ZeroTierOne/node/Peer.cpp
Adam Ierymenko 2f20258807 .
2017-07-06 10:25:36 -07:00

592 lines
21 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include "../version.h"
#include "Constants.hpp"
#include "Peer.hpp"
#include "Node.hpp"
#include "Switch.hpp"
#include "Network.hpp"
#include "SelfAwareness.hpp"
#include "Packet.hpp"
namespace ZeroTier {
Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
RR(renv),
_lastWroteState(0),
_lastReceivedStateTimestamp(0),
_lastReceive(0),
_lastNontrivialReceive(0),
_lastTriedMemorizedPath(0),
_lastDirectPathPushSent(0),
_lastDirectPathPushReceive(0),
_lastCredentialRequestSent(0),
_lastWhoisRequestReceived(0),
_lastEchoRequestReceived(0),
_lastComRequestReceived(0),
_lastComRequestSent(0),
_lastCredentialsReceived(0),
_lastTrustEstablishedPacketReceived(0),
_vProto(0),
_vMajor(0),
_vMinor(0),
_vRevision(0),
_id(peerIdentity),
_latency(0),
_directPathPushCutoffCount(0),
_credentialsCutoffCount(0)
{
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
throw std::runtime_error("new peer identity key agreement failed");
}
void Peer::received(
void *tPtr,
const SharedPtr<Path> &path,
const unsigned int hops,
const uint64_t packetId,
const Packet::Verb verb,
const uint64_t inRePacketId,
const Packet::Verb inReVerb,
const bool trustEstablished)
{
const uint64_t now = RR->node->now();
/*
#ifdef ZT_ENABLE_CLUSTER
bool isClusterSuboptimalPath = false;
if ((RR->cluster)&&(hops == 0)) {
// Note: findBetterEndpoint() is first since we still want to check
// for a better endpoint even if we don't actually send a redirect.
InetAddress redirectTo;
if ( (verb != Packet::VERB_OK) && (verb != Packet::VERB_ERROR) && (verb != Packet::VERB_RENDEZVOUS) && (verb != Packet::VERB_PUSH_DIRECT_PATHS) && (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),path->address(),false)) ) {
if (_vProto >= 5) {
// For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.append((uint16_t)1); // count == 1
outp.append((uint8_t)ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT); // flags: cluster redirect
outp.append((uint16_t)0); // no extensions
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append((uint8_t)6);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)6);
outp.append((uint8_t)18);
outp.append(redirectTo.rawIpData(),16);
}
outp.append((uint16_t)redirectTo.port());
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
} else {
// For older peers we use RENDEZVOUS to coax them into contacting us elsewhere.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0); // no flags
RR->identity.address().appendTo(outp);
outp.append((uint16_t)redirectTo.port());
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)16);
outp.append(redirectTo.rawIpData(),16);
}
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
}
isClusterSuboptimalPath = true;
}
}
#endif
*/
_lastReceive = now;
switch (verb) {
case Packet::VERB_FRAME:
case Packet::VERB_EXT_FRAME:
case Packet::VERB_NETWORK_CONFIG_REQUEST:
case Packet::VERB_NETWORK_CONFIG:
case Packet::VERB_MULTICAST_FRAME:
_lastNontrivialReceive = now;
break;
default: break;
}
if (trustEstablished) {
_lastTrustEstablishedPacketReceived = now;
path->trustedPacketReceived(now);
}
if (_vProto >= 9)
path->updateLinkQuality((unsigned int)(packetId & 7));
if (hops == 0) {
// If this is a direct packet (no hops), update existing paths or learn new ones
bool pathAlreadyKnown = false;
{
Mutex::Lock _l(_paths_m);
if ((path->address().ss_family == AF_INET)&&(_v4Path.p)) {
const struct sockaddr_in *const r = reinterpret_cast<const struct sockaddr_in *>(&(path->address()));
const struct sockaddr_in *const l = reinterpret_cast<const struct sockaddr_in *>(&(_v4Path.p->address()));
const struct sockaddr_in *const rl = reinterpret_cast<const struct sockaddr_in *>(&(path->localAddress()));
const struct sockaddr_in *const ll = reinterpret_cast<const struct sockaddr_in *>(&(_v4Path.p->localAddress()));
if ((r->sin_addr.s_addr == l->sin_addr.s_addr)&&(r->sin_port == l->sin_port)&&(rl->sin_addr.s_addr == ll->sin_addr.s_addr)&&(rl->sin_port == ll->sin_port)) {
_v4Path.lr = now;
pathAlreadyKnown = true;
}
} else if ((path->address().ss_family == AF_INET6)&&(_v6Path.p)) {
const struct sockaddr_in6 *const r = reinterpret_cast<const struct sockaddr_in6 *>(&(path->address()));
const struct sockaddr_in6 *const l = reinterpret_cast<const struct sockaddr_in6 *>(&(_v6Path.p->address()));
const struct sockaddr_in6 *const rl = reinterpret_cast<const struct sockaddr_in6 *>(&(path->localAddress()));
const struct sockaddr_in6 *const ll = reinterpret_cast<const struct sockaddr_in6 *>(&(_v6Path.p->localAddress()));
if ((!memcmp(r->sin6_addr.s6_addr,l->sin6_addr.s6_addr,16))&&(r->sin6_port == l->sin6_port)&&(!memcmp(rl->sin6_addr.s6_addr,ll->sin6_addr.s6_addr,16))&&(rl->sin6_port == ll->sin6_port)) {
_v6Path.lr = now;
pathAlreadyKnown = true;
}
}
}
if ( (!pathAlreadyKnown) && (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localAddress(),path->address())) ) {
Mutex::Lock _l(_paths_m);
_PeerPath *potentialNewPeerPath = (_PeerPath *)0;
if (path->address().ss_family == AF_INET) {
if ( (!_v4Path.p) || (!_v4Path.p->alive(now)) || (path->preferenceRank() >= _v4Path.p->preferenceRank()) ) {
potentialNewPeerPath = &_v4Path;
}
} else if (path->address().ss_family == AF_INET6) {
if ( (!_v6Path.p) || (!_v6Path.p->alive(now)) || (path->preferenceRank() >= _v6Path.p->preferenceRank()) ) {
potentialNewPeerPath = &_v6Path;
}
}
if (potentialNewPeerPath) {
if (verb == Packet::VERB_OK) {
potentialNewPeerPath->lr = now;
potentialNewPeerPath->p = path;
_lastWroteState = 0; // force state write now
} else {
TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),path->address().toString().c_str());
attemptToContactAt(tPtr,path->localAddress(),path->address(),now,true,path->nextOutgoingCounter());
path->sent(now);
}
}
}
} else if (this->trustEstablished(now)) {
// Send PUSH_DIRECT_PATHS if hops>0 (relayed) and we have a trust relationship (common network membership)
if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
_lastDirectPathPushSent = now;
std::vector<InetAddress> pathsToPush;
std::vector<InetAddress> dps(RR->node->directPaths());
for(std::vector<InetAddress>::const_iterator i(dps.begin());i!=dps.end();++i)
pathsToPush.push_back(*i);
std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
for(unsigned long i=0,added=0;i<sym.size();++i) {
InetAddress tmp(sym[(unsigned long)RR->node->prng() % sym.size()]);
if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) {
pathsToPush.push_back(tmp);
if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
break;
}
}
if (pathsToPush.size() > 0) {
#ifdef ZT_TRACE
std::string ps;
for(std::vector<InetAddress>::const_iterator p(pathsToPush.begin());p!=pathsToPush.end();++p) {
if (ps.length() > 0)
ps.push_back(',');
ps.append(p->toString());
}
TRACE("pushing %u direct paths to %s: %s",(unsigned int)pathsToPush.size(),_id.address().toString().c_str(),ps.c_str());
#endif
std::vector<InetAddress>::const_iterator p(pathsToPush.begin());
while (p != pathsToPush.end()) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.addSize(2); // leave room for count
unsigned int count = 0;
while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) {
uint8_t addressType = 4;
switch(p->ss_family) {
case AF_INET:
break;
case AF_INET6:
addressType = 6;
break;
default: // we currently only push IP addresses
++p;
continue;
}
outp.append((uint8_t)0); // no flags
outp.append((uint16_t)0); // no extensions
outp.append(addressType);
outp.append((uint8_t)((addressType == 4) ? 6 : 18));
outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
outp.append((uint16_t)p->port());
++count;
++p;
}
if (count) {
outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
outp.armor(_key,true,path->nextOutgoingCounter());
path->send(RR,tPtr,outp.data(),outp.size(),now);
}
}
}
}
}
if ((now - _lastWroteState) > ZT_PEER_STATE_WRITE_PERIOD)
writeState(tPtr,now);
}
bool Peer::sendDirect(void *tPtr,const void *data,unsigned int len,uint64_t now,bool force)
{
Mutex::Lock _l(_paths_m);
uint64_t v6lr = 0;
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if ( (v6lr > v4lr) && ((now - v6lr) < ZT_PATH_ALIVE_TIMEOUT) ) {
return _v6Path.p->send(RR,tPtr,data,len,now);
} else if ((now - v4lr) < ZT_PATH_ALIVE_TIMEOUT) {
return _v4Path.p->send(RR,tPtr,data,len,now);
} else if (force) {
if (v6lr > v4lr) {
return _v6Path.p->send(RR,tPtr,data,len,now);
} else if (v4lr) {
return _v4Path.p->send(RR,tPtr,data,len,now);
}
}
return false;
}
SharedPtr<Path> Peer::getBestPath(uint64_t now,bool includeExpired)
{
Mutex::Lock _l(_paths_m);
uint64_t v6lr = 0;
if ( ( includeExpired || ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ( includeExpired || ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if (v6lr > v4lr) {
return _v6Path.p;
} else if (v4lr) {
return _v4Path.p;
}
return SharedPtr<Path>();
}
void Peer::sendHELLO(void *tPtr,const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,unsigned int counter)
{
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp,false);
atAddress.serialize(outp);
outp.append((uint64_t)RR->topology->planetWorldId());
outp.append((uint64_t)RR->topology->planetWorldTimestamp());
const unsigned int startCryptedPortionAt = outp.size();
std::vector<World> moons(RR->topology->moons());
std::vector<uint64_t> moonsWanted(RR->topology->moonsWanted());
outp.append((uint16_t)(moons.size() + moonsWanted.size()));
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
outp.append((uint8_t)m->type());
outp.append((uint64_t)m->id());
outp.append((uint64_t)m->timestamp());
}
for(std::vector<uint64_t>::const_iterator m(moonsWanted.begin());m!=moonsWanted.end();++m) {
outp.append((uint8_t)World::TYPE_MOON);
outp.append(*m);
outp.append((uint64_t)0);
}
const unsigned int corSizeAt = outp.size();
outp.addSize(2);
RR->topology->appendCertificateOfRepresentation(outp);
outp.setAt(corSizeAt,(uint16_t)(outp.size() - (corSizeAt + 2)));
outp.cryptField(_key,startCryptedPortionAt,outp.size() - startCryptedPortionAt);
RR->node->expectReplyTo(outp.packetId());
if (atAddress) {
outp.armor(_key,false,counter); // false == don't encrypt full payload, but add MAC
RR->node->putPacket(tPtr,localAddr,atAddress,outp.data(),outp.size());
} else {
RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
}
}
void Peer::attemptToContactAt(void *tPtr,const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,bool sendFullHello,unsigned int counter)
{
if ( (!sendFullHello) && (_vProto >= 5) && (!((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0))) ) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
RR->node->expectReplyTo(outp.packetId());
outp.armor(_key,true,counter);
RR->node->putPacket(tPtr,localAddr,atAddress,outp.data(),outp.size());
} else {
sendHELLO(tPtr,localAddr,atAddress,now,counter);
}
}
void Peer::tryMemorizedPath(void *tPtr,uint64_t now)
{
if ((now - _lastTriedMemorizedPath) >= ZT_TRY_MEMORIZED_PATH_INTERVAL) {
_lastTriedMemorizedPath = now;
InetAddress mp;
if (RR->node->externalPathLookup(tPtr,_id.address(),-1,mp))
attemptToContactAt(tPtr,InetAddress(),mp,now,true,0);
}
}
bool Peer::doPingAndKeepalive(void *tPtr,uint64_t now,int inetAddressFamily)
{
Mutex::Lock _l(_paths_m);
if (inetAddressFamily < 0) {
uint64_t v6lr = 0;
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
v6lr = _v6Path.p->lastIn();
uint64_t v4lr = 0;
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
v4lr = _v4Path.p->lastIn();
if (v6lr > v4lr) {
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v6Path.p->localAddress(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
_v6Path.p->sent(now);
return true;
}
} else if (v4lr) {
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v4Path.p->localAddress(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
_v4Path.p->sent(now);
return true;
}
}
} else {
if ( (inetAddressFamily == AF_INET) && ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v4Path.p->localAddress(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
_v4Path.p->sent(now);
return true;
}
} else if ( (inetAddressFamily == AF_INET6) && ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
attemptToContactAt(tPtr,_v6Path.p->localAddress(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
_v6Path.p->sent(now);
return true;
}
}
}
return false;
}
void Peer::writeState(void *tPtr,const uint64_t now)
{
try {
Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> b;
b.append((uint8_t)1); // version
b.append(now);
_id.serialize(b);
{
Mutex::Lock _l(_paths_m);
unsigned int count = 0;
if (_v4Path.lr)
++count;
if (_v6Path.lr)
++count;
b.append((uint8_t)count);
if (_v4Path.lr) {
b.append(_v4Path.lr);
b.append(_v4Path.p->lastOut());
b.append(_v4Path.p->lastIn());
b.append(_v4Path.p->lastTrustEstablishedPacketReceived());
_v4Path.p->address().serialize(b);
_v4Path.p->localAddress().serialize(b);
}
if (_v6Path.lr) {
b.append(_v6Path.lr);
b.append(_v6Path.p->lastOut());
b.append(_v6Path.p->lastIn());
b.append(_v6Path.p->lastTrustEstablishedPacketReceived());
_v6Path.p->address().serialize(b);
_v6Path.p->localAddress().serialize(b);
}
}
// Save space by sending these as time since now at 100ms resolution
b.append((uint16_t)(std::max(now - _lastReceive,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastNontrivialReceive,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastTriedMemorizedPath,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastDirectPathPushSent,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastDirectPathPushReceive,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastCredentialRequestSent,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastWhoisRequestReceived,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastEchoRequestReceived,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastComRequestReceived,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastComRequestSent,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastCredentialsReceived,(uint64_t)6553500) / 100));
b.append((uint16_t)(std::max(now - _lastTrustEstablishedPacketReceived,(uint64_t)6553500) / 100));
b.append((uint8_t)_vProto);
b.append((uint8_t)_vMajor);
b.append((uint8_t)_vMinor);
b.append((uint16_t)_vRevision);
b.append((uint16_t)0); // length of additional fields
uint64_t tmp[2];
tmp[0] = _id.address().toInt(); tmp[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER_STATE,tmp,b.data(),b.size());
_lastWroteState = now;
} catch ( ... ) {} // sanity check, should not be possible
}
bool Peer::applyStateUpdate(const void *data,unsigned int len)
{
try {
Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> b(data,len);
unsigned int ptr = 0;
if (b[ptr++] != 1)
return false;
const uint64_t ts = b.at<uint64_t>(ptr); ptr += 8;
if (ts <= _lastReceivedStateTimestamp)
return false;
Identity id;
ptr += id.deserialize(b,ptr);
if (id != _id) // sanity check
return false;
const unsigned int pathCount = (unsigned int)b[ptr++];
{
Mutex::Lock _l(_paths_m);
for(unsigned int i=0;i<pathCount;++i) {
const uint64_t lr = b.at<uint64_t>(ptr); ptr += 8;
const uint64_t lastOut = b.at<uint64_t>(ptr); ptr += 8;
const uint64_t lastIn = b.at<uint64_t>(ptr); ptr += 8;
const uint64_t lastTrustEstablishedPacketReceived = b.at<uint64_t>(ptr); ptr += 8;
InetAddress addr,localAddr;
ptr += addr.deserialize(b,ptr);
ptr += localAddr.deserialize(b,ptr);
if (addr.ss_family == localAddr.ss_family) {
_PeerPath *p = (_PeerPath *)0;
switch(addr.ss_family) {
case AF_INET: p = &_v4Path; break;
case AF_INET6: p = &_v6Path; break;
}
if (p) {
if ( (!p->p) || ((p->p->address() != addr)||(p->p->localAddress() != localAddr)) ) {
p->p = RR->topology->getPath(localAddr,addr);
}
p->lr = lr;
p->p->updateFromRemoteState(lastOut,lastIn,lastTrustEstablishedPacketReceived);
}
}
}
}
_lastReceive = std::max(_lastReceive,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastNontrivialReceive = std::max(_lastNontrivialReceive,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastTriedMemorizedPath = std::max(_lastTriedMemorizedPath,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastDirectPathPushSent = std::max(_lastDirectPathPushSent,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastDirectPathPushReceive = std::max(_lastDirectPathPushReceive,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastCredentialRequestSent = std::max(_lastCredentialRequestSent,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastWhoisRequestReceived = std::max(_lastWhoisRequestReceived,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastEchoRequestReceived = std::max(_lastEchoRequestReceived,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastComRequestReceived = std::max(_lastComRequestReceived,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastComRequestSent = std::max(_lastComRequestSent,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastCredentialsReceived = std::max(_lastCredentialsReceived,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_lastTrustEstablishedPacketReceived = std::max(_lastTrustEstablishedPacketReceived,ts - ((uint64_t)b.at<uint16_t>(ptr) * 100ULL)); ptr += 2;
_vProto = (uint16_t)b[ptr++];
_vMajor = (uint16_t)b[ptr++];
_vMinor = (uint16_t)b[ptr++];
_vRevision = b.at<uint16_t>(ptr); ptr += 2;
_lastReceivedStateTimestamp = ts;
return true;
} catch ( ... ) {} // ignore invalid state updates
return false;
}
SharedPtr<Peer> Peer::createFromStateUpdate(const RuntimeEnvironment *renv,void *tPtr,const void *data,unsigned int len)
{
try {
Identity id;
{
Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> b(data,len);
unsigned int ptr = 0;
if (b[ptr++] != 1)
return SharedPtr<Peer>();
ptr += 8; // skip TS, don't care
id.deserialize(b,ptr);
}
if (id) {
const SharedPtr<Peer> p(new Peer(renv,renv->identity,id));
if (p->applyStateUpdate(data,len))
return renv->topology->addPeer(tPtr,p);
}
} catch ( ... ) {}
return SharedPtr<Peer>();
}
} // namespace ZeroTier