (std::deque<int>::iterator it(_abFailoverQueue.begin()); it != _abFailoverQueue.end(); ++it) {
if (_paths[i].p.ptr() == _paths[(*it)].p.ptr()) {
bFoundPathInQueue = true;
}
}
if (! bFoundPathInQueue) {
_abFailoverQueue.push_front(i);
log("add link %s to failover queue (%zu links in queue)", pathToStr(_paths[i].p).c_str(), _abFailoverQueue.size());
addPathToBond(0, i);
}
}
}
}
// Sort queue based on performance
if (! _abFailoverQueue.empty()) {
for (int i = 0; i < _abFailoverQueue.size(); i++) {
int value_to_insert = _abFailoverQueue[i];
int hole_position = i;
while (hole_position > 0 && (_abFailoverQueue[hole_position - 1] > value_to_insert)) {
_abFailoverQueue[hole_position] = _abFailoverQueue[hole_position - 1];
hole_position = hole_position - 1;
}
_abFailoverQueue[hole_position] = value_to_insert;
}
}
/**
* Short-circuit if we have no queued paths
*/
if (_abFailoverQueue.empty()) {
return;
}
/**
* Fulfill primary re-select obligations
*/
if (! _paths[_abPathIdx].eligible) { // Implicit ZT_BOND_RESELECTION_POLICY_FAILURE
log("link %s has failed, select link from failover queue (%zu links in queue)", pathToStr(_paths[_abPathIdx].p).c_str(), _abFailoverQueue.size());
if (! _abFailoverQueue.empty()) {
dequeueNextActiveBackupPath(now);
log("active link switched to %s", pathToStr(_paths[_abPathIdx].p).c_str());
}
else {
log("failover queue is empty, no links to choose from");
}
}
/**
* Detect change to prevent flopping during later optimization step.
*/
if (prevActiveBackupPathIdx != _abPathIdx) {
_lastActiveBackupPathChange = now;
}
if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_ALWAYS) {
if (! getLink(_paths[_abPathIdx].p)->primary() && _paths[_abFailoverQueue.front()].p && getLink(_paths[_abFailoverQueue.front()].p)->primary()) {
dequeueNextActiveBackupPath(now);
log("switch back to available primary link %s (select mode: always)", pathToStr(_paths[_abPathIdx].p).c_str());
}
}
if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_BETTER) {
if (! getLink(_paths[_abPathIdx].p)->primary()) {
// Active backup has switched to "better" primary link according to re-select policy.
if (_paths[_abFailoverQueue.front()].p && getLink(_paths[_abFailoverQueue.front()].p)->primary() && (_paths[_abFailoverQueue.front()].failoverScore > _paths[_abPathIdx].failoverScore)) {
dequeueNextActiveBackupPath(now);
log("switch back to user-defined primary link %s (select mode: better)", pathToStr(_paths[_abPathIdx].p).c_str());
}
}
}
if (_abLinkSelectMethod == ZT_BOND_RESELECTION_POLICY_OPTIMIZE && ! _abFailoverQueue.empty()) {
/**
* Implement link negotiation that was previously-decided
*/
if (_paths[_abFailoverQueue.front()].negotiated) {
dequeueNextActiveBackupPath(now);
_lastPathNegotiationCheck = now;
log("switch negotiated link %s (select mode: optimize)", pathToStr(_paths[_abPathIdx].p).c_str());
}
else {
// Try to find a better path and automatically switch to it -- not too often, though.
if ((now - _lastActiveBackupPathChange) > ZT_BOND_OPTIMIZE_INTERVAL) {
if (! _abFailoverQueue.empty()) {
int newFScore = _paths[_abFailoverQueue.front()].failoverScore;
int prevFScore = _paths[_abPathIdx].failoverScore;
// Establish a minimum switch threshold to prevent flapping
int failoverScoreDifference = _paths[_abFailoverQueue.front()].failoverScore - _paths[_abPathIdx].failoverScore;
int thresholdQuantity = (int)(ZT_BOND_ACTIVE_BACKUP_OPTIMIZE_MIN_THRESHOLD * (float)_paths[_abPathIdx].allocation);
if ((failoverScoreDifference > 0) && (failoverScoreDifference > thresholdQuantity)) {
SharedPtr<Path> oldPath = _paths[_abPathIdx].p;
dequeueNextActiveBackupPath(now);
log("switch from %s (score: %d) to better link %s (score: %d) (select mode: optimize)",
pathToStr(oldPath).c_str(),
prevFScore,
pathToStr(_paths[_abPathIdx].p).c_str(),
newFScore);
}
}
}
}
}
}
void Bond::initTimers()
{
_lastFlowExpirationCheck = 0;
_lastFlowRebalance = 0;
_lastSentPathNegotiationRequest = 0;
_lastPathNegotiationCheck = 0;
_lastPathNegotiationReceived = 0;
_lastQoSRateCheck = 0;
_lastQualityEstimation = 0;
_lastBondStatusLog = 0;
_lastSummaryDump = 0;
_lastActiveBackupPathChange = 0;
_lastFrame = 0;
_lastBackgroundTaskCheck = 0;
}
void Bond::setBondParameters(int policy, SharedPtr<Bond> templateBond, bool useTemplate)
{
// Sanity check for policy
_defaultPolicy = (_defaultPolicy <= ZT_BOND_POLICY_NONE || _defaultPolicy > ZT_BOND_POLICY_BALANCE_AWARE) ? ZT_BOND_POLICY_NONE : _defaultPolicy;
_policy = (policy <= ZT_BOND_POLICY_NONE || policy > ZT_BOND_POLICY_BALANCE_AWARE) ? ZT_BOND_POLICY_NONE : _defaultPolicy;
// Check if non-leaf to prevent spamming infrastructure
if (_peer) {
ZT_PeerRole role = RR->topology->role(_peer->address());
_isLeaf = (role != ZT_PEER_ROLE_PLANET && role != ZT_PEER_ROLE_MOON);
}
// Flows
_allowFlowHashing = false;
// Path negotiation
_allowPathNegotiation = false;
_pathNegotiationCutoffCount = 0;
_localUtility = 0;
_negotiatedPathIdx = 0;
// QOS Verb (and related checks)
_qosCutoffCount = 0;
// User preferences which may override the default bonding algorithm's behavior
_userHasSpecifiedPrimaryLink = false;
_userHasSpecifiedFailoverInstructions = false;
_userHasSpecifiedLinkSpeeds = 0;
// Bond status
_numAliveLinks = 0;
_numTotalLinks = 0;
_numBondedPaths = 0;
// active-backup
_abPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
// rr
_rrPacketsSentOnCurrLink = 0;
_rrIdx = 0;
// General parameters
_downDelay = 0;
_upDelay = 0;
_monitorInterval = 0;
// (Sane?) limits
_maxAcceptableLatency = 100;
_maxAcceptablePacketDelayVariance = 50;
_maxAcceptablePacketLossRatio = 0.10f;
_maxAcceptablePacketErrorRatio = 0.10f;
// balance-aware
_totalBondUnderload = 0;
_overheadBytes = 0;
/**
* Policy-specific defaults
*/
switch (_policy) {
case ZT_BOND_POLICY_ACTIVE_BACKUP:
_abLinkSelectMethod = ZT_BOND_RESELECTION_POLICY_OPTIMIZE;
break;
case ZT_BOND_POLICY_BROADCAST:
_downDelay = 30000;
_upDelay = 0;
break;
case ZT_BOND_POLICY_BALANCE_RR:
_packetsPerLink = 64;
break;
case ZT_BOND_POLICY_BALANCE_XOR:
_allowFlowHashing = true;
break;
case ZT_BOND_POLICY_BALANCE_AWARE:
_allowFlowHashing = true;
break;
default:
break;
}
_qw[ZT_QOS_LAT_IDX] = 0.3f;
_qw[ZT_QOS_LTM_IDX] = 0.1f;
_qw[ZT_QOS_PDV_IDX] = 0.3f;
_qw[ZT_QOS_PLR_IDX] = 0.1f;
_qw[ZT_QOS_PER_IDX] = 0.1f;
_qw[ZT_QOS_SCP_IDX] = 0.1f;
_failoverInterval = ZT_BOND_FAILOVER_DEFAULT_INTERVAL;
/* If a user has specified custom parameters for this bonding policy, overlay them onto the defaults */
if (useTemplate) {
_policyAlias = templateBond->_policyAlias;
_policy = templateBond->policy();
_failoverInterval = templateBond->_failoverInterval >= ZT_BOND_FAILOVER_MIN_INTERVAL ? templateBond->_failoverInterval : ZT_BOND_FAILOVER_MIN_INTERVAL;
_downDelay = templateBond->_downDelay;
_upDelay = templateBond->_upDelay;
_abLinkSelectMethod = templateBond->_abLinkSelectMethod;
memcpy(_qw, templateBond->_qw, ZT_QOS_WEIGHT_SIZE * sizeof(float));
}
if (!_isLeaf) {
_policy = ZT_BOND_POLICY_ACTIVE_BACKUP;
}
// Timer geometry
_monitorInterval = _failoverInterval / ZT_BOND_ECHOS_PER_FAILOVER_INTERVAL;
_qualityEstimationInterval = _failoverInterval * 2;
_qosSendInterval = _failoverInterval * 2;
_qosCutoffCount = 0;
_defaultPathRefractoryPeriod = 8000;
}
void Bond::setUserQualityWeights(float weights[], int len)
{
if (len == ZT_QOS_WEIGHT_SIZE) {
float weightTotal = 0.0;
for (unsigned int i = 0; i < ZT_QOS_WEIGHT_SIZE; ++i) {
weightTotal += weights[i];
}
if (weightTotal > 0.99 && weightTotal < 1.01) {
memcpy(_qw, weights, len * sizeof(float));
}
}
}
SharedPtr<Link> Bond::getLink(const SharedPtr<Path>& path)
{
return RR->bc->getLinkBySocket(_policyAlias, path->localSocket());
}
std::string Bond::pathToStr(const SharedPtr<Path>& path)
{
#ifdef ZT_TRACE
if (path) {
char pathStr[64] = { 0 };
char fullPathStr[384] = { 0 };
path->address().toString(pathStr);
snprintf(fullPathStr, 384, "%.16llx-%s/%s", (unsigned long long)(path->localSocket()), getLink(path)->ifname().c_str(), pathStr);
return std::string(fullPathStr);
}
return "";
#else
return "";
#endif
}
void Bond::dumpPathStatus(int64_t now, int pathIdx)
{
#ifdef ZT_TRACE
std::string aliveOrDead = _paths[pathIdx].alive ? std::string("alive") : std::string("dead");
std::string eligibleOrNot = _paths[pathIdx].eligible ? std::string("eligible") : std::string("ineligible");
std::string bondedOrNot = _paths[pathIdx].bonded ? std::string("bonded") : std::string("unbonded");
log("path[%2d] --- %5s (in %7d, out: %7d), %10s, %8s, flows=%-6d lat=%-8.3f pdv=%-7.3f err=%-6.4f loss=%-6.4f alloc=%-3d --- (%s)",
pathIdx,
aliveOrDead.c_str(),
_paths[pathIdx].p->age(now),
(now - _paths[pathIdx].p->_lastOut),
eligibleOrNot.c_str(),
bondedOrNot.c_str(),
_paths[pathIdx].assignedFlowCount,
_paths[pathIdx].latencyMean,
_paths[pathIdx].latencyVariance,
_paths[pathIdx].packetErrorRatio,
_paths[pathIdx].packetLossRatio,
_paths[pathIdx].allocation,
pathToStr(_paths[pathIdx].p).c_str());
#endif
}
void Bond::dumpInfo(int64_t now, bool force)
{
#ifdef ZT_TRACE
uint64_t timeSinceLastDump = now - _lastSummaryDump;
if (! force && timeSinceLastDump < ZT_BOND_STATUS_INTERVAL) {
return;
}
_lastSummaryDump = now;
float overhead = (_overheadBytes / (timeSinceLastDump / 1000.0f) / 1000.0f);
_overheadBytes = 0;
log("bond: bp=%d, fi=%d, mi=%d, ud=%d, dd=%d, flows=%lu, leaf=%d, overhead=%f KB/s, links=(%d/%d)",
_policy,
_failoverInterval,
_monitorInterval,
_upDelay,
_downDelay,
(unsigned long)_flows.size(),
_isLeaf,
overhead,
_numAliveLinks,
_numTotalLinks);
for (int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i].p) {
dumpPathStatus(now, i);
}
}
log("");
#endif
}
} // namespace ZeroTier