ZeroTierOne/node/WindowsEthernetTap.cpp
2014-04-08 16:10:48 -07:00

846 lines
29 KiB
C++

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2011-2014 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "Constants.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <WinSock2.h>
#include <Windows.h>
#include <tchar.h>
#include <winreg.h>
#include <wchar.h>
#include <ws2ipdef.h>
#include <WS2tcpip.h>
#include <IPHlpApi.h>
#include <nldef.h>
#include <netioapi.h>
#include "EthernetTap.hpp"
#include "WindowsEthernetTap.hpp"
#include "Logger.hpp"
#include "RuntimeEnvironment.hpp"
#include "Utils.hpp"
#include "Mutex.hpp"
#include "..\windows\TapDriver\tap-windows.h"
// ff:ff:ff:ff:ff:ff with no ADI
static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0);
namespace ZeroTier {
// Helper function to get an adapter's LUID and index from its GUID. The LUID is
// constant but the index can change, so go ahead and just look them both up by
// the GUID which is constant. (The GUID is the instance ID in the registry.)
static inline std::pair<NET_LUID,NET_IFINDEX> _findAdapterByGuid(const GUID &guid)
throw(std::runtime_error)
{
MIB_IF_TABLE2 *ift = (MIB_IF_TABLE2 *)0;
if (GetIfTable2Ex(MibIfTableRaw,&ift) != NO_ERROR)
throw std::runtime_error("GetIfTable2Ex() failed");
for(ULONG i=0;i<ift->NumEntries;++i) {
if (ift->Table[i].InterfaceGuid == guid) {
std::pair<NET_LUID,NET_IFINDEX> tmp(ift->Table[i].InterfaceLuid,ift->Table[i].InterfaceIndex);
FreeMibTable(ift);
return tmp;
}
}
FreeMibTable(&ift);
throw std::runtime_error("interface not found");
}
// Only create or delete devices one at a time
static Mutex _systemTapInitLock;
// Compute some basic environment stuff on startup
class _WinSysEnv
{
public:
_WinSysEnv()
{
#ifdef _WIN64
is64Bit = TRUE;
devcon = "\\devcon_x64.exe";
tapDriver = "\\tap-windows\\x64\\zttap200.inf";
#else
is64Bit = FALSE;
IsWow64Process(GetCurrentProcess(),&is64Bit);
devcon = ((is64Bit == TRUE) ? "\\devcon_x64.exe" : "\\devcon_x86.exe");
tapDriver = ((is64Bit == TRUE) ? "\\tap-windows\\x64\\zttap200.inf" : "\\tap-windows\\x86\\zttap200.inf");
#endif
}
BOOL is64Bit;
const char *devcon;
const char *tapDriver;
};
static const _WinSysEnv _winEnv;
static bool _disableTapDevice(const RuntimeEnvironment *_r,const std::string deviceInstanceId)
{
HANDLE devconLog = CreateFileA((_r->homePath + "\\devcon.log").c_str(),GENERIC_WRITE,FILE_SHARE_READ|FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
if (devconLog != INVALID_HANDLE_VALUE)
SetFilePointer(devconLog,0,0,FILE_END);
STARTUPINFOA startupInfo;
startupInfo.cb = sizeof(startupInfo);
if (devconLog != INVALID_HANDLE_VALUE) {
startupInfo.hStdOutput = devconLog;
startupInfo.hStdError = devconLog;
}
PROCESS_INFORMATION processInfo;
memset(&startupInfo,0,sizeof(STARTUPINFOA));
memset(&processInfo,0,sizeof(PROCESS_INFORMATION));
if (!CreateProcessA(NULL,(LPSTR)(std::string("\"") + _r->homePath + _winEnv.devcon + "\" disable @" + deviceInstanceId).c_str(),NULL,NULL,FALSE,0,NULL,NULL,&startupInfo,&processInfo)) {
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return false;
}
WaitForSingleObject(processInfo.hProcess,INFINITE);
CloseHandle(processInfo.hProcess);
CloseHandle(processInfo.hThread);
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return true;
}
static bool _enableTapDevice(const RuntimeEnvironment *_r,const std::string deviceInstanceId)
{
HANDLE devconLog = CreateFileA((_r->homePath + "\\devcon.log").c_str(),GENERIC_WRITE,FILE_SHARE_READ|FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
if (devconLog != INVALID_HANDLE_VALUE)
SetFilePointer(devconLog,0,0,FILE_END);
STARTUPINFOA startupInfo;
startupInfo.cb = sizeof(startupInfo);
if (devconLog != INVALID_HANDLE_VALUE) {
startupInfo.hStdOutput = devconLog;
startupInfo.hStdError = devconLog;
}
PROCESS_INFORMATION processInfo;
memset(&startupInfo,0,sizeof(STARTUPINFOA));
memset(&processInfo,0,sizeof(PROCESS_INFORMATION));
if (!CreateProcessA(NULL,(LPSTR)(std::string("\"") + _r->homePath + _winEnv.devcon + "\" enable @" + deviceInstanceId).c_str(),NULL,NULL,FALSE,0,NULL,NULL,&startupInfo,&processInfo)) {
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return false;
}
WaitForSingleObject(processInfo.hProcess,INFINITE);
CloseHandle(processInfo.hProcess);
CloseHandle(processInfo.hThread);
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return true;
}
static void _syncIpsWithRegistry(const std::set<InetAddress> &haveIps,const std::string netCfgInstanceId)
{
// Update registry to contain all non-link-local IPs for this interface
std::string regMultiIps,regMultiNetmasks;
for(std::set<InetAddress>::const_iterator i(haveIps.begin());i!=haveIps.end();++i) {
if (!i->isLinkLocal()) {
regMultiIps.append(i->toIpString());
regMultiIps.push_back((char)0);
regMultiNetmasks.append(i->netmask().toIpString());
regMultiNetmasks.push_back((char)0);
}
}
HKEY tcpIpInterfaces;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\services\\Tcpip\\Parameters\\Interfaces",0,KEY_READ|KEY_WRITE,&tcpIpInterfaces) == ERROR_SUCCESS) {
if (regMultiIps.length()) {
regMultiIps.push_back((char)0);
regMultiNetmasks.push_back((char)0);
RegSetKeyValueA(tcpIpInterfaces,netCfgInstanceId.c_str(),"IPAddress",REG_MULTI_SZ,regMultiIps.data(),(DWORD)regMultiIps.length());
RegSetKeyValueA(tcpIpInterfaces,netCfgInstanceId.c_str(),"SubnetMask",REG_MULTI_SZ,regMultiNetmasks.data(),(DWORD)regMultiNetmasks.length());
} else {
RegDeleteKeyValueA(tcpIpInterfaces,netCfgInstanceId.c_str(),"IPAddress");
RegDeleteKeyValueA(tcpIpInterfaces,netCfgInstanceId.c_str(),"SubnetMask");
}
}
RegCloseKey(tcpIpInterfaces);
}
WindowsEthernetTap::WindowsEthernetTap(
const RuntimeEnvironment *renv,
const char *tag,
const MAC &mac,
unsigned int mtu,
void (*handler)(void *,const MAC &,const MAC &,unsigned int,const Buffer<4096> &),
void *arg)
throw(std::runtime_error) :
EthernetTap("WindowsEthernetTap",mac,mtu),
_r(renv),
_handler(handler),
_arg(arg),
_tap(INVALID_HANDLE_VALUE),
_injectSemaphore(INVALID_HANDLE_VALUE),
_run(true),
_initialized(false),
_enabled(true)
{
char subkeyName[4096];
char subkeyClass[4096];
char data[4096];
if (mtu > ZT_IF_MTU)
throw std::runtime_error("MTU too large for Windows tap");
Mutex::Lock _l(_systemTapInitLock);
HKEY nwAdapters;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}",0,KEY_READ|KEY_WRITE,&nwAdapters) != ERROR_SUCCESS)
throw std::runtime_error("unable to open registry key for network adapter enumeration");
std::set<std::string> existingDeviceInstances;
std::string mySubkeyName;
// Look for the tap instance that corresponds with our interface tag (network ID)
for(DWORD subkeyIndex=0;;++subkeyIndex) {
DWORD type;
DWORD dataLen;
DWORD subkeyNameLen = sizeof(subkeyName);
DWORD subkeyClassLen = sizeof(subkeyClass);
FILETIME lastWriteTime;
if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
data[dataLen] = '\0';
if (!strnicmp(data,"zttap",5)) {
std::string instanceId;
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"NetCfgInstanceId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
instanceId.assign(data,dataLen);
existingDeviceInstances.insert(instanceId);
}
std::string instanceIdPath;
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS)
instanceIdPath.assign(data,dataLen);
if ((_netCfgInstanceId.length() == 0)&&(instanceId.length() != 0)&&(instanceIdPath.length() != 0)) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
data[dataLen] = '\0';
if (!strcmp(data,tag)) {
_netCfgInstanceId = instanceId;
_deviceInstanceId = instanceIdPath;
mySubkeyName = subkeyName;
break; // found it!
}
}
}
}
}
} else break; // no more subkeys or error occurred enumerating them
}
// If there is no device, try to create one
if (_netCfgInstanceId.length() == 0) {
// Log devcon output to a file
HANDLE devconLog = CreateFileA((_r->homePath + "\\devcon.log").c_str(),GENERIC_WRITE,FILE_SHARE_READ|FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
if (devconLog == INVALID_HANDLE_VALUE) {
LOG("WARNING: unable to open devcon.log");
} else {
SetFilePointer(devconLog,0,0,FILE_END);
}
// Execute devcon to install an instance of the Microsoft Loopback Adapter
STARTUPINFOA startupInfo;
startupInfo.cb = sizeof(startupInfo);
if (devconLog != INVALID_HANDLE_VALUE) {
SetFilePointer(devconLog,0,0,FILE_END);
startupInfo.hStdOutput = devconLog;
startupInfo.hStdError = devconLog;
}
PROCESS_INFORMATION processInfo;
memset(&startupInfo,0,sizeof(STARTUPINFOA));
memset(&processInfo,0,sizeof(PROCESS_INFORMATION));
if (!CreateProcessA(NULL,(LPSTR)(std::string("\"") + _r->homePath + _winEnv.devcon + "\" install \"" + _r->homePath + _winEnv.tapDriver + "\" zttap200").c_str(),NULL,NULL,FALSE,0,NULL,NULL,&startupInfo,&processInfo)) {
RegCloseKey(nwAdapters);
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
throw std::runtime_error(std::string("unable to find or execute devcon at ") + _winEnv.devcon);
}
WaitForSingleObject(processInfo.hProcess,INFINITE);
CloseHandle(processInfo.hProcess);
CloseHandle(processInfo.hThread);
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
// Scan for the new instance by simply looking for taps that weren't
// there originally. The static mutex we lock ensures this can't step
// on its own toes.
for(DWORD subkeyIndex=0;;++subkeyIndex) {
DWORD type;
DWORD dataLen;
DWORD subkeyNameLen = sizeof(subkeyName);
DWORD subkeyClassLen = sizeof(subkeyClass);
FILETIME lastWriteTime;
if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
data[dataLen] = '\0';
if (!strnicmp(data,"zttap",5)) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"NetCfgInstanceId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
if (existingDeviceInstances.count(std::string(data,dataLen)) == 0) {
RegSetKeyValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",REG_SZ,tag,(DWORD)(strlen(tag)+1));
_netCfgInstanceId.assign(data,dataLen);
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS)
_deviceInstanceId.assign(data,dataLen);
mySubkeyName = subkeyName;
// Disable DHCP by default on newly created devices
HKEY tcpIpInterfaces;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\services\\Tcpip\\Parameters\\Interfaces",0,KEY_READ|KEY_WRITE,&tcpIpInterfaces) == ERROR_SUCCESS) {
DWORD enable = 0;
RegSetKeyValueA(tcpIpInterfaces,_netCfgInstanceId.c_str(),"EnableDHCP",REG_DWORD,&enable,sizeof(enable));
RegCloseKey(tcpIpInterfaces);
}
break; // found it!
}
}
}
}
} else break; // no more keys or error occurred
}
}
if (_netCfgInstanceId.length() > 0) {
char tmps[4096];
unsigned int tmpsl = Utils::snprintf(tmps,sizeof(tmps),"%.2X-%.2X-%.2X-%.2X-%.2X-%.2X",(unsigned int)mac.data[0],(unsigned int)mac.data[1],(unsigned int)mac.data[2],(unsigned int)mac.data[3],(unsigned int)mac.data[4],(unsigned int)mac.data[5]) + 1;
RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"NetworkAddress",REG_SZ,tmps,tmpsl);
RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"MAC",REG_SZ,tmps,tmpsl);
DWORD tmp = mtu;
RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"MTU",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp));
tmp = 0;
RegSetKeyValueA(nwAdapters,mySubkeyName.c_str(),"EnableDHCP",REG_DWORD,(LPCVOID)&tmp,sizeof(tmp));
RegCloseKey(nwAdapters);
} else {
RegCloseKey(nwAdapters);
throw std::runtime_error("unable to find or create tap adapter");
}
// Convert device GUID junk... blech... is there an easier way to do this?
{
char nobraces[128];
const char *nbtmp1 = _netCfgInstanceId.c_str();
char *nbtmp2 = nobraces;
while (*nbtmp1) {
if ((*nbtmp1 != '{')&&(*nbtmp1 != '}'))
*nbtmp2++ = *nbtmp1;
++nbtmp1;
}
*nbtmp2 = (char)0;
if (UuidFromStringA((RPC_CSTR)nobraces,&_deviceGuid) != RPC_S_OK)
throw std::runtime_error("unable to convert instance ID GUID to native GUID (invalid NetCfgInstanceId in registry?)");
}
// Start background thread that actually performs I/O
_injectSemaphore = CreateSemaphore(NULL,0,1,NULL);
_thread = Thread::start(this);
// Certain functions can now work (e.g. ips())
_initialized = true;
}
WindowsEthernetTap::~WindowsEthernetTap()
{
_run = false;
ReleaseSemaphore(_injectSemaphore,1,NULL);
Thread::join(_thread);
CloseHandle(_injectSemaphore);
_disableTapDevice(_r,_deviceInstanceId);
}
void WindowsEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool WindowsEthernetTap::enabled() const
{
return _enabled;
}
void WindowsEthernetTap::setDisplayName(const char *dn)
{
if (!_initialized)
return;
HKEY ifp;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,(std::string("SYSTEM\\CurrentControlSet\\Control\\Network\\{4D36E972-E325-11CE-BFC1-08002BE10318}\\") + _netCfgInstanceId).c_str(),0,KEY_READ|KEY_WRITE,&ifp) == ERROR_SUCCESS) {
RegSetKeyValueA(ifp,"Connection","Name",REG_SZ,(LPCVOID)dn,(DWORD)(strlen(dn)+1));
RegCloseKey(ifp);
}
}
bool WindowsEthernetTap::addIP(const InetAddress &ip)
{
if (!_initialized)
return false;
if (!ip.netmaskBits()) // sanity check... netmask of 0.0.0.0 is WUT?
return false;
std::set<InetAddress> haveIps(ips());
try {
// Add IP to interface at the netlink level if not already assigned.
if (!haveIps.count(ip)) {
std::pair<NET_LUID,NET_IFINDEX> ifidx = _findAdapterByGuid(_deviceGuid);
MIB_UNICASTIPADDRESS_ROW ipr;
InitializeUnicastIpAddressEntry(&ipr);
if (ip.isV4()) {
ipr.Address.Ipv4.sin_family = AF_INET;
ipr.Address.Ipv4.sin_addr.S_un.S_addr = *((const uint32_t *)ip.rawIpData());
ipr.OnLinkPrefixLength = ip.port();
if (ipr.OnLinkPrefixLength >= 32)
return false;
} else if (ip.isV6()) {
ipr.Address.Ipv6.sin6_family = AF_INET6;
memcpy(ipr.Address.Ipv6.sin6_addr.u.Byte,ip.rawIpData(),16);
ipr.OnLinkPrefixLength = ip.port();
if (ipr.OnLinkPrefixLength >= 128)
return false;
} else return false;
ipr.PrefixOrigin = IpPrefixOriginManual;
ipr.SuffixOrigin = IpSuffixOriginManual;
ipr.ValidLifetime = 0xffffffff;
ipr.PreferredLifetime = 0xffffffff;
ipr.InterfaceLuid = ifidx.first;
ipr.InterfaceIndex = ifidx.second;
if (CreateUnicastIpAddressEntry(&ipr) == NO_ERROR) {
haveIps.insert(ip);
} else {
LOG("unable to add IP address %s to interface %s: %d",ip.toString().c_str(),deviceName().c_str(),(int)GetLastError());
return false;
}
}
_syncIpsWithRegistry(haveIps,_netCfgInstanceId);
} catch (std::exception &exc) {
LOG("unexpected exception adding IP address %s to %s: %s",ip.toString().c_str(),deviceName().c_str(),exc.what());
return false;
} catch ( ... ) {
LOG("unexpected exception adding IP address %s to %s: unknown exception",ip.toString().c_str(),deviceName().c_str());
return false;
}
return true;
}
bool WindowsEthernetTap::removeIP(const InetAddress &ip)
{
if (!_initialized)
return false;
try {
MIB_UNICASTIPADDRESS_TABLE *ipt = (MIB_UNICASTIPADDRESS_TABLE *)0;
std::pair<NET_LUID,NET_IFINDEX> ifidx = _findAdapterByGuid(_deviceGuid);
if (GetUnicastIpAddressTable(AF_UNSPEC,&ipt) == NO_ERROR) {
for(DWORD i=0;i<ipt->NumEntries;++i) {
if ((ipt->Table[i].InterfaceLuid.Value == ifidx.first.Value)&&(ipt->Table[i].InterfaceIndex == ifidx.second)) {
InetAddress addr;
switch(ipt->Table[i].Address.si_family) {
case AF_INET:
addr.set(&(ipt->Table[i].Address.Ipv4.sin_addr.S_un.S_addr),4,ipt->Table[i].OnLinkPrefixLength);
break;
case AF_INET6:
addr.set(ipt->Table[i].Address.Ipv6.sin6_addr.u.Byte,16,ipt->Table[i].OnLinkPrefixLength);
if (addr.isLinkLocal())
continue; // can't remove link-local IPv6 addresses
break;
}
if (addr == ip) {
DeleteUnicastIpAddressEntry(&(ipt->Table[i]));
FreeMibTable(ipt);
_syncIpsWithRegistry(ips(),_netCfgInstanceId);
return true;
}
}
}
FreeMibTable((PVOID)ipt);
}
} catch (std::exception &exc) {
LOG("unexpected exception removing IP address %s from %s: %s",ip.toString().c_str(),deviceName().c_str(),exc.what());
} catch ( ... ) {
LOG("unexpected exception removing IP address %s from %s: unknown exception",ip.toString().c_str(),deviceName().c_str());
}
return false;
}
std::set<InetAddress> WindowsEthernetTap::ips() const
{
static const InetAddress linkLocalLoopback("fe80::1",64); // what is this and why does Windows assign it?
std::set<InetAddress> addrs;
if (!_initialized)
return addrs;
try {
MIB_UNICASTIPADDRESS_TABLE *ipt = (MIB_UNICASTIPADDRESS_TABLE *)0;
std::pair<NET_LUID,NET_IFINDEX> ifidx = _findAdapterByGuid(_deviceGuid);
if (GetUnicastIpAddressTable(AF_UNSPEC,&ipt) == NO_ERROR) {
for(DWORD i=0;i<ipt->NumEntries;++i) {
if ((ipt->Table[i].InterfaceLuid.Value == ifidx.first.Value)&&(ipt->Table[i].InterfaceIndex == ifidx.second)) {
switch(ipt->Table[i].Address.si_family) {
case AF_INET: {
InetAddress ip(&(ipt->Table[i].Address.Ipv4.sin_addr.S_un.S_addr),4,ipt->Table[i].OnLinkPrefixLength);
if (ip != InetAddress::LO4)
addrs.insert(ip);
} break;
case AF_INET6: {
InetAddress ip(ipt->Table[i].Address.Ipv6.sin6_addr.u.Byte,16,ipt->Table[i].OnLinkPrefixLength);
if ((ip != linkLocalLoopback)&&(ip != InetAddress::LO6))
addrs.insert(ip);
} break;
}
}
}
FreeMibTable(ipt);
}
} catch ( ... ) {} // sanity check, shouldn't happen unless out of memory
return addrs;
}
void WindowsEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
if ((!_initialized)||(!_enabled)||(_tap == INVALID_HANDLE_VALUE)||(len > (ZT_IF_MTU)))
return;
{
Mutex::Lock _l(_injectPending_m);
_injectPending.push( std::pair<Array<char,ZT_IF_MTU + 32>,unsigned int>(Array<char,ZT_IF_MTU + 32>(),len + 14) );
char *d = _injectPending.back().first.data;
memcpy(d,to.data,6);
memcpy(d + 6,from.data,6);
d[12] = (char)((etherType >> 8) & 0xff);
d[13] = (char)(etherType & 0xff);
memcpy(d + 14,data,len);
}
ReleaseSemaphore(_injectSemaphore,1,NULL);
}
std::string WindowsEthernetTap::deviceName() const
{
return _netCfgInstanceId;
}
std::string WindowsEthernetTap::persistentId() const
{
return _deviceInstanceId;
}
bool WindowsEthernetTap::updateMulticastGroups(std::set<MulticastGroup> &groups)
{
if (!_initialized)
return false;
HANDLE t = _tap;
if (t == INVALID_HANDLE_VALUE)
return false;
std::set<MulticastGroup> newGroups;
// Ensure that groups are added for each IP... this handles the MAC:ADI
// groups that are created from IPv4 addresses. Some of these may end
// up being duplicates of what the IOCTL returns but that's okay since
// the set<> will filter that.
std::set<InetAddress> ipaddrs(ips());
for(std::set<InetAddress>::const_iterator i(ipaddrs.begin());i!=ipaddrs.end();++i)
newGroups.insert(MulticastGroup::deriveMulticastGroupForAddressResolution(*i));
// The ZT1 tap driver supports an IOCTL to get multicast memberships at the L2
// level... something Windows does not seem to expose ordinarily. This lets
// pretty much anything work... IPv4, IPv6, IPX, oldskool Netbios, who knows...
unsigned char mcastbuf[TAP_WIN_IOCTL_GET_MULTICAST_MEMBERSHIPS_OUTPUT_BUF_SIZE];
DWORD bytesReturned = 0;
if (DeviceIoControl(t,TAP_WIN_IOCTL_GET_MULTICAST_MEMBERSHIPS,(LPVOID)0,0,(LPVOID)mcastbuf,sizeof(mcastbuf),&bytesReturned,NULL)) {
MAC mac;
DWORD i = 0;
while ((i + 6) <= bytesReturned) {
mac.data[0] = mcastbuf[i++];
mac.data[1] = mcastbuf[i++];
mac.data[2] = mcastbuf[i++];
mac.data[3] = mcastbuf[i++];
mac.data[4] = mcastbuf[i++];
mac.data[5] = mcastbuf[i++];
if (mac.isMulticast()) {
// exclude the nulls that may be returned or any other junk Windows puts in there
newGroups.insert(MulticastGroup(mac,0));
}
}
}
newGroups.insert(_blindWildcardMulticastGroup); // always join this
bool changed = false;
for(std::set<MulticastGroup>::iterator mg(newGroups.begin());mg!=newGroups.end();++mg) {
if (!groups.count(*mg)) {
groups.insert(*mg);
changed = true;
}
}
for(std::set<MulticastGroup>::iterator mg(groups.begin());mg!=groups.end();) {
if (!newGroups.count(*mg)) {
groups.erase(mg++);
changed = true;
} else ++mg;
}
return changed;
}
void WindowsEthernetTap::threadMain()
throw()
{
char tapPath[256];
OVERLAPPED tapOvlRead,tapOvlWrite;
HANDLE wait4[3];
char *tapReadBuf = (char *)0;
// Shouldn't be needed, but Windows does not overcommit. This Windows
// tap code is defensive to schizoid paranoia degrees.
while (!tapReadBuf) {
tapReadBuf = (char *)::malloc(ZT_IF_MTU + 32);
if (!tapReadBuf)
Sleep(1000);
}
// Tap is in this weird Windows global pseudo file space
Utils::snprintf(tapPath,sizeof(tapPath),"\\\\.\\Global\\%s.tap",_netCfgInstanceId.c_str());
// More insanity: repetatively try to enable/disable tap device. The first
// time we succeed, close it and do it again. This is to fix a driver init
// bug that seems to be extremely non-deterministic and to only occur after
// headless MSI upgrade. It cannot be reproduced in any other circumstance.
bool throwOneAway = true;
while (_run) {
_disableTapDevice(_r,_deviceInstanceId);
Sleep(250);
if (!_enableTapDevice(_r,_deviceInstanceId)) {
::free(tapReadBuf);
_enabled = false;
return; // only happens if devcon is missing or totally fails
}
Sleep(250);
_tap = CreateFileA(tapPath,GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_SYSTEM|FILE_FLAG_OVERLAPPED,NULL);
if (_tap == INVALID_HANDLE_VALUE) {
Sleep(500);
continue;
}
uint32_t tmpi = 1;
DWORD bytesReturned = 0;
DeviceIoControl(_tap,TAP_WIN_IOCTL_SET_MEDIA_STATUS,&tmpi,sizeof(tmpi),&tmpi,sizeof(tmpi),&bytesReturned,NULL);
if (throwOneAway) {
throwOneAway = false;
CloseHandle(_tap);
_tap = INVALID_HANDLE_VALUE;
Sleep(250);
continue;
} else break;
}
memset(&tapOvlRead,0,sizeof(tapOvlRead));
tapOvlRead.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
memset(&tapOvlWrite,0,sizeof(tapOvlWrite));
tapOvlWrite.hEvent = CreateEvent(NULL,TRUE,FALSE,NULL);
wait4[0] = _injectSemaphore;
wait4[1] = tapOvlRead.hEvent;
wait4[2] = tapOvlWrite.hEvent; // only included if writeInProgress is true
// Start overlapped read, which is always active
ReadFile(_tap,tapReadBuf,sizeof(tapReadBuf),NULL,&tapOvlRead);
bool writeInProgress = false;
for(;;) {
if (!_run) break;
DWORD r = WaitForMultipleObjectsEx(writeInProgress ? 3 : 2,wait4,FALSE,5000,TRUE);
if (!_run) break;
if ((r == WAIT_TIMEOUT)||(r == WAIT_FAILED))
continue;
if (HasOverlappedIoCompleted(&tapOvlRead)) {
DWORD bytesRead = 0;
if (GetOverlappedResult(_tap,&tapOvlRead,&bytesRead,FALSE)) {
if ((bytesRead > 14)&&(_enabled)) {
MAC to(tapReadBuf);
MAC from(tapReadBuf + 6);
unsigned int etherType = ((((unsigned int)tapReadBuf[12]) & 0xff) << 8) | (((unsigned int)tapReadBuf[13]) & 0xff);
try {
Buffer<4096> tmp(tapReadBuf + 14,bytesRead - 14);
_handler(_arg,from,to,etherType,tmp);
} catch ( ... ) {} // handlers should not throw
}
}
ReadFile(_tap,tapReadBuf,ZT_IF_MTU + 32,NULL,&tapOvlRead);
}
if (writeInProgress) {
if (HasOverlappedIoCompleted(&tapOvlWrite)) {
writeInProgress = false;
_injectPending_m.lock();
_injectPending.pop();
} else continue; // still writing, so skip code below and wait
} else _injectPending_m.lock();
if (!_injectPending.empty()) {
WriteFile(_tap,_injectPending.front().first.data,_injectPending.front().second,NULL,&tapOvlWrite);
writeInProgress = true;
}
_injectPending_m.unlock();
}
CancelIo(_tap);
CloseHandle(tapOvlRead.hEvent);
CloseHandle(tapOvlWrite.hEvent);
CloseHandle(_tap);
_tap = INVALID_HANDLE_VALUE;
::free(tapReadBuf);
}
bool WindowsEthernetTap::deletePersistentTapDevice(const RuntimeEnvironment *_r,const char *pid)
{
Mutex::Lock _l(_systemTapInitLock); // only one thread may mess with taps at a time, process-wide
HANDLE devconLog = CreateFileA((_r->homePath + "\\devcon.log").c_str(),GENERIC_WRITE,FILE_SHARE_READ|FILE_SHARE_WRITE,NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
STARTUPINFOA startupInfo;
startupInfo.cb = sizeof(startupInfo);
if (devconLog != INVALID_HANDLE_VALUE) {
SetFilePointer(devconLog,0,0,FILE_END);
startupInfo.hStdOutput = devconLog;
startupInfo.hStdError = devconLog;
}
PROCESS_INFORMATION processInfo;
memset(&startupInfo,0,sizeof(STARTUPINFOA));
memset(&processInfo,0,sizeof(PROCESS_INFORMATION));
if (CreateProcessA(NULL,(LPSTR)(std::string("\"") + _r->homePath + _winEnv.devcon + "\" remove @" + pid).c_str(),NULL,NULL,FALSE,0,NULL,NULL,&startupInfo,&processInfo)) {
WaitForSingleObject(processInfo.hProcess,INFINITE);
CloseHandle(processInfo.hProcess);
CloseHandle(processInfo.hThread);
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return true;
}
if (devconLog != INVALID_HANDLE_VALUE)
CloseHandle(devconLog);
return false;
}
int WindowsEthernetTap::cleanPersistentTapDevices(const RuntimeEnvironment *_r,const std::set<std::string> &exceptThese,bool alsoRemoveUnassociatedDevices)
{
char subkeyName[4096];
char subkeyClass[4096];
char data[4096];
std::set<std::string> instanceIdPathsToRemove;
{
Mutex::Lock _l(_systemTapInitLock); // only one thread may mess with taps at a time, process-wide
HKEY nwAdapters;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,"SYSTEM\\CurrentControlSet\\Control\\Class\\{4D36E972-E325-11CE-BFC1-08002BE10318}",0,KEY_READ|KEY_WRITE,&nwAdapters) != ERROR_SUCCESS)
return -1;
for(DWORD subkeyIndex=0;;++subkeyIndex) {
DWORD type;
DWORD dataLen;
DWORD subkeyNameLen = sizeof(subkeyName);
DWORD subkeyClassLen = sizeof(subkeyClass);
FILETIME lastWriteTime;
if (RegEnumKeyExA(nwAdapters,subkeyIndex,subkeyName,&subkeyNameLen,(DWORD *)0,subkeyClass,&subkeyClassLen,&lastWriteTime) == ERROR_SUCCESS) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"ComponentId",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
data[dataLen] = '\0';
if (!strnicmp(data,"zttap",5)) {
std::string instanceIdPath;
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"DeviceInstanceID",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS)
instanceIdPath.assign(data,dataLen);
if (instanceIdPath.length() != 0) {
type = 0;
dataLen = sizeof(data);
if (RegGetValueA(nwAdapters,subkeyName,"_ZeroTierTapIdentifier",RRF_RT_ANY,&type,(PVOID)data,&dataLen) == ERROR_SUCCESS) {
if (dataLen <= 0) {
if (alsoRemoveUnassociatedDevices)
instanceIdPathsToRemove.insert(instanceIdPath);
} else {
if (!exceptThese.count(std::string(data,dataLen)))
instanceIdPathsToRemove.insert(instanceIdPath);
}
} else if (alsoRemoveUnassociatedDevices)
instanceIdPathsToRemove.insert(instanceIdPath);
}
}
}
} else break; // end of list or failure
}
RegCloseKey(nwAdapters);
}
int removed = 0;
for(std::set<std::string>::iterator iidp(instanceIdPathsToRemove.begin());iidp!=instanceIdPathsToRemove.end();++iidp) {
if (deletePersistentTapDevice(_r,iidp->c_str()))
++removed;
}
return removed;
}
} // namespace ZeroTier