ZeroTierOne/osdep/Phy.hpp

1116 lines
34 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef ZT_PHY_HPP
#define ZT_PHY_HPP
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <list>
#include <stdexcept>
#if defined(_WIN32) || defined(_WIN64)
#include <WinSock2.h>
#include <WS2tcpip.h>
#include <Windows.h>
#define ZT_PHY_SOCKFD_TYPE SOCKET
#define ZT_PHY_SOCKFD_NULL (INVALID_SOCKET)
#define ZT_PHY_SOCKFD_VALID(s) ((s) != INVALID_SOCKET)
#define ZT_PHY_CLOSE_SOCKET(s) ::closesocket(s)
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
#define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
#else // not Windows
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux)
#ifndef IPV6_DONTFRAG
#define IPV6_DONTFRAG 62
#endif
#endif
#define ZT_PHY_SOCKFD_TYPE int
#define ZT_PHY_SOCKFD_NULL (-1)
#define ZT_PHY_SOCKFD_VALID(s) ((s) > -1)
#define ZT_PHY_CLOSE_SOCKET(s) ::close(s)
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
#define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
#endif // Windows or not
namespace ZeroTier {
/**
* Opaque socket type
*/
typedef void PhySocket;
/**
* Simple templated non-blocking sockets implementation
*
* Yes there is boost::asio and libuv, but I like small binaries and I hate
* build dependencies. Both drag in a whole bunch of pasta with them.
*
* This class is templated on a pointer to a handler class which must
* implement the following functions:
*
* For all platforms:
*
* phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
* phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
* phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
* phyOnTcpClose(PhySocket *sock,void **uptr)
* phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
* phyOnTcpWritable(PhySocket *sock,void **uptr)
* phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable)
*
* On Linux/OSX/Unix only (not required/used on Windows or elsewhere):
*
* phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN)
* phyOnUnixClose(PhySocket *sock,void **uptr)
* phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
* phyOnUnixWritable(PhySocket *sock,void **uptr)
*
* These templates typically refer to function objects. Templates are used to
* avoid the call overhead of indirection, which is surprisingly high for high
* bandwidth applications pushing a lot of packets.
*
* The 'sock' pointer above is an opaque pointer to a socket. Each socket
* has a 'uptr' user-settable/modifiable pointer associated with it, which
* can be set on bind/connect calls and is passed as a void ** to permit
* resetting at any time. The ACCEPT handler takes two sets of sock and
* uptr: sockL and uptrL for the listen socket, and sockN and uptrN for
* the new TCP connection socket that has just been created.
*
* Handlers are always called. On outgoing TCP connection, CONNECT is always
* called on either success or failure followed by DATA and/or WRITABLE as
* indicated. On socket close, handlers are called unless close() is told
* explicitly not to call handlers. It is safe to close a socket within a
* handler, and in that case close() can be told not to call handlers to
* prevent recursion.
*
* This isn't thread-safe with the exception of whack(), which is safe to
* call from another thread to abort poll().
*/
template <typename HANDLER_PTR_TYPE>
class Phy
{
private:
HANDLER_PTR_TYPE _handler;
enum PhySocketType
{
ZT_PHY_SOCKET_CLOSED = 0x00, // socket is closed, will be removed on next poll()
ZT_PHY_SOCKET_TCP_OUT_PENDING = 0x01,
ZT_PHY_SOCKET_TCP_OUT_CONNECTED = 0x02,
ZT_PHY_SOCKET_TCP_IN = 0x03,
ZT_PHY_SOCKET_TCP_LISTEN = 0x04,
ZT_PHY_SOCKET_UDP = 0x05,
ZT_PHY_SOCKET_FD = 0x06,
ZT_PHY_SOCKET_UNIX_IN = 0x07,
ZT_PHY_SOCKET_UNIX_LISTEN = 0x08
};
struct PhySocketImpl
{
PhySocketType type;
ZT_PHY_SOCKFD_TYPE sock;
void *uptr; // user-settable pointer
ZT_PHY_SOCKADDR_STORAGE_TYPE saddr; // remote for TCP_OUT and TCP_IN, local for TCP_LISTEN, RAW, and UDP
};
std::list<PhySocketImpl> _socks;
fd_set _readfds;
fd_set _writefds;
#if defined(_WIN32) || defined(_WIN64)
fd_set _exceptfds;
#endif
long _nfds;
ZT_PHY_SOCKFD_TYPE _whackReceiveSocket;
ZT_PHY_SOCKFD_TYPE _whackSendSocket;
bool _noDelay;
bool _noCheck;
public:
/**
* @param handler Pointer of type HANDLER_PTR_TYPE to handler
* @param noDelay If true, disable TCP NAGLE algorithm on TCP sockets
* @param noCheck If true, attempt to set UDP SO_NO_CHECK option to disable sending checksums
*/
Phy(HANDLER_PTR_TYPE handler,bool noDelay,bool noCheck) :
_handler(handler)
{
FD_ZERO(&_readfds);
FD_ZERO(&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_ZERO(&_exceptfds);
SOCKET pipes[2];
{ // hack copied from StackOverflow, behaves a bit like pipe() on *nix systems
struct sockaddr_in inaddr;
struct sockaddr addr;
SOCKET lst=::socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);
if (lst == INVALID_SOCKET)
throw std::runtime_error("unable to create pipes for select() abort");
memset(&inaddr, 0, sizeof(inaddr));
memset(&addr, 0, sizeof(addr));
inaddr.sin_family = AF_INET;
inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
inaddr.sin_port = 0;
int yes=1;
setsockopt(lst,SOL_SOCKET,SO_REUSEADDR,(char*)&yes,sizeof(yes));
bind(lst,(struct sockaddr *)&inaddr,sizeof(inaddr));
listen(lst,1);
int len=sizeof(inaddr);
getsockname(lst, &addr,&len);
pipes[0]=::socket(AF_INET, SOCK_STREAM,0);
if (pipes[0] == INVALID_SOCKET)
throw std::runtime_error("unable to create pipes for select() abort");
connect(pipes[0],&addr,len);
pipes[1]=accept(lst,0,0);
closesocket(lst);
}
#else // not Windows
int pipes[2];
if (::pipe(pipes))
throw std::runtime_error("unable to create pipes for select() abort");
#endif // Windows or not
_nfds = (pipes[0] > pipes[1]) ? (long)pipes[0] : (long)pipes[1];
_whackReceiveSocket = pipes[0];
_whackSendSocket = pipes[1];
_noDelay = noDelay;
_noCheck = noCheck;
}
~Phy()
{
for(typename std::list<PhySocketImpl>::const_iterator s(_socks.begin());s!=_socks.end();++s) {
if (s->type != ZT_PHY_SOCKET_CLOSED)
this->close((PhySocket *)&(*s),true);
}
ZT_PHY_CLOSE_SOCKET(_whackReceiveSocket);
ZT_PHY_CLOSE_SOCKET(_whackSendSocket);
}
/**
* @param s Socket object
* @return Underlying OS-type (usually int or long) file descriptor associated with object
*/
static inline ZT_PHY_SOCKFD_TYPE getDescriptor(PhySocket *s) throw() { return reinterpret_cast<PhySocketImpl *>(s)->sock; }
/**
* Cause poll() to stop waiting immediately
*
* This can be used to reset the polling loop after changes that require
* attention, or to shut down a background thread that is waiting, etc.
*/
inline void whack()
{
#if defined(_WIN32) || defined(_WIN64)
::send(_whackSendSocket,(const char *)this,1,0);
#else
::write(_whackSendSocket,(PhySocket *)this,1);
#endif
}
/**
* @return Number of open sockets
*/
inline unsigned long count() const throw() { return _socks.size(); }
/**
* @return Maximum number of sockets allowed
*/
inline unsigned long maxCount() const throw() { return ZT_PHY_MAX_SOCKETS; }
/**
* Wrap a raw file descriptor in a PhySocket structure
*
* This can be used to select/poll on a raw file descriptor as part of this
* class's I/O loop. By default the fd is set for read notification but
* this can be controlled with setNotifyReadable(). When any detected
* condition is present, the phyOnFileDescriptorActivity() callback is
* called with one or both of its arguments 'true'.
*
* The Phy<>::close() method *must* be called when you're done with this
* file descriptor to remove it from the select/poll set, but unlike other
* types of sockets Phy<> does not actually close the underlying fd or
* otherwise manage its life cycle. There is also no close notification
* callback for this fd, since Phy<> doesn't actually perform reading or
* writing or detect error conditions. This is only useful for adding a
* file descriptor to Phy<> to select/poll on it.
*
* @param fd Raw file descriptor
* @param uptr User pointer to supply to callbacks
* @return PhySocket wrapping fd or NULL on failure (out of memory or too many sockets)
*/
inline PhySocket *wrapSocket(ZT_PHY_SOCKFD_TYPE fd,void *uptr = (void *)0)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)fd > _nfds)
_nfds = (long)fd;
FD_SET(fd,&_readfds);
sws.type = ZT_PHY_SOCKET_FD;
sws.sock = fd;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
// no sockaddr for this socket type, leave saddr null
return (PhySocket *)&sws;
}
/**
* Bind a UDP socket
*
* @param localAddress Local endpoint address and port
* @param uptr Initial value of user pointer associated with this socket (default: NULL)
* @param bufferSize Desired socket receive/send buffer size -- will set as close to this as possible (default: 0, leave alone)
* @return Socket or NULL on failure to bind
*/
inline PhySocket *udpBind(const struct sockaddr *localAddress,void *uptr = (void *)0,int bufferSize = 0)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_DGRAM,0);
if (!ZT_PHY_SOCKFD_VALID(s))
return (PhySocket *)0;
if (bufferSize > 0) {
int bs = bufferSize;
while (bs >= 65536) {
int tmpbs = bs;
if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
break;
bs -= 16384;
}
bs = bufferSize;
while (bs >= 65536) {
int tmpbs = bs;
if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
break;
bs -= 16384;
}
}
#if defined(_WIN32) || defined(_WIN64)
{
BOOL f;
if (localAddress->sa_family == AF_INET6) {
f = TRUE; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
f = FALSE; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,(const char *)&f,sizeof(f));
}
f = FALSE; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
f = TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char *)&f,sizeof(f));
}
#else // not Windows
{
int f;
if (localAddress->sa_family == AF_INET6) {
f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
#ifdef IPV6_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef IPV6_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
#endif
}
f = 0; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f));
#ifdef IP_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
#endif
#ifdef IP_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef SO_NO_CHECK
if (_noCheck) {
f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
}
#endif
}
#endif // Windows or not
if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
#if defined(_WIN32) || defined(_WIN64)
{ u_long iMode=1; ioctlsocket(s,FIONBIO,&iMode); }
#else
fcntl(s,F_SETFL,O_NONBLOCK);
#endif
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_UDP;
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
return (PhySocket *)&sws;
}
/**
* Set the IP TTL for the next outgoing packet (for IPv4 UDP sockets only)
*
* @param ttl New TTL (0 or >255 will set it to 255)
* @return True on success
*/
inline bool setIp4UdpTtl(PhySocket *sock,unsigned int ttl)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
#if defined(_WIN32) || defined(_WIN64)
DWORD tmp = ((ttl == 0)||(ttl > 255)) ? 255 : (DWORD)ttl;
return (::setsockopt(sws.sock,IPPROTO_IP,IP_TTL,(const char *)&tmp,sizeof(tmp)) == 0);
#else
int tmp = ((ttl == 0)||(ttl > 255)) ? 255 : (int)ttl;
return (::setsockopt(sws.sock,IPPROTO_IP,IP_TTL,(void *)&tmp,sizeof(tmp)) == 0);
#endif
}
/**
* Send a UDP packet
*
* @param sock UDP socket
* @param remoteAddress Destination address (must be correct type for socket)
* @param data Data to send
* @param len Length of packet
* @return True if packet appears to have been sent successfully
*/
inline bool udpSend(PhySocket *sock,const struct sockaddr *remoteAddress,const void *data,unsigned long len)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
#if defined(_WIN32) || defined(_WIN64)
return ((long)::sendto(sws.sock,reinterpret_cast<const char *>(data),len,0,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == (long)len);
#else
return ((long)::sendto(sws.sock,data,len,0,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == (long)len);
#endif
}
#ifdef __UNIX_LIKE__
/**
* Listen for connections on a Unix domain socket
*
* @param path Path to Unix domain socket
* @param uptr Arbitrary pointer to associate
* @return PhySocket or NULL if cannot bind
*/
inline PhySocket *unixListen(const char *path,void *uptr = (void *)0)
{
struct sockaddr_un sun;
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
memset(&sun,0,sizeof(sun));
sun.sun_family = AF_UNIX;
if (strlen(path) >= sizeof(sun.sun_path))
return (PhySocket *)0;
strcpy(sun.sun_path,path);
ZT_PHY_SOCKFD_TYPE s = ::socket(PF_UNIX,SOCK_STREAM,0);
if (!ZT_PHY_SOCKFD_VALID(s))
return (PhySocket *)0;
::fcntl(s,F_SETFL,O_NONBLOCK);
::unlink(path);
if (::bind(s,(struct sockaddr *)&sun,sizeof(struct sockaddr_un)) != 0) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
if (::listen(s,128) != 0) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_UNIX_LISTEN;
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),&sun,sizeof(struct sockaddr_un));
return (PhySocket *)&sws;
}
#endif // __UNIX_LIKE__
/**
* Bind a local listen socket to listen for new TCP connections
*
* @param localAddress Local address and port
* @param uptr Initial value of uptr for new socket (default: NULL)
* @return Socket or NULL on failure to bind
*/
inline PhySocket *tcpListen(const struct sockaddr *localAddress,void *uptr = (void *)0)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_STREAM,0);
if (!ZT_PHY_SOCKFD_VALID(s))
return (PhySocket *)0;
#if defined(_WIN32) || defined(_WIN64)
{
BOOL f;
f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
u_long iMode=1;
ioctlsocket(s,FIONBIO,&iMode);
}
#else
{
int f;
f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
fcntl(s,F_SETFL,O_NONBLOCK);
}
#endif
if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
if (::listen(s,1024)) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_TCP_LISTEN;
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
return (PhySocket *)&sws;
}
/**
* Start a non-blocking connect; CONNECT handler is called on success or failure
*
* A return value of NULL indicates a synchronous failure such as a
* failure to open a socket. The TCP connection handler is not called
* in this case.
*
* It is possible on some platforms for an "instant connect" to occur,
* such as when connecting to a loopback address. In this case, the
* 'connected' result parameter will be set to 'true' and if the
* 'callConnectHandler' flag is true (the default) the TCP connect
* handler will be called before the function returns.
*
* These semantics can be a bit confusing, but they're less so than
* the underlying semantics of asynchronous TCP connect.
*
* @param remoteAddress Remote address
* @param connected Result parameter: set to whether an "instant connect" has occurred (true if yes)
* @param uptr Initial value of uptr for new socket (default: NULL)
* @param callConnectHandler If true, call TCP connect handler even if result is known before function exit (default: true)
* @return New socket or NULL on failure
*/
inline PhySocket *tcpConnect(const struct sockaddr *remoteAddress,bool &connected,void *uptr = (void *)0,bool callConnectHandler = true)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
ZT_PHY_SOCKFD_TYPE s = ::socket(remoteAddress->sa_family,SOCK_STREAM,0);
if (!ZT_PHY_SOCKFD_VALID(s)) {
connected = false;
return (PhySocket *)0;
}
#if defined(_WIN32) || defined(_WIN64)
{
BOOL f;
if (remoteAddress->sa_family == AF_INET6) { f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f)); }
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
u_long iMode=1;
ioctlsocket(s,FIONBIO,&iMode);
}
#else
{
int f;
if (remoteAddress->sa_family == AF_INET6) { f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); }
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
fcntl(s,F_SETFL,O_NONBLOCK);
}
#endif
connected = true;
if (::connect(s,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
connected = false;
#if defined(_WIN32) || defined(_WIN64)
if (WSAGetLastError() != WSAEWOULDBLOCK) {
#else
if (errno != EINPROGRESS) {
#endif
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
} // else connection is proceeding asynchronously...
}
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
if (connected) {
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
} else {
FD_SET(s,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_SET(s,&_exceptfds);
#endif
sws.type = ZT_PHY_SOCKET_TCP_OUT_PENDING;
}
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
if ((callConnectHandler)&&(connected)) {
try {
_handler->phyOnTcpConnect((PhySocket *)&sws,&(sws.uptr),true);
} catch ( ... ) {}
}
return (PhySocket *)&sws;
}
/**
* Try to set buffer sizes as close to the given value as possible
*
* This will try the specified value and then lower values in 16K increments
* until one works.
*
* @param sock Socket
* @param bufferSize Desired buffer sizes
*/
inline void setBufferSizes(const PhySocket *sock,int bufferSize)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (bufferSize > 0) {
int bs = bufferSize;
while (bs >= 65536) {
int tmpbs = bs;
if (::setsockopt(sws.sock,SOL_SOCKET,SO_RCVBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
break;
bs -= 16384;
}
bs = bufferSize;
while (bs >= 65536) {
int tmpbs = bs;
if (::setsockopt(sws.sock,SOL_SOCKET,SO_SNDBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
break;
bs -= 16384;
}
}
}
/**
* Attempt to send data to a stream socket (non-blocking)
*
* If -1 is returned, the socket should no longer be used as it is now
* destroyed. If callCloseHandler is true, the close handler will be
* called before the function returns.
*
* This can be used with TCP, Unix, or socket pair sockets.
*
* @param sock An open stream socket (other socket types will fail)
* @param data Data to send
* @param len Length of data
* @param callCloseHandler If true, call close handler on socket closing failure condition (default: true)
* @return Number of bytes actually sent or -1 on fatal error (socket closure)
*/
inline long streamSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler = true)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
#if defined(_WIN32) || defined(_WIN64)
long n = (long)::send(sws.sock,reinterpret_cast<const char *>(data),len,0);
if (n == SOCKET_ERROR) {
switch(WSAGetLastError()) {
case WSAEINTR:
case WSAEWOULDBLOCK:
return 0;
default:
this->close(sock,callCloseHandler);
return -1;
}
}
#else // not Windows
long n = (long)::send(sws.sock,data,len,0);
if (n < 0) {
switch(errno) {
#ifdef EAGAIN
case EAGAIN:
#endif
#if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) )
case EWOULDBLOCK:
#endif
#ifdef EINTR
case EINTR:
#endif
return 0;
default:
this->close(sock,callCloseHandler);
return -1;
}
}
#endif // Windows or not
return n;
}
#ifdef __UNIX_LIKE__
/**
* Attempt to send data to a Unix domain socket connection (non-blocking)
*
* If -1 is returned, the socket should no longer be used as it is now
* destroyed. If callCloseHandler is true, the close handler will be
* called before the function returns.
*
* @param sock An open Unix socket (other socket types will fail)
* @param data Data to send
* @param len Length of data
* @param callCloseHandler If true, call close handler on socket closing failure condition (default: true)
* @return Number of bytes actually sent or -1 on fatal error (socket closure)
*/
inline long unixSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler = true)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
long n = (long)::write(sws.sock,data,len);
if (n < 0) {
switch(errno) {
#ifdef EAGAIN
case EAGAIN:
#endif
#if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) )
case EWOULDBLOCK:
#endif
#ifdef EINTR
case EINTR:
#endif
return 0;
default:
this->close(sock,callCloseHandler);
return -1;
}
}
return n;
}
#endif // __UNIX_LIKE__
/**
* For streams, sets whether we want to be notified that the socket is writable
*
* This can be used with TCP, Unix, or socket pair sockets.
*
* Call whack() if this is being done from another thread and you want
* it to take effect immediately. Otherwise it is only guaranteed to
* take effect on the next poll().
*
* @param sock Stream connection socket
* @param notifyWritable Want writable notifications?
*/
inline const void setNotifyWritable(PhySocket *sock,bool notifyWritable)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (notifyWritable) {
FD_SET(sws.sock,&_writefds);
} else {
FD_CLR(sws.sock,&_writefds);
}
}
/**
* Set whether we want to be notified that a socket is readable
*
* This is primarily for raw sockets added with wrapSocket(). It could be
* used with others, but doing so would essentially lock them and prevent
* data from being read from them until this is set to 'true' again.
*
* @param sock Socket to modify
* @param notifyReadable True if socket should be monitored for readability
*/
inline const void setNotifyReadable(PhySocket *sock,bool notifyReadable)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (notifyReadable) {
FD_SET(sws.sock,&_readfds);
} else {
FD_CLR(sws.sock,&_readfds);
}
}
/**
* Wait for activity and handle one or more events
*
* Note that this is not guaranteed to wait up to 'timeout' even
* if nothing happens, as whack() or other events such as signals
* may cause premature termination.
*
* @param timeout Timeout in milliseconds or 0 for none (forever)
*/
inline void poll(unsigned long timeout)
{
char buf[131072];
struct sockaddr_storage ss;
struct timeval tv;
fd_set rfds,wfds,efds;
memcpy(&rfds,&_readfds,sizeof(rfds));
memcpy(&wfds,&_writefds,sizeof(wfds));
#if defined(_WIN32) || defined(_WIN64)
memcpy(&efds,&_exceptfds,sizeof(efds));
#else
FD_ZERO(&efds);
#endif
tv.tv_sec = (long)(timeout / 1000);
tv.tv_usec = (long)((timeout % 1000) * 1000);
if (::select((int)_nfds + 1,&rfds,&wfds,&efds,(timeout > 0) ? &tv : (struct timeval *)0) <= 0)
return;
if (FD_ISSET(_whackReceiveSocket,&rfds)) {
char tmp[16];
#if defined(_WIN32) || defined(_WIN64)
::recv(_whackReceiveSocket,tmp,16,0);
#else
::read(_whackReceiveSocket,tmp,16);
#endif
}
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();) {
switch (s->type) {
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
#if defined(_WIN32) || defined(_WIN64)
if (FD_ISSET(s->sock,&efds)) {
this->close((PhySocket *)&(*s),true);
} else // ... if
#endif
if (FD_ISSET(s->sock,&wfds)) {
socklen_t slen = sizeof(ss);
if (::getpeername(s->sock,(struct sockaddr *)&ss,&slen) != 0) {
this->close((PhySocket *)&(*s),true);
} else {
s->type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
FD_SET(s->sock,&_readfds);
FD_CLR(s->sock,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_CLR(s->sock,&_exceptfds);
#endif
try {
_handler->phyOnTcpConnect((PhySocket *)&(*s),&(s->uptr),true);
} catch ( ... ) {}
}
}
break;
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
case ZT_PHY_SOCKET_TCP_IN: {
ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable
if (FD_ISSET(sock,&rfds)) {
long n = (long)::recv(sock,buf,sizeof(buf),0);
if (n <= 0) {
this->close((PhySocket *)&(*s),true);
} else {
try {
_handler->phyOnTcpData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n);
} catch ( ... ) {}
}
}
if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) {
try {
_handler->phyOnTcpWritable((PhySocket *)&(*s),&(s->uptr));
} catch ( ... ) {}
}
} break;
case ZT_PHY_SOCKET_TCP_LISTEN:
if (FD_ISSET(s->sock,&rfds)) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen);
if (ZT_PHY_SOCKFD_VALID(newSock)) {
if (_socks.size() >= ZT_PHY_MAX_SOCKETS) {
ZT_PHY_CLOSE_SOCKET(newSock);
} else {
#if defined(_WIN32) || defined(_WIN64)
{ BOOL f = (_noDelay ? TRUE : FALSE); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
{ u_long iMode=1; ioctlsocket(newSock,FIONBIO,&iMode); }
#else
{ int f = (_noDelay ? 1 : 0); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
fcntl(newSock,F_SETFL,O_NONBLOCK);
#endif
_socks.push_back(PhySocketImpl());
PhySocketImpl &sws = _socks.back();
FD_SET(newSock,&_readfds);
if ((long)newSock > _nfds)
_nfds = (long)newSock;
sws.type = ZT_PHY_SOCKET_TCP_IN;
sws.sock = newSock;
sws.uptr = (void *)0;
memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage));
try {
_handler->phyOnTcpAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr),(const struct sockaddr *)&(sws.saddr));
} catch ( ... ) {}
}
}
}
break;
case ZT_PHY_SOCKET_UDP:
if (FD_ISSET(s->sock,&rfds)) {
for(;;) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
long n = (long)::recvfrom(s->sock,buf,sizeof(buf),0,(struct sockaddr *)&ss,&slen);
if (n > 0) {
try {
_handler->phyOnDatagram((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n);
} catch ( ... ) {}
} else if (n < 0)
break;
}
}
break;
case ZT_PHY_SOCKET_UNIX_IN: {
#ifdef __UNIX_LIKE__
ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable
if (FD_ISSET(sock,&rfds)) {
long n = (long)::read(sock,buf,sizeof(buf));
if (n <= 0) {
this->close((PhySocket *)&(*s),true);
} else {
try {
_handler->phyOnUnixData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n);
} catch ( ... ) {}
}
}
if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) {
try {
//_handler->phyOnUnixWritable((PhySocket *)&(*s),&(s->uptr));
} catch ( ... ) {}
}
#endif // __UNIX_LIKE__
} break;
case ZT_PHY_SOCKET_UNIX_LISTEN:
#ifdef __UNIX_LIKE__
if (FD_ISSET(s->sock,&rfds)) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen);
if (ZT_PHY_SOCKFD_VALID(newSock)) {
if (_socks.size() >= ZT_PHY_MAX_SOCKETS) {
ZT_PHY_CLOSE_SOCKET(newSock);
} else {
fcntl(newSock,F_SETFL,O_NONBLOCK);
_socks.push_back(PhySocketImpl());
PhySocketImpl &sws = _socks.back();
FD_SET(newSock,&_readfds);
if ((long)newSock > _nfds)
_nfds = (long)newSock;
sws.type = ZT_PHY_SOCKET_UNIX_IN;
sws.sock = newSock;
sws.uptr = (void *)0;
memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage));
try {
_handler->phyOnUnixAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr));
} catch ( ... ) {}
}
}
}
#endif // __UNIX_LIKE__
break;
case ZT_PHY_SOCKET_FD: {
ZT_PHY_SOCKFD_TYPE sock = s->sock;
const bool readable = ((FD_ISSET(sock,&rfds))&&(FD_ISSET(sock,&_readfds)));
const bool writable = ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds)));
if ((readable)||(writable)) {
try {
_handler->phyOnFileDescriptorActivity((PhySocket *)&(*s),&(s->uptr),readable,writable);
} catch ( ... ) {}
}
} break;
default:
break;
}
if (s->type == ZT_PHY_SOCKET_CLOSED)
_socks.erase(s++);
else ++s;
}
}
/**
* @param sock Socket to close
* @param callHandlers If true, call handlers for TCP connect (success: false) or close (default: true)
*/
inline void close(PhySocket *sock,bool callHandlers = true)
{
if (!sock)
return;
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (sws.type == ZT_PHY_SOCKET_CLOSED)
return;
FD_CLR(sws.sock,&_readfds);
FD_CLR(sws.sock,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_CLR(sws.sock,&_exceptfds);
#endif
if (sws.type != ZT_PHY_SOCKET_FD)
ZT_PHY_CLOSE_SOCKET(sws.sock);
#ifdef __UNIX_LIKE__
if (sws.type == ZT_PHY_SOCKET_UNIX_LISTEN)
::unlink(((struct sockaddr_un *)(&(sws.saddr)))->sun_path);
#endif // __UNIX_LIKE__
if (callHandlers) {
switch(sws.type) {
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
try {
_handler->phyOnTcpConnect(sock,&(sws.uptr),false);
} catch ( ... ) {}
break;
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
case ZT_PHY_SOCKET_TCP_IN:
try {
_handler->phyOnTcpClose(sock,&(sws.uptr));
} catch ( ... ) {}
break;
case ZT_PHY_SOCKET_UNIX_IN:
#ifdef __UNIX_LIKE__
try {
_handler->phyOnUnixClose(sock,&(sws.uptr));
} catch ( ... ) {}
#endif // __UNIX_LIKE__
break;
default:
break;
}
}
// Causes entry to be deleted from list in poll(), ignored elsewhere
sws.type = ZT_PHY_SOCKET_CLOSED;
if ((long)sws.sock >= (long)_nfds) {
long nfds = (long)_whackSendSocket;
if ((long)_whackReceiveSocket > nfds)
nfds = (long)_whackReceiveSocket;
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();++s) {
if ((s->type != ZT_PHY_SOCKET_CLOSED)&&((long)s->sock > nfds))
nfds = (long)s->sock;
}
_nfds = nfds;
}
}
};
} // namespace ZeroTier
#endif