ZeroTierOne/netcon/NetconEthernetTap.cpp
2015-12-18 11:37:11 -08:00

1554 lines
52 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include <algorithm>
#include <utility>
#include <dlfcn.h>
#include <sys/poll.h>
#include "NetconEthernetTap.hpp"
#include "../node/Utils.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Phy.hpp"
#include "Intercept.h"
#include "LWIPStack.hpp"
#include "lwip/tcp_impl.h"
#include "netif/etharp.h"
#include "lwip/api.h"
#include "lwip/ip.h"
#include "lwip/ip_addr.h"
#include "lwip/ip_frag.h"
#include "lwip/tcp.h"
#include "common.inc.c"
#define APPLICATION_POLL_FREQ 20
#define ZT_LWIP_TCP_TIMER_INTERVAL 5
#define STATUS_TMR_INTERVAL 3000 // How often we check connection statuses
namespace ZeroTier {
// ---------------------------------------------------------------------------
// Gets the process/path name associated with a pid
static void get_path_from_pid(char* dest, int pid)
{
char ppath[80];
sprintf(ppath, "/proc/%d/exe", pid);
if (readlink (ppath, dest, 80) != -1){
}
}
static err_t tapif_init(struct netif *netif)
{
// Actual init functionality is in addIp() of tap
return ERR_OK;
}
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
char buf[ZT_MAX_MTU+32];
char *bufptr;
int tot_len = 0;
ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state;
/* initiate transfer(); */
bufptr = buf;
for(q = p; q != NULL; q = q->next) {
/* Send the data from the pbuf to the interface, one pbuf at a
time. The size of the data in each pbuf is kept in the ->len
variable. */
/* send data from(q->payload, q->len); */
memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
tot_len += q->len;
}
// [Send packet to network]
// Split ethernet header and feed into handler
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
ZeroTier::MAC src_mac;
ZeroTier::MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),tot_len - sizeof(struct eth_hdr));
return ERR_OK;
}
/*
* TCP connection administered by service
*/
class TcpConnection
{
public:
int perceived_fd;
int their_fd;
bool pending;
bool listening;
int pid;
unsigned long written;
unsigned long acked;
PhySocket *rpcSock;
PhySocket *dataSock;
struct tcp_pcb *pcb;
struct sockaddr_storage *addr;
unsigned char buf[DEFAULT_READ_BUFFER_SIZE];
int idx;
};
/*
* A helper class for passing a reference to _phy to LWIP callbacks as a "state"
*/
class Larg
{
public:
NetconEthernetTap *tap;
TcpConnection *conn;
Larg(NetconEthernetTap *_tap, TcpConnection *conn) : tap(_tap), conn(conn) {}
};
// ---------------------------------------------------------------------------
NetconEthernetTap::NetconEthernetTap(
const char *homePath,
const MAC &mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char *friendlyName,
void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
void *arg) :
_nwid(nwid),
_handler(handler),
_arg(arg),
_phy(this,false,true),
_unixListenSocket((PhySocket *)0),
_mac(mac),
_homePath(homePath),
_mtu(mtu),
_enabled(true),
_run(true)
{
char sockPath[4096],lwipPath[4096];
rpc_counter = -1;
Utils::snprintf(sockPath,sizeof(sockPath),"%s%snc_%.16llx",homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid);
_dev = sockPath; // in netcon mode, set device to be just the network ID
Utils::snprintf(lwipPath,sizeof(lwipPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S);
lwipstack = new LWIPStack(lwipPath);
if(!lwipstack)
throw std::runtime_error("unable to dynamically load a new instance of liblwip.so (searched ZeroTier home path)");
lwipstack->lwip_init();
_unixListenSocket = _phy.unixListen(sockPath,(void *)this);
dwr(MSG_INFO, " NetconEthernetTap initialized!\n", _phy.getDescriptor(_unixListenSocket));
if (!_unixListenSocket)
throw std::runtime_error(std::string("unable to bind to ")+sockPath);
_thread = Thread::start(this);
}
NetconEthernetTap::~NetconEthernetTap()
{
_run = false;
_phy.whack();
_phy.whack();
Thread::join(_thread);
_phy.close(_unixListenSocket,false);
delete lwipstack;
}
void NetconEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool NetconEthernetTap::enabled() const
{
return _enabled;
}
bool NetconEthernetTap::addIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
_ips.push_back(ip);
std::sort(_ips.begin(),_ips.end());
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,192,168,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
// Set up the lwip-netif for LWIP's sake
lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
interface.state = this;
interface.output = lwipstack->_etharp_output;
_mac.copyTo(interface.hwaddr, 6);
interface.mtu = _mtu;
interface.name[0] = 't';
interface.name[1] = 'p';
interface.linkoutput = low_level_output;
interface.hwaddr_len = 6;
interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
lwipstack->netif_set_default(&interface);
lwipstack->netif_set_up(&interface);
}
}
return true;
}
bool NetconEthernetTap::removeIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
std::vector<InetAddress>::iterator i(std::find(_ips.begin(),_ips.end(),ip));
if (i == _ips.end())
return false;
_ips.erase(i);
if (ip.isV4()) {
// TODO: dealloc from LWIP
}
return true;
}
std::vector<InetAddress> NetconEthernetTap::ips() const
{
Mutex::Lock _l(_ips_m);
return _ips;
}
void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
struct pbuf *p,*q;
if (!_enabled)
return;
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
// We allocate a pbuf chain of pbufs from the pool.
p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast<const char *>(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
dwr(MSG_ERROR, "_put(): Dropped packet: first pbuf smaller than ethernet header\n");
return;
}
memcpy(q->payload,&ethhdr,sizeof(ethhdr));
memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
} else {
dwr(MSG_ERROR, "put(): Dropped packet: no pbufs available\n");
return;
}
{
Mutex::Lock _l2(lwipstack->_lock);
if(interface.input(p, &interface) != ERR_OK) {
dwr(MSG_ERROR, "put(): Error while RXing packet (netif->input)\n");
}
}
}
std::string NetconEthernetTap::deviceName() const
{
return _dev;
}
void NetconEthernetTap::setFriendlyName(const char *friendlyName) {
}
void NetconEthernetTap::scanMulticastGroups(std::vector<MulticastGroup> &added,std::vector<MulticastGroup> &removed)
{
std::vector<MulticastGroup> newGroups;
Mutex::Lock _l(_multicastGroups_m);
// TODO: get multicast subscriptions from LWIP
std::vector<InetAddress> allIps(ips());
for(std::vector<InetAddress>::iterator ip(allIps.begin());ip!=allIps.end();++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(),newGroups.end());
std::unique(newGroups.begin(),newGroups.end());
for(std::vector<MulticastGroup>::iterator m(newGroups.begin());m!=newGroups.end();++m) {
if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
added.push_back(*m);
}
for(std::vector<MulticastGroup>::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
TcpConnection *NetconEthernetTap::getConnectionByTheirFD(PhySocket *sock, int fd)
{
for(size_t i=0; i<tcp_connections.size(); i++) {
if(tcp_connections[i]->perceived_fd == fd && tcp_connections[i]->rpcSock == sock)
return tcp_connections[i];
}
return NULL;
}
/*
* Dumps service state in 80x25 when debug mode is off
*/
void NetconEthernetTap::compact_dump()
{
/*
clearscreen();
gotoxy(0,0);
fprintf(stderr, "ZeroTier - Network Containers Service [State Dump]\n\r");
fprintf(stderr, " RPC Sockets = %d\n\r", rpc_sockets.size());
fprintf(stderr, " TCP Connections = %d\n\r", tcp_connections.size());
for(size_t i=0; i<rpc_sockets.size(); i++) {
int rpc_fd = _phy.getDescriptor(rpc_sockets[i]);
char buf[80];
int pid = pidmap[rpc_sockets[i]];
memset(&buf, '\0', 80);
get_path_from_pid(buf, pid);
fprintf(stderr, "\n Client(addr=0x%x, rpc=%d, pid=%d) %s\n", rpc_sockets[i], rpc_fd, pid, buf);
for(size_t j=0; j<tcp_connections.size(); j++) {
memset(&buf, '\0', 80);
get_path_from_pid(buf, tcp_connections[j]->pid);
if(tcp_connections[j]->rpcSock==rpc_sockets[i]) {
fprintf(stderr, "\t\tpath\t\t= %s\n", buf);
}
}
}
*/
for(size_t i=0; i<rpc_sockets.size(); i++) {
fprintf(stderr, "\n\n\nrpc(%d)\n", _phy.getDescriptor(rpc_sockets[i]));
for(size_t j=0; j<tcp_connections.size(); j++) {
if(_phy.getDescriptor(tcp_connections[j]->rpcSock) == _phy.getDescriptor(rpc_sockets[i]))
fprintf(stderr, "\t(%d) ----> (%d)\n\n", _phy.getDescriptor(tcp_connections[j]->dataSock), tcp_connections[j]->perceived_fd);
}
}
}
/*
* Dumps service state
*/
void NetconEthernetTap::dump()
{
fprintf(stderr, "\n\n---\n\ndie(): BEGIN SERVICE STATE DUMP\n");
fprintf(stderr, "*** IF YOU SEE THIS, EMAIL THE DUMP TEXT TO joseph.henry@zerotier.com ***\n");
fprintf(stderr, " tcp_conns = %lu, rpc_socks = %lu\n", tcp_connections.size(), rpc_sockets.size());
// TODO: Add logic to detect bad mapping conditions
for(size_t i=0; i<rpc_sockets.size(); i++) {
for(size_t j=0; j<rpc_sockets.size(); j++) {
if(j != i && rpc_sockets[i] == rpc_sockets[j]) {
fprintf(stderr, "Duplicate PhySockets found! (0x%p)\n", rpc_sockets[i]);
}
}
}
// Dump the state of the service mapping
for(size_t i=0; i<rpc_sockets.size(); i++) {
int rpc_fd = _phy.getDescriptor(rpc_sockets[i]);
char buf[80];
int pid = pidmap[rpc_sockets[i]];
get_path_from_pid(buf, pid);
fprintf(stderr, "\nClient(addr=0x%p, rpc=%d, pid=%d) %s\n", rpc_sockets[i], rpc_fd, pid, buf);
for(size_t j=0; j<tcp_connections.size(); j++) {
get_path_from_pid(buf, tcp_connections[j]->pid);
if(tcp_connections[j]->rpcSock==rpc_sockets[i]){
fprintf(stderr, " |\n");
fprintf(stderr, " |-Connection(0x%p):\n", tcp_connections[j]);
fprintf(stderr, " | path\t\t\t= %s\n", buf);
fprintf(stderr, " | perceived_fd\t\t= %d\t(fd)\n", tcp_connections[j]->perceived_fd);
fprintf(stderr, " | their_fd\t\t= %d\t(fd)\n", tcp_connections[j]->their_fd);
fprintf(stderr, " | dataSock(0x%p)\t= %d\t(fd)\n", tcp_connections[j]->dataSock, _phy.getDescriptor(tcp_connections[j]->dataSock));
fprintf(stderr, " | rpcSock(0x%p)\t= %d\t(fd)\n", tcp_connections[j]->rpcSock, _phy.getDescriptor(tcp_connections[j]->rpcSock));
fprintf(stderr, " | pending\t\t= %d\n", tcp_connections[j]->pending);
fprintf(stderr, " | listening\t\t= %d\n", tcp_connections[j]->listening);
fprintf(stderr, " \\------pcb(0x%p)->state\t= %d\n", tcp_connections[j]->pcb, tcp_connections[j]->pcb->state);
}
}
}
fprintf(stderr, "\n\ndie(): END SERVICE STATE DUMP\n\n---\n\n");
}
/*
* Dumps service state and then exits
*/
void NetconEthernetTap::die(int exret) {
dump();
exit(exret);
}
/*
* Closes a TcpConnection and associated LWIP PCB strcuture.
*/
void NetconEthernetTap::closeConnection(TcpConnection *conn)
{
//return;
//dwr(MSG_DEBUG, "closeConnection(): conn = 0x%x\n", conn);
if(!conn)
return;
dwr(MSG_DEBUG, " closeConnection(%x, %d)\n", conn->pcb, _phy.getDescriptor(conn->dataSock));
//lwipstack->_tcp_sent(conn->pcb, NULL);
//lwipstack->_tcp_recv(conn->pcb, NULL);
//lwipstack->_tcp_err(conn->pcb, NULL);
//lwipstack->_tcp_poll(conn->pcb, NULL, 0);
//lwipstack->_tcp_arg(conn->pcb, NULL);
if(lwipstack->_tcp_close(conn->pcb) != ERR_OK) {
dwr(MSG_ERROR, " closeConnection(): Error while calling tcp_close()\n");
exit(0);
}
else {
if(conn->dataSock) {
close(_phy.getDescriptor(conn->dataSock));
_phy.close(conn->dataSock,false);
}
/* Eventually we might want to use a map here instead */
for(int i=0; i<tcp_connections.size(); i++) {
if(tcp_connections[i] == conn) {
tcp_connections.erase(tcp_connections.begin() + i);
delete conn;
break;
}
}
}
}
/*
* Close a single RPC connection and associated PhySocket
*/
void NetconEthernetTap::closeClient(PhySocket *sock)
{
for(size_t i=0; i<rpc_sockets.size(); i++) {
if(rpc_sockets[i] == sock){
rpc_sockets.erase(rpc_sockets.begin() + i);
break;
}
}
close(_phy.getDescriptor(sock));
_phy.close(sock);
}
/*
* Close all RPC and TCP connections
*/
void NetconEthernetTap::closeAll()
{
while(rpc_sockets.size())
closeClient(rpc_sockets.front());
while(tcp_connections.size())
closeConnection(tcp_connections.front());
}
#include <sys/resource.h>
void NetconEthernetTap::threadMain()
throw()
{
uint64_t prev_tcp_time = 0;
uint64_t prev_status_time = 0;
uint64_t prev_etharp_time = 0;
/*
fprintf(stderr, "- MEM_SIZE = %dM\n", MEM_SIZE / (1024*1024));
fprintf(stderr, "- PBUF_POOL_SIZE = %d\n", PBUF_POOL_SIZE);
fprintf(stderr, "- PBUF_POOL_BUFSIZE = %d\n", PBUF_POOL_BUFSIZE);
fprintf(stderr, "- MEMP_NUM_PBUF = %d\n", MEMP_NUM_PBUF);
fprintf(stderr, "- MEMP_NUM_TCP_PCB = %d\n", MEMP_NUM_TCP_PCB);
fprintf(stderr, "- MEMP_NUM_TCP_PCB_LISTEN = %d\n", MEMP_NUM_TCP_PCB_LISTEN);
fprintf(stderr, "- MEMP_NUM_TCP_SEG = %d\n\n", MEMP_NUM_TCP_SEG);
fprintf(stderr, "- TCP_SND_BUF = %dK\n", TCP_SND_BUF / 1024);
fprintf(stderr, "- TCP_SND_QUEUELEN = %d\n\n", TCP_SND_QUEUELEN);
fprintf(stderr, "- TCP_WND = %d\n", TCP_WND);
fprintf(stderr, "- TCP_MSS = %d\n", TCP_MSS);
fprintf(stderr, "- TCP_MAXRTX = %d\n", TCP_MAXRTX);
fprintf(stderr, "- IP_REASSEMBLY = %d\n\n", IP_REASSEMBLY);
fprintf(stderr, "- ARP_TMR_INTERVAL = %d\n", ARP_TMR_INTERVAL);
fprintf(stderr, "- TCP_TMR_INTERVAL = %d\n", TCP_TMR_INTERVAL);
fprintf(stderr, "- IP_TMR_INTERVAL = %d\n", IP_TMR_INTERVAL);
*/
// Main timer loop
while (_run) {
uint64_t now = OSUtils::now();
uint64_t since_tcp = now - prev_tcp_time;
uint64_t since_etharp = now - prev_etharp_time;
uint64_t since_status = now - prev_status_time;
uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
uint64_t etharp_remaining = ARP_TMR_INTERVAL;
uint64_t status_remaining = STATUS_TMR_INTERVAL;
// Connection prunning
if (since_status >= STATUS_TMR_INTERVAL) {
//compact_dump();
prev_status_time = now;
status_remaining = STATUS_TMR_INTERVAL - since_status;
if(rpc_sockets.size() || tcp_connections.size()) {
// dump();
// Here we will periodically check the list of rpc_sockets for those that
// do not currently have any data connection associated with them. If they are
// unused, then we will try to read from them, if they fail, we can safely assume
// that the client has closed their end and we can close ours
for(size_t i = 0; i<tcp_connections.size(); i++) {
if(tcp_connections[i]->listening) {
char c;
if (read(_phy.getDescriptor(tcp_connections[i]->dataSock), &c, 1) < 0) {
// Still in listening state
}
else {
// Here we should handle the case there there is incoming data (?)
dwr(MSG_DEBUG, " tap_thread(): Listening socketpair closed. Removing RPC connection (%d)\n",
_phy.getDescriptor(tcp_connections[i]->dataSock));
closeConnection(tcp_connections[i]);
}
}
}
}
for(size_t i=0, associated = 0; i<rpc_sockets.size(); i++, associated = 0) {
for(size_t j=0; j<tcp_connections.size(); j++) {
if (tcp_connections[j]->rpcSock == rpc_sockets[i])
associated++;
}
if(!associated){
// No TCP connections are associated, this is a candidate for removal
int fd = _phy.getDescriptor(rpc_sockets[i]);
fcntl(fd, F_SETFL, O_NONBLOCK);
unsigned char tmpbuf[BUF_SZ];
int n;
if((n = read(fd,&tmpbuf,BUF_SZ)) < 0) {
dwr(MSG_DEBUG, " tap_thread(): closing RPC (%d)\n", _phy.getDescriptor(rpc_sockets[i]));
closeClient(rpc_sockets[i]);
}
// < 0 is failure
// 0 nothing to read, RPC still active
// > 0 RPC data read, handle it
else if (n > 0) {
// Handle RPC call, this is rare
dwr(MSG_DEBUG, " tap_thread(): RPC read during connection check (%d bytes)\n", n);
phyOnUnixData(rpc_sockets[i],_phy.getuptr(rpc_sockets[i]),&tmpbuf,BUF_SZ);
}
}
}
}
// Main TCP/ETHARP timer section
if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
lwipstack->tcp_tmr();
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_etharp >= ARP_TMR_INTERVAL) {
prev_etharp_time = now;
lwipstack->etharp_tmr();
} else {
etharp_remaining = ARP_TMR_INTERVAL - since_etharp;
}
_phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining));
}
closeAll();
dlclose(lwipstack->_libref);
}
// Unused -- no UDP or TCP from this thread/Phy<>
void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {}
void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {}
void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) {
dwr(MSG_DEBUG, " phyOnUnixClose(sock=0x%x, uptr=0x%x): fd = %d\n", sock, uptr, _phy.getDescriptor(sock));
TcpConnection *conn = (TcpConnection*)*uptr;
closeConnection(conn);
}
/*
* Handles data on a client's data buffer. Data is sent to LWIP to be enqueued.
*/
void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable)
{
if(readable) {
TcpConnection *conn = (TcpConnection*)*uptr;
if(conn->dataSock) { // Sometimes a connection may be closed via nc_recved, check first
lwipstack->_lock.lock();
handle_write(conn);
lwipstack->_lock.unlock();
}
}
else {
dwr(MSG_ERROR, "phyOnFileDescriptorActivity(): PhySocket not readable\n");
}
}
/*
* Add a new PhySocket for the client connections
*/
void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {
dwr(MSG_DEBUG, " phyOnUnixAccept(): accepting new connection\n");
if(find(rpc_sockets.begin(), rpc_sockets.end(), sockN) != rpc_sockets.end()){
dwr(MSG_ERROR, " phyOnUnixAccept(): SockN (0x%x) already exists!\n", sockN);
return;
}
rpc_sockets.push_back(sockN);
}
/*
* Processes incoming data on a client-specific RPC connection
*/
void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
pid_t pid, tid;
int rpc_count;
char cmd, timestamp[20];
void *payload;
unload_rpc(data, pid, tid, rpc_count, timestamp, cmd, payload);
dwr(MSG_DEBUG, "\n\nRPC: (pid=%d, tid=%d, rpc_count=%d, timestamp=%s, cmd=%d\n", pid, tid, rpc_count, timestamp, cmd);
unsigned char *buf = (unsigned char*)data;
switch(cmd)
{
case RPC_SOCKET:
dwr(MSG_DEBUG, "RPC_SOCKET\n");
struct socket_st socket_rpc;
memcpy(&socket_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct socket_st));
if(rpc_count==rpc_counter) {
dwr(MSG_ERROR, "Detected repeat RPC.\n");
//return;
}
else {
rpc_counter = rpc_count;
}
TcpConnection * new_conn;
if((new_conn = handle_socket(sock, uptr, &socket_rpc))) {
pidmap[sock] = pid;
new_conn->pid = pid;
}
break;
case RPC_LISTEN:
dwr(MSG_DEBUG, "RPC_LISTEN\n");
struct listen_st listen_rpc;
memcpy(&listen_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct listen_st));
handle_listen(sock, uptr, &listen_rpc);
break;
case RPC_BIND:
dwr(MSG_DEBUG, "RPC_BIND\n");
struct bind_st bind_rpc;
memcpy(&bind_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct bind_st));
handle_bind(sock, uptr, &bind_rpc);
break;
case RPC_CONNECT:
dwr(MSG_DEBUG, "RPC_CONNECT\n");
struct connect_st connect_rpc;
memcpy(&connect_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct connect_st));
handle_connect(sock, uptr, &connect_rpc);
break;
case RPC_MAP:
dwr(MSG_DEBUG, "RPC_MAP (len = %d)\n", len);
int newfd;
memcpy(&newfd, &buf[IDX_PAYLOAD+1], sizeof(int));
handle_retval(sock, uptr, rpc_count, newfd);
break;
case RPC_MAP_REQ:
dwr(MSG_DEBUG, "RPC_MAP_REQ\n");
handle_map_request(sock, uptr, buf);
break;
case RPC_GETSOCKNAME:
dwr(MSG_DEBUG, "RPC_GETSOCKNAME\n");
struct getsockname_st getsockname_rpc;
memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+1], sizeof(struct getsockname_st));
handle_getsockname(sock, uptr, &getsockname_rpc);
break;
default:
dwr(MSG_ERROR, "POSSIBLE RPC CORRUPTION. TRY AGAIN!\n");
break;
}
}
/*
* Send a 'retval' and 'errno' to the client for an RPC over connection->rpcSock
*/
int NetconEthernetTap::send_return_value(TcpConnection *conn, int retval, int _errno = 0)
{
if(conn) {
int n = send_return_value(_phy.getDescriptor(conn->rpcSock), retval, _errno);
if(n > 0)
conn->pending = false;
else {
dwr(MSG_ERROR, " Unable to send return value to the intercept. Closing connection\n");
closeConnection(conn);
}
return n;
}
return -1;
}
int NetconEthernetTap::send_return_value(int fd, int retval, int _errno = 0)
{
dwr(MSG_DEBUG, " send_return_value(): fd = %d, retval = %d, errno = %d\n", fd, retval, _errno);
int sz = sizeof(char) + sizeof(retval) + sizeof(errno);
char retmsg[sz];
memset(&retmsg, '\0', sizeof(retmsg));
retmsg[0]=RPC_RETVAL;
memcpy(&retmsg[1], &retval, sizeof(retval));
memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno));
return write(fd, &retmsg, sz);
}
/*------------------------------------------------------------------------------
--------------------------------- LWIP callbacks -------------------------------
------------------------------------------------------------------------------*/
// NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY
// locked in this case!
/*
* Callback from LWIP for when a connection has been accepted and the PCB has been
* put into an ACCEPT state.
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the accepted socket can be
* used.
*
* @param associated service state object
* @param newly allocated PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
i := should be implemented in intercept lib
I := is implemented in intercept lib
X := is implemented in service
? := required treatment Unknown
- := Not needed
[ ] EAGAIN or EWOULDBLOCK - The socket is marked nonblocking and no connections are present
to be accepted. POSIX.1-2001 allows either error to be returned for
this case, and does not require these constants to have the same value,
so a portable application should check for both possibilities.
[I] EBADF - The descriptor is invalid.
[I] ECONNABORTED - A connection has been aborted.
[i] EFAULT - The addr argument is not in a writable part of the user address space.
[-] EINTR - The system call was interrupted by a signal that was caught before a valid connection arrived; see signal(7).
[I] EINVAL - Socket is not listening for connections, or addrlen is invalid (e.g., is negative).
[I] EINVAL - (accept4()) invalid value in flags.
[I] EMFILE - The per-process limit of open file descriptors has been reached.
[ ] ENFILE - The system limit on the total number of open files has been reached.
[ ] ENOBUFS, ENOMEM - Not enough free memory. This often means that the memory allocation is
limited by the socket buffer limits, not by the system memory.
[I] ENOTSOCK - The descriptor references a file, not a socket.
[I] EOPNOTSUPP - The referenced socket is not of type SOCK_STREAM.
[ ] EPROTO - Protocol error.
*
*/
err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err)
{
dwr(MSG_DEBUG, " nc_accept()\n");
Larg *l = (Larg*)arg;
TcpConnection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
int listening_fd = tap->_phy.getDescriptor(conn->dataSock);
if(conn) {
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
l->tap->send_return_value(conn, -1, errno);
dwr(MSG_ERROR, " nc_accept(): unable to create socketpair\n");
return ERR_MEM;
}
}
TcpConnection *new_tcp_conn = new TcpConnection();
new_tcp_conn->dataSock = tap->_phy.wrapSocket(fds[0], new_tcp_conn);
new_tcp_conn->rpcSock = conn->rpcSock;
new_tcp_conn->pcb = newpcb;
new_tcp_conn->their_fd = fds[1];
tap->tcp_connections.push_back(new_tcp_conn);
dwr(MSG_DEBUG, " nc_accept(): socketpair = {%d, %d}\n", fds[0], fds[1]);
int send_fd = tap->_phy.getDescriptor(conn->rpcSock);
dwr(MSG_DEBUG, " nc_accept(): sending %d via %d\n", fds[1], listening_fd);
if(sock_fd_write(listening_fd, fds[1]) < 0){
dwr(MSG_ERROR, " nc_accept(%d): error writing signal byte (listen_fd = %d, perceived_fd = %d)\n", listening_fd, send_fd, fds[1]);
return -1;
}
else {
close(fds[1]); // close other end of socketpair
new_tcp_conn->pending = true;
}
tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_tcp_conn));
tap->lwipstack->_tcp_recv(newpcb, nc_recved);
tap->lwipstack->_tcp_err(newpcb, nc_err);
tap->lwipstack->_tcp_sent(newpcb, nc_sent);
tap->lwipstack->_tcp_poll(newpcb, nc_poll, 1);
tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections
return ERR_OK;
}
else {
dwr(MSG_ERROR, " nc_accept(%d): can't locate Connection object for PCB.\n", listening_fd);
}
return -1;
}
/*
* Callback from LWIP for when data is available to be read from the network.
*
* Data is in the form of a linked list of struct pbufs, it is then recombined and
* send to the client over the associated unix socket.
*
* @param associated service state object
* @param allocated PCB
* @param chain of pbufs
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err)
{
dwr(MSG_DEBUG, " nc_recved()\n");
Larg *l = (Larg*)arg;
int n;
struct pbuf* q = p;
if(!l->conn) {
dwr(MSG_ERROR, " nc_recved(): no connection object\n");
return ERR_OK; // ?
}
if(p == NULL) {
if(l->conn && !l->conn->listening) {
dwr(MSG_INFO, " nc_recved(): closing connection\n");
l->tap->closeConnection(l->conn);
return ERR_ABRT;
}
else {
dwr(MSG_ERROR, " nc_recved(): can't locate connection via (arg)\n");
}
return err;
}
q = p;
while(p != NULL) { // Cycle through pbufs and write them to the socket
if(p->len <= 0)
break; // ?
if((n = l->tap->_phy.streamSend(l->conn->dataSock,p->payload, p->len)) > 0) {
if(n < p->len) {
dwr(MSG_INFO, " nc_recved(): unable to write entire pbuf to buffer\n");
}
l->tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end?
dwr(MSG_DEBUG, " nc_recved(): wrote %d bytes to (%d)\n", n, l->tap->_phy.getDescriptor(l->conn->dataSock));
}
else {
dwr(MSG_INFO, " nc_recved(): No data written to intercept buffer (%d)\n", l->tap->_phy.getDescriptor(l->conn->dataSock));
}
p = p->next;
}
l->tap->lwipstack->_pbuf_free(q); // free pbufs
return ERR_OK;
}
/*
* Callback from LWIP when an internal error is associtated with the given (arg)
*
* Since the PCB related to this error might no longer exist, only its perviously
* associated (arg) is provided to us.
*
* @param associated service state object
* @param error code
*
*/
void NetconEthernetTap::nc_err(void *arg, err_t err)
{
dwr(MSG_DEBUG, "nc_err()\n");
Larg *l = (Larg*)arg;
if(!l->conn)
dwr(MSG_ERROR, "nc_err(): Connection is NULL!\n");
switch(err)
{
case ERR_MEM:
dwr(MSG_ERROR, "nc_err(): ERR_MEM->ENOMEM\n");
l->tap->send_return_value(l->conn, -1, ENOMEM);
break;
case ERR_BUF:
dwr(MSG_ERROR, "nc_err(): ERR_BUF->ENOBUFS\n");
l->tap->send_return_value(l->conn, -1, ENOBUFS);
break;
case ERR_TIMEOUT:
dwr(MSG_ERROR, "nc_err(): ERR_TIMEOUT->ETIMEDOUT\n");
l->tap->send_return_value(l->conn, -1, ETIMEDOUT);
break;
case ERR_RTE:
dwr(MSG_ERROR, "nc_err(): ERR_RTE->ENETUNREACH\n");
l->tap->send_return_value(l->conn, -1, ENETUNREACH);
break;
case ERR_INPROGRESS:
dwr(MSG_ERROR, "nc_err(): ERR_INPROGRESS->EINPROGRESS\n");
l->tap->send_return_value(l->conn, -1, EINPROGRESS);
break;
case ERR_VAL:
dwr(MSG_ERROR, "nc_err(): ERR_VAL->EINVAL\n");
l->tap->send_return_value(l->conn, -1, EINVAL);
break;
case ERR_WOULDBLOCK:
dwr(MSG_ERROR, "nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n");
l->tap->send_return_value(l->conn, -1, EWOULDBLOCK);
break;
case ERR_USE:
dwr(MSG_ERROR, "nc_err(): ERR_USE->EADDRINUSE\n");
l->tap->send_return_value(l->conn, -1, EADDRINUSE);
break;
case ERR_ISCONN:
dwr(MSG_ERROR, "nc_err(): ERR_ISCONN->EISCONN\n");
l->tap->send_return_value(l->conn, -1, EISCONN);
break;
case ERR_ABRT:
dwr(MSG_ERROR, "nc_err(): ERR_ABRT->ECONNREFUSED\n");
l->tap->send_return_value(l->conn, -1, ECONNREFUSED);
break;
// FIXME: Below are errors which don't have a standard errno correlate
case ERR_RST:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_CLSD:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_CONN:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_ARG:
l->tap->send_return_value(l->conn, -1, -1);
break;
case ERR_IF:
l->tap->send_return_value(l->conn, -1, -1);
break;
default:
break;
}
dwr(MSG_ERROR, "nc_err(): closing connection\n");
l->tap->closeConnection(l->conn);
}
/*
* Callback from LWIP to do whatever work we might need to do.
*
* @param associated service state object
* @param PCB we're polling on
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb)
{
return ERR_OK;
}
/*
* Callback from LWIP to signal that 'len' bytes have successfully been sent.
* As a result, we should put our socket back into a notify-on-readability state
* since there is now room on the PCB buffer to write to.
*
* NOTE: This could be used to track the amount of data sent by a connection.
*
* @param associated service state object
* @param relevant PCB
* @param length of data sent
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len)
{
//dwr(5, " nc_sent()\n");
Larg *l = (Larg*)arg;
if(len) {
l->conn->acked+=len;
//dwr("W = %d, A = %d\n", l->conn->written, l->conn->acked);
//dwr("ACK = %d\n", len);
l->tap->_phy.setNotifyReadable(l->conn->dataSock, true);
l->tap->_phy.whack();
}
return ERR_OK;
}
/*
* Callback from LWIP which sends a return value to the client to signal that
* a connection was established for this PCB
*
* @param associated service state object
* @param relevant PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err)
{
dwr(MSG_DEBUG, " nc_connected()\n");
Larg *l = (Larg*)arg;
l->tap->send_return_value(l->conn, ERR_OK);
return ERR_OK;
}
/*------------------------------------------------------------------------------
----------------------------- RPC Handler functions ----------------------------
------------------------------------------------------------------------------*/
/* Unpacks the buffer from an RPC command */
void NetconEthernetTap::unload_rpc(void *data, pid_t &pid, pid_t &tid, int &rpc_count, char (timestamp[20]), char &cmd, void* &payload)
{
unsigned char *buf = (unsigned char*)data;
memcpy(&pid, &buf[IDX_PID], sizeof(pid_t));
memcpy(&tid, &buf[IDX_TID], sizeof(pid_t));
memcpy(&rpc_count, &buf[IDX_COUNT], sizeof(int));
memcpy(timestamp, &buf[IDX_TIME], 20);
memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char));
}
/*
Responds to a request from the [intercept] to determine whether a local socket is
mapped to this service. In other words, how do the intercept's overridden calls
tell the difference between regular AF_LOCAL sockets and one of our socketpairs
that is used to communicate over the network?
*/
void NetconEthernetTap::handle_map_request(PhySocket *sock, void **uptr, unsigned char* buf)
{
dwr(4, " handle_map_request()\n");
TcpConnection *conn = (TcpConnection*)*uptr;
int req_fd;
memcpy(&req_fd, &buf[IDX_PAYLOAD+1], sizeof(req_fd));
for(size_t i=0; i<tcp_connections.size(); i++) {
if(tcp_connections[i]->rpcSock == conn->rpcSock && tcp_connections[i]->perceived_fd == req_fd){
send_return_value(conn, 1, ERR_OK); // True
dwr(MSG_DEBUG, " handle_map_request(their=%d): MAPPED (to %d)\n", req_fd,
_phy.getDescriptor(tcp_connections[i]->dataSock));
return;
}
}
send_return_value(conn, 0, ERR_OK); // False
dwr(MSG_DEBUG, " handle_map_request(their=%d): NOT MAPPED\n", req_fd);
}
/**
* Handles a return value (client's perceived fd) and completes a mapping
* so that we know what connection an RPC call should be associated with.
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_retval(PhySocket *sock, void **uptr, int rpc_count, int newfd)
{
dwr(MSG_DEBUG, " handle_retval()\n");
TcpConnection *conn = (TcpConnection*)*uptr;
if(!conn->pending){
send_return_value(conn, -1, -1);
return;
}
conn->pending = false;
conn->perceived_fd = newfd;
if(rpc_count==rpc_counter) {
dwr(MSG_ERROR, " handle_retval(): Detected repeat RPC.\n");
send_return_value(conn, -1, -1);
//return;
}
else
rpc_counter = rpc_count;
dwr(MSG_DEBUG, " handle_retval(): CONN:%x - Mapping [our=%d -> their=%d]\n",conn,
_phy.getDescriptor(conn->dataSock), conn->perceived_fd);
/* Check for pre-existing connection for this socket ---
This block is in response to interesting behaviour from redis-server. A
socket is created, setsockopt is called and the socket is set to IPV6 but fails (for now),
then it is closed and re-opened and consequently remapped. With two pipes mapped
to the same socket, makes it possible that we write to the wrong pipe and fail. So
this block merely searches for a possible duplicate mapping and erases it
*/
for(size_t i=0; i<tcp_connections.size(); i++) {
if(tcp_connections[i] == conn)
continue;
if(tcp_connections[i]->rpcSock == conn->rpcSock) {
if(tcp_connections[i]->perceived_fd == conn->perceived_fd) {
int n;
if((n = send(_phy.getDescriptor(tcp_connections[i]->dataSock), "z", 1, MSG_NOSIGNAL)) < 0) {
dwr(MSG_DEBUG, " handle_retval(): CONN:%x - Socket (%d) already mapped (originally CONN:%x)\n", conn, tcp_connections[i]->perceived_fd, tcp_connections[i]);
closeConnection(tcp_connections[i]);
}
else {
dwr(MSG_ERROR, " handle_retval(): CONN:%x - This socket is mapped to two different pipes (?). Exiting.\n", conn);
//die(0); // FIXME: Print service mapping state and exit
}
}
}
}
send_return_value(conn, ERR_OK, ERR_OK); // Success
}
/* Return the address that the socket is bound to */
void NetconEthernetTap::handle_getsockname(PhySocket *sock, void **uptr, struct getsockname_st *getsockname_rpc)
{
TcpConnection *conn = getConnectionByTheirFD(sock, getsockname_rpc->sockfd);
dwr(MSG_DEBUG, " handle_getsockname(): sockfd = %d\n", getsockname_rpc->sockfd);
dwr(MSG_DEBUG, " handle_getsockname(): conn = 0x%x\n", conn);
/*
if(!conn){
return;
}
struct sockaddr_in * myaddr = (struct sockaddr_in*)conn->addr;
int port = myaddr->sin_port;
int ip = myaddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
dwr(MSG_ERROR, " handle_getsockname(): addr = %d.%d.%d.%d: %d\n", d[0],d[1],d[2],d[3], lwipstack->ntohs(port));
*/
// Assemble address "command" to send to intercept
char retmsg[sizeof(struct sockaddr_storage)];
memset(&retmsg, 0, sizeof(retmsg));
if ((conn)&&(conn->addr))
memcpy(&retmsg, conn->addr, sizeof(struct sockaddr_storage));
int n = write(_phy.getDescriptor(conn->rpcSock), &retmsg, sizeof(struct sockaddr_storage));
dwr(MSG_DEBUG, " handle_getsockname(): wrote %d bytes\n", n);
}
/*
* Handles an RPC to bind an LWIP PCB to a given address and port
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
i := should be implemented in intercept lib
I := is implemented in intercept lib
X := is implemented in service
? := required treatment Unknown
- := Not needed
[ ] EACCES - The address is protected, and the user is not the superuser.
[X] EADDRINUSE - The given address is already in use.
[I] EBADF - sockfd is not a valid descriptor.
[X] EINVAL - The socket is already bound to an address.
[I] ENOTSOCK - sockfd is a descriptor for a file, not a socket.
[X] ENOMEM - Insufficient kernel memory was available.
- The following errors are specific to UNIX domain (AF_UNIX) sockets:
[-] EACCES - Search permission is denied on a component of the path prefix. (See also path_resolution(7).)
[-] EADDRNOTAVAIL - A nonexistent interface was requested or the requested address was not local.
[-] EFAULT - addr points outside the user's accessible address space.
[-] EINVAL - The addrlen is wrong, or the socket was not in the AF_UNIX family.
[-] ELOOP - Too many symbolic links were encountered in resolving addr.
[-] ENAMETOOLONG - s addr is too long.
[-] ENOENT - The file does not exist.
[-] ENOTDIR - A component of the path prefix is not a directory.
[-] EROFS - The socket inode would reside on a read-only file system.
*/
void NetconEthernetTap::handle_bind(PhySocket *sock, void **uptr, struct bind_st *bind_rpc)
{
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &bind_rpc->addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr;
conn_addr.addr = *((u32_t *)_ips[0].rawIpData());
TcpConnection *conn = getConnectionByTheirFD(sock, bind_rpc->sockfd);
dwr(MSG_DEBUG, " handle_bind(%d)\n", bind_rpc->sockfd);
if(conn) {
if(conn->pcb->state == CLOSED){
int err = lwipstack->tcp_bind(conn->pcb, &conn_addr, conn_port);
int ip = connaddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
dwr(MSG_DEBUG, " handle_bind(): %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port);
if(err != ERR_OK) {
dwr(MSG_ERROR, " handle_bind(): err = %d\n", err);
if(err == ERR_USE)
send_return_value(conn, -1, EADDRINUSE);
if(err == ERR_MEM)
send_return_value(conn, -1, ENOMEM);
if(err == ERR_BUF)
send_return_value(conn, -1, ENOMEM); // FIXME: Closest match
}
else {
conn->addr = (struct sockaddr_storage *) &bind_rpc->addr;
send_return_value(conn, ERR_OK, ERR_OK); // Success
}
}
else {
dwr(MSG_ERROR, " handle_bind(): PCB (%x) not in CLOSED state. Ignoring BIND request.\n", conn->pcb);
send_return_value(conn, -1, EINVAL);
}
}
else {
dwr(MSG_ERROR, " handle_bind(): can't locate connection for PCB\n");
send_return_value(conn, -1, EBADF);
}
}
/*
* Handles an RPC to put an LWIP PCB into LISTEN mode
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
i := should be implemented in intercept lib
I := is implemented in intercept lib
X := is implemented in service
? := required treatment Unknown
- := Not needed
[?] EADDRINUSE - Another socket is already listening on the same port.
[IX] EBADF - The argument sockfd is not a valid descriptor.
[I] ENOTSOCK - The argument sockfd is not a socket.
[I] EOPNOTSUPP - The socket is not of a type that supports the listen() operation.
*/
void NetconEthernetTap::handle_listen(PhySocket *sock, void **uptr, struct listen_st *listen_rpc)
{
dwr(3, " handle_listen(their=%d):\n", listen_rpc->sockfd);
TcpConnection *conn = getConnectionByTheirFD(sock, listen_rpc->sockfd);
if(!conn){
dwr(MSG_ERROR, " handle_listen(): unable to locate connection object\n");
send_return_value(conn, -1, EBADF);
return;
}
dwr(3, " handle_listen(our=%d -> their=%d)\n", _phy.getDescriptor(conn->dataSock), conn->perceived_fd);
if(conn->pcb->state == LISTEN) {
dwr(MSG_ERROR, " handle_listen(): PCB is already in listening state.\n");
send_return_value(conn, ERR_OK, ERR_OK);
return;
}
struct tcp_pcb* listening_pcb;
#ifdef TCP_LISTEN_BACKLOG
listening_pcb = lwipstack->tcp_listen_with_backlog(conn->pcb, listen_rpc->backlog);
#else
listening_pcb = lwipstack->tcp_listen(conn->pcb);
#endif
if(listening_pcb != NULL) {
conn->pcb = listening_pcb;
lwipstack->tcp_accept(listening_pcb, nc_accept);
lwipstack->tcp_arg(listening_pcb, new Larg(this, conn));
/* we need to wait for the client to send us the fd allocated on their end
for this listening socket */
fcntl(_phy.getDescriptor(conn->dataSock), F_SETFL, O_NONBLOCK);
conn->listening = true;
conn->pending = true;
send_return_value(conn, ERR_OK, ERR_OK);
return;
}
send_return_value(conn, -1, -1);
}
/*
* Handles an RPC to create a socket (LWIP PCB and associated socketpair)
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the socket can be used.
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
*
i := should be implemented in intercept lib
I := is implemented in intercept lib
X := is implemented in service
? := required treatment Unknown
- := Not needed
[-] EACCES - Permission to create a socket of the specified type and/or protocol is denied.
[I] EAFNOSUPPORT - The implementation does not support the specified address family.
[I] EINVAL - Unknown protocol, or protocol family not available.
[I] EINVAL - Invalid flags in type.
[I] EMFILE - Process file table overflow.
[?] ENFILE - The system limit on the total number of open files has been reached.
[X] ENOBUFS or ENOMEM - Insufficient memory is available. The socket cannot be created until sufficient resources are freed.
[?] EPROTONOSUPPORT - The protocol type or the specified protocol is not supported within this domain.
*/
TcpConnection * NetconEthernetTap::handle_socket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
int rpc_fd = _phy.getDescriptor(sock);
struct tcp_pcb *newpcb = lwipstack->tcp_new();
dwr(MSG_DEBUG, " handle_socket(): pcb=%x\n", newpcb);
if(newpcb != NULL) {
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
send_return_value(rpc_fd, -1, errno);
return NULL;
}
}
dwr(MSG_DEBUG, " handle_socket(): socketpair = {%d, %d}\n", fds[0], fds[1]);
TcpConnection *new_conn = new TcpConnection();
new_conn->dataSock = _phy.wrapSocket(fds[0], new_conn);
*uptr = new_conn;
new_conn->rpcSock = sock;
new_conn->pcb = newpcb;
new_conn->their_fd = fds[1];
tcp_connections.push_back(new_conn);
sock_fd_write(_phy.getDescriptor(sock), fds[1]);
close(fds[1]); // close other end of socketpair
// Once the client tells us what its fd is on the other end, we can then complete the mapping
new_conn->pending = true;
return new_conn;
}
sock_fd_write(rpc_fd, -1); // Send a bad fd, to signal error
dwr(MSG_ERROR, " handle_socket(): Memory not available for new PCB\n");
send_return_value(rpc_fd, -1, ENOMEM);
return NULL;
}
/*
* Handles an RPC to connect to a given address and port
*
* @param PhySocket associated with this RPC connection
* @param structure containing the data and parameters for this client's RPC
--- Error handling in this method will only catch problems which are immedately
apprent. Some errors will need to be caught in the nc_connected(0 callback
i := should be implemented in intercept lib
I := is implemented in intercept lib
X := is implemented in service
? := required treatment Unknown
- := Not needed
[-] EACCES - For UNIX domain sockets, which are identified by pathname: Write permission is denied ...
[?] EACCES, EPERM - The user tried to connect to a broadcast address without having the socket broadcast flag enabled ...
[X] EADDRINUSE - Local address is already in use.
[I] EAFNOSUPPORT - The passed address didn't have the correct address family in its sa_family field.
[X] EAGAIN - No more free local ports or insufficient entries in the routing cache.
[ ] EALREADY - The socket is nonblocking and a previous connection attempt has not yet been completed.
[IX] EBADF - The file descriptor is not a valid index in the descriptor table.
[ ] ECONNREFUSED - No-one listening on the remote address.
[i] EFAULT - The socket structure address is outside the user's address space.
[ ] EINPROGRESS - The socket is nonblocking and the connection cannot be completed immediately.
[-] EINTR - The system call was interrupted by a signal that was caught.
[X] EISCONN - The socket is already connected.
[X] ENETUNREACH - Network is unreachable.
[I] ENOTSOCK - The file descriptor is not associated with a socket.
[X] ETIMEDOUT - Timeout while attempting connection.
[X] EINVAL - Invalid argument, SVr4, generally makes sense to set this
*
*/
void NetconEthernetTap::handle_connect(PhySocket *sock, void **uptr, struct connect_st* connect_rpc)
{
dwr(MSG_DEBUG, " handle_connect()\n");
TcpConnection *conn = (TcpConnection*)*uptr;
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &connect_rpc->__addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr);
if(conn != NULL) {
lwipstack->tcp_sent(conn->pcb, nc_sent);
lwipstack->tcp_recv(conn->pcb, nc_recved);
lwipstack->tcp_err(conn->pcb, nc_err);
lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->tcp_arg(conn->pcb, new Larg(this, conn));
int err = 0;
if((err = lwipstack->tcp_connect(conn->pcb,&conn_addr,conn_port, nc_connected)) < 0)
{
if(err == ERR_ISCONN) {
send_return_value(conn, -1, EISCONN); // Already in connected state
return;
}
if(err == ERR_USE) {
send_return_value(conn, -1, EADDRINUSE); // Already in use
return;
}
if(err == ERR_VAL) {
send_return_value(conn, -1, EINVAL); // Invalid ipaddress parameter
return;
}
if(err == ERR_RTE) {
send_return_value(conn, -1, ENETUNREACH); // No route to host
return;
}
if(err == ERR_BUF) {
send_return_value(conn, -1, EAGAIN); // No more ports available
return;
}
if(err == ERR_MEM)
{
/* Can occur for the following reasons: tcp_enqueue_flags()
1) tcp_enqueue_flags is always called with either SYN or FIN in flags.
We need one available snd_buf byte to do that.
This means we can't send FIN while snd_buf==0. A better fix would be to
not include SYN and FIN sequence numbers in the snd_buf count.
2) Cannot allocate new pbuf
3) Cannot allocate new TCP segment
*/
send_return_value(conn, -1, EAGAIN); // FIXME: Doesn't describe the problem well, but closest match
return;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
dwr(MSG_ERROR, " handle_connect(): unable to connect\n");
send_return_value(conn, -1, EAGAIN);
}
// Everything seems to be ok, but we don't have enough info to retval
conn->pending=true;
}
else {
dwr(MSG_ERROR, " handle_connect(): could not locate PCB based on their fd\n");
send_return_value(conn, -1, EBADF);
}
}
void NetconEthernetTap::handle_write(TcpConnection *conn)
{
float max = (float)TCP_SND_BUF;
int r;
if(!conn) {
dwr(MSG_ERROR, " handle_write(): could not locate connection for this fd\n");
return;
}
if(conn->idx < max) {
if(!conn->pcb) {
dwr(MSG_ERROR, " handle_write(): conn->pcb == NULL. Failed to write.\n");
return;
}
int sndbuf = conn->pcb->snd_buf; // How much we are currently allowed to write to the connection
/* PCB send buffer is full,turn off readability notifications for the
corresponding PhySocket until nc_sent() is called and confirms that there is
now space on the buffer */
if(sndbuf == 0) {
_phy.setNotifyReadable(conn->dataSock, false);
return;
}
if(!conn->listening)
lwipstack->_tcp_output(conn->pcb);
if(conn->dataSock) {
int read_fd = _phy.getDescriptor(conn->dataSock);
if((r = read(read_fd, (&conn->buf)+conn->idx, sndbuf)) > 0) {
conn->idx += r;
/* Writes data pulled from the client's socket buffer to LWIP. This merely sends the
* data to LWIP to be enqueued and eventually sent to the network. */
if(r > 0) {
int sz;
// NOTE: this assumes that lwipstack->_lock is locked, either
// because we are in a callback or have locked it manually.
int err = lwipstack->_tcp_write(conn->pcb, &conn->buf, r, TCP_WRITE_FLAG_COPY);
lwipstack->_tcp_output(conn->pcb);
if(err != ERR_OK) {
dwr(MSG_ERROR, " handle_write(): error while writing to PCB, (err = %d)\n", err);
return;
}
else {
sz = (conn->idx)-r;
if(sz) {
memmove(&conn->buf, (conn->buf+r), sz);
}
conn->idx -= r;
conn->written+=r;
return;
}
}
else {
dwr(MSG_INFO, " handle_write(): LWIP stack full\n");
return;
}
}
}
}
}
} // namespace ZeroTier