mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-12 16:02:41 +00:00
341 lines
11 KiB
ArmAsm
341 lines
11 KiB
ArmAsm
// This file is generated from a similarly-named Perl script in the BoringSSL
|
|
// source tree. Do not edit by hand.
|
|
|
|
#if !defined(__has_feature)
|
|
#define __has_feature(x) 0
|
|
#endif
|
|
#if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM)
|
|
#define OPENSSL_NO_ASM
|
|
#endif
|
|
|
|
#if !defined(OPENSSL_NO_ASM)
|
|
#include <GFp/arm_arch.h>
|
|
|
|
.text
|
|
|
|
.globl _GFp_gcm_init_neon
|
|
.private_extern _GFp_gcm_init_neon
|
|
|
|
.align 4
|
|
_GFp_gcm_init_neon:
|
|
AARCH64_VALID_CALL_TARGET
|
|
// This function is adapted from gcm_init_v8. xC2 is t3.
|
|
ld1 {v17.2d}, [x1] // load H
|
|
movi v19.16b, #0xe1
|
|
shl v19.2d, v19.2d, #57 // 0xc2.0
|
|
ext v3.16b, v17.16b, v17.16b, #8
|
|
ushr v18.2d, v19.2d, #63
|
|
dup v17.4s, v17.s[1]
|
|
ext v16.16b, v18.16b, v19.16b, #8 // t0=0xc2....01
|
|
ushr v18.2d, v3.2d, #63
|
|
sshr v17.4s, v17.4s, #31 // broadcast carry bit
|
|
and v18.16b, v18.16b, v16.16b
|
|
shl v3.2d, v3.2d, #1
|
|
ext v18.16b, v18.16b, v18.16b, #8
|
|
and v16.16b, v16.16b, v17.16b
|
|
orr v3.16b, v3.16b, v18.16b // H<<<=1
|
|
eor v5.16b, v3.16b, v16.16b // twisted H
|
|
st1 {v5.2d}, [x0] // store Htable[0]
|
|
ret
|
|
|
|
|
|
.globl _GFp_gcm_gmult_neon
|
|
.private_extern _GFp_gcm_gmult_neon
|
|
|
|
.align 4
|
|
_GFp_gcm_gmult_neon:
|
|
AARCH64_VALID_CALL_TARGET
|
|
ld1 {v3.16b}, [x0] // load Xi
|
|
ld1 {v5.1d}, [x1], #8 // load twisted H
|
|
ld1 {v6.1d}, [x1]
|
|
adrp x9, Lmasks@PAGE // load constants
|
|
add x9, x9, Lmasks@PAGEOFF
|
|
ld1 {v24.2d, v25.2d}, [x9]
|
|
rev64 v3.16b, v3.16b // byteswap Xi
|
|
ext v3.16b, v3.16b, v3.16b, #8
|
|
eor v7.8b, v5.8b, v6.8b // Karatsuba pre-processing
|
|
|
|
mov x3, #16
|
|
b Lgmult_neon
|
|
|
|
|
|
.globl _GFp_gcm_ghash_neon
|
|
.private_extern _GFp_gcm_ghash_neon
|
|
|
|
.align 4
|
|
_GFp_gcm_ghash_neon:
|
|
AARCH64_VALID_CALL_TARGET
|
|
ld1 {v0.16b}, [x0] // load Xi
|
|
ld1 {v5.1d}, [x1], #8 // load twisted H
|
|
ld1 {v6.1d}, [x1]
|
|
adrp x9, Lmasks@PAGE // load constants
|
|
add x9, x9, Lmasks@PAGEOFF
|
|
ld1 {v24.2d, v25.2d}, [x9]
|
|
rev64 v0.16b, v0.16b // byteswap Xi
|
|
ext v0.16b, v0.16b, v0.16b, #8
|
|
eor v7.8b, v5.8b, v6.8b // Karatsuba pre-processing
|
|
|
|
Loop_neon:
|
|
ld1 {v3.16b}, [x2], #16 // load inp
|
|
rev64 v3.16b, v3.16b // byteswap inp
|
|
ext v3.16b, v3.16b, v3.16b, #8
|
|
eor v3.16b, v3.16b, v0.16b // inp ^= Xi
|
|
|
|
Lgmult_neon:
|
|
// Split the input into v3 and v4. (The upper halves are unused,
|
|
// so it is okay to leave them alone.)
|
|
ins v4.d[0], v3.d[1]
|
|
ext v16.8b, v5.8b, v5.8b, #1 // A1
|
|
pmull v16.8h, v16.8b, v3.8b // F = A1*B
|
|
ext v0.8b, v3.8b, v3.8b, #1 // B1
|
|
pmull v0.8h, v5.8b, v0.8b // E = A*B1
|
|
ext v17.8b, v5.8b, v5.8b, #2 // A2
|
|
pmull v17.8h, v17.8b, v3.8b // H = A2*B
|
|
ext v19.8b, v3.8b, v3.8b, #2 // B2
|
|
pmull v19.8h, v5.8b, v19.8b // G = A*B2
|
|
ext v18.8b, v5.8b, v5.8b, #3 // A3
|
|
eor v16.16b, v16.16b, v0.16b // L = E + F
|
|
pmull v18.8h, v18.8b, v3.8b // J = A3*B
|
|
ext v0.8b, v3.8b, v3.8b, #3 // B3
|
|
eor v17.16b, v17.16b, v19.16b // M = G + H
|
|
pmull v0.8h, v5.8b, v0.8b // I = A*B3
|
|
|
|
// Here we diverge from the 32-bit version. It computes the following
|
|
// (instructions reordered for clarity):
|
|
//
|
|
// veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L)
|
|
// vand $t0#hi, $t0#hi, $k48
|
|
// veor $t0#lo, $t0#lo, $t0#hi
|
|
//
|
|
// veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M)
|
|
// vand $t1#hi, $t1#hi, $k32
|
|
// veor $t1#lo, $t1#lo, $t1#hi
|
|
//
|
|
// veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N)
|
|
// vand $t2#hi, $t2#hi, $k16
|
|
// veor $t2#lo, $t2#lo, $t2#hi
|
|
//
|
|
// veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K)
|
|
// vmov.i64 $t3#hi, #0
|
|
//
|
|
// $kN is a mask with the bottom N bits set. AArch64 cannot compute on
|
|
// upper halves of SIMD registers, so we must split each half into
|
|
// separate registers. To compensate, we pair computations up and
|
|
// parallelize.
|
|
|
|
ext v19.8b, v3.8b, v3.8b, #4 // B4
|
|
eor v18.16b, v18.16b, v0.16b // N = I + J
|
|
pmull v19.8h, v5.8b, v19.8b // K = A*B4
|
|
|
|
// This can probably be scheduled more efficiently. For now, we just
|
|
// pair up independent instructions.
|
|
zip1 v20.2d, v16.2d, v17.2d
|
|
zip1 v22.2d, v18.2d, v19.2d
|
|
zip2 v21.2d, v16.2d, v17.2d
|
|
zip2 v23.2d, v18.2d, v19.2d
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
and v21.16b, v21.16b, v24.16b
|
|
and v23.16b, v23.16b, v25.16b
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
zip1 v16.2d, v20.2d, v21.2d
|
|
zip1 v18.2d, v22.2d, v23.2d
|
|
zip2 v17.2d, v20.2d, v21.2d
|
|
zip2 v19.2d, v22.2d, v23.2d
|
|
|
|
ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8
|
|
ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16
|
|
pmull v0.8h, v5.8b, v3.8b // D = A*B
|
|
ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32
|
|
ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24
|
|
eor v16.16b, v16.16b, v17.16b
|
|
eor v18.16b, v18.16b, v19.16b
|
|
eor v0.16b, v0.16b, v16.16b
|
|
eor v0.16b, v0.16b, v18.16b
|
|
eor v3.8b, v3.8b, v4.8b // Karatsuba pre-processing
|
|
ext v16.8b, v7.8b, v7.8b, #1 // A1
|
|
pmull v16.8h, v16.8b, v3.8b // F = A1*B
|
|
ext v1.8b, v3.8b, v3.8b, #1 // B1
|
|
pmull v1.8h, v7.8b, v1.8b // E = A*B1
|
|
ext v17.8b, v7.8b, v7.8b, #2 // A2
|
|
pmull v17.8h, v17.8b, v3.8b // H = A2*B
|
|
ext v19.8b, v3.8b, v3.8b, #2 // B2
|
|
pmull v19.8h, v7.8b, v19.8b // G = A*B2
|
|
ext v18.8b, v7.8b, v7.8b, #3 // A3
|
|
eor v16.16b, v16.16b, v1.16b // L = E + F
|
|
pmull v18.8h, v18.8b, v3.8b // J = A3*B
|
|
ext v1.8b, v3.8b, v3.8b, #3 // B3
|
|
eor v17.16b, v17.16b, v19.16b // M = G + H
|
|
pmull v1.8h, v7.8b, v1.8b // I = A*B3
|
|
|
|
// Here we diverge from the 32-bit version. It computes the following
|
|
// (instructions reordered for clarity):
|
|
//
|
|
// veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L)
|
|
// vand $t0#hi, $t0#hi, $k48
|
|
// veor $t0#lo, $t0#lo, $t0#hi
|
|
//
|
|
// veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M)
|
|
// vand $t1#hi, $t1#hi, $k32
|
|
// veor $t1#lo, $t1#lo, $t1#hi
|
|
//
|
|
// veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N)
|
|
// vand $t2#hi, $t2#hi, $k16
|
|
// veor $t2#lo, $t2#lo, $t2#hi
|
|
//
|
|
// veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K)
|
|
// vmov.i64 $t3#hi, #0
|
|
//
|
|
// $kN is a mask with the bottom N bits set. AArch64 cannot compute on
|
|
// upper halves of SIMD registers, so we must split each half into
|
|
// separate registers. To compensate, we pair computations up and
|
|
// parallelize.
|
|
|
|
ext v19.8b, v3.8b, v3.8b, #4 // B4
|
|
eor v18.16b, v18.16b, v1.16b // N = I + J
|
|
pmull v19.8h, v7.8b, v19.8b // K = A*B4
|
|
|
|
// This can probably be scheduled more efficiently. For now, we just
|
|
// pair up independent instructions.
|
|
zip1 v20.2d, v16.2d, v17.2d
|
|
zip1 v22.2d, v18.2d, v19.2d
|
|
zip2 v21.2d, v16.2d, v17.2d
|
|
zip2 v23.2d, v18.2d, v19.2d
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
and v21.16b, v21.16b, v24.16b
|
|
and v23.16b, v23.16b, v25.16b
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
zip1 v16.2d, v20.2d, v21.2d
|
|
zip1 v18.2d, v22.2d, v23.2d
|
|
zip2 v17.2d, v20.2d, v21.2d
|
|
zip2 v19.2d, v22.2d, v23.2d
|
|
|
|
ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8
|
|
ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16
|
|
pmull v1.8h, v7.8b, v3.8b // D = A*B
|
|
ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32
|
|
ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24
|
|
eor v16.16b, v16.16b, v17.16b
|
|
eor v18.16b, v18.16b, v19.16b
|
|
eor v1.16b, v1.16b, v16.16b
|
|
eor v1.16b, v1.16b, v18.16b
|
|
ext v16.8b, v6.8b, v6.8b, #1 // A1
|
|
pmull v16.8h, v16.8b, v4.8b // F = A1*B
|
|
ext v2.8b, v4.8b, v4.8b, #1 // B1
|
|
pmull v2.8h, v6.8b, v2.8b // E = A*B1
|
|
ext v17.8b, v6.8b, v6.8b, #2 // A2
|
|
pmull v17.8h, v17.8b, v4.8b // H = A2*B
|
|
ext v19.8b, v4.8b, v4.8b, #2 // B2
|
|
pmull v19.8h, v6.8b, v19.8b // G = A*B2
|
|
ext v18.8b, v6.8b, v6.8b, #3 // A3
|
|
eor v16.16b, v16.16b, v2.16b // L = E + F
|
|
pmull v18.8h, v18.8b, v4.8b // J = A3*B
|
|
ext v2.8b, v4.8b, v4.8b, #3 // B3
|
|
eor v17.16b, v17.16b, v19.16b // M = G + H
|
|
pmull v2.8h, v6.8b, v2.8b // I = A*B3
|
|
|
|
// Here we diverge from the 32-bit version. It computes the following
|
|
// (instructions reordered for clarity):
|
|
//
|
|
// veor $t0#lo, $t0#lo, $t0#hi @ t0 = P0 + P1 (L)
|
|
// vand $t0#hi, $t0#hi, $k48
|
|
// veor $t0#lo, $t0#lo, $t0#hi
|
|
//
|
|
// veor $t1#lo, $t1#lo, $t1#hi @ t1 = P2 + P3 (M)
|
|
// vand $t1#hi, $t1#hi, $k32
|
|
// veor $t1#lo, $t1#lo, $t1#hi
|
|
//
|
|
// veor $t2#lo, $t2#lo, $t2#hi @ t2 = P4 + P5 (N)
|
|
// vand $t2#hi, $t2#hi, $k16
|
|
// veor $t2#lo, $t2#lo, $t2#hi
|
|
//
|
|
// veor $t3#lo, $t3#lo, $t3#hi @ t3 = P6 + P7 (K)
|
|
// vmov.i64 $t3#hi, #0
|
|
//
|
|
// $kN is a mask with the bottom N bits set. AArch64 cannot compute on
|
|
// upper halves of SIMD registers, so we must split each half into
|
|
// separate registers. To compensate, we pair computations up and
|
|
// parallelize.
|
|
|
|
ext v19.8b, v4.8b, v4.8b, #4 // B4
|
|
eor v18.16b, v18.16b, v2.16b // N = I + J
|
|
pmull v19.8h, v6.8b, v19.8b // K = A*B4
|
|
|
|
// This can probably be scheduled more efficiently. For now, we just
|
|
// pair up independent instructions.
|
|
zip1 v20.2d, v16.2d, v17.2d
|
|
zip1 v22.2d, v18.2d, v19.2d
|
|
zip2 v21.2d, v16.2d, v17.2d
|
|
zip2 v23.2d, v18.2d, v19.2d
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
and v21.16b, v21.16b, v24.16b
|
|
and v23.16b, v23.16b, v25.16b
|
|
eor v20.16b, v20.16b, v21.16b
|
|
eor v22.16b, v22.16b, v23.16b
|
|
zip1 v16.2d, v20.2d, v21.2d
|
|
zip1 v18.2d, v22.2d, v23.2d
|
|
zip2 v17.2d, v20.2d, v21.2d
|
|
zip2 v19.2d, v22.2d, v23.2d
|
|
|
|
ext v16.16b, v16.16b, v16.16b, #15 // t0 = t0 << 8
|
|
ext v17.16b, v17.16b, v17.16b, #14 // t1 = t1 << 16
|
|
pmull v2.8h, v6.8b, v4.8b // D = A*B
|
|
ext v19.16b, v19.16b, v19.16b, #12 // t3 = t3 << 32
|
|
ext v18.16b, v18.16b, v18.16b, #13 // t2 = t2 << 24
|
|
eor v16.16b, v16.16b, v17.16b
|
|
eor v18.16b, v18.16b, v19.16b
|
|
eor v2.16b, v2.16b, v16.16b
|
|
eor v2.16b, v2.16b, v18.16b
|
|
ext v16.16b, v0.16b, v2.16b, #8
|
|
eor v1.16b, v1.16b, v0.16b // Karatsuba post-processing
|
|
eor v1.16b, v1.16b, v2.16b
|
|
eor v1.16b, v1.16b, v16.16b // Xm overlaps Xh.lo and Xl.hi
|
|
ins v0.d[1], v1.d[0] // Xh|Xl - 256-bit result
|
|
// This is a no-op due to the ins instruction below.
|
|
// ins v2.d[0], v1.d[1]
|
|
|
|
// equivalent of reduction_avx from ghash-x86_64.pl
|
|
shl v17.2d, v0.2d, #57 // 1st phase
|
|
shl v18.2d, v0.2d, #62
|
|
eor v18.16b, v18.16b, v17.16b //
|
|
shl v17.2d, v0.2d, #63
|
|
eor v18.16b, v18.16b, v17.16b //
|
|
// Note Xm contains {Xl.d[1], Xh.d[0]}.
|
|
eor v18.16b, v18.16b, v1.16b
|
|
ins v0.d[1], v18.d[0] // Xl.d[1] ^= t2.d[0]
|
|
ins v2.d[0], v18.d[1] // Xh.d[0] ^= t2.d[1]
|
|
|
|
ushr v18.2d, v0.2d, #1 // 2nd phase
|
|
eor v2.16b, v2.16b,v0.16b
|
|
eor v0.16b, v0.16b,v18.16b //
|
|
ushr v18.2d, v18.2d, #6
|
|
ushr v0.2d, v0.2d, #1 //
|
|
eor v0.16b, v0.16b, v2.16b //
|
|
eor v0.16b, v0.16b, v18.16b //
|
|
|
|
subs x3, x3, #16
|
|
bne Loop_neon
|
|
|
|
rev64 v0.16b, v0.16b // byteswap Xi and write
|
|
ext v0.16b, v0.16b, v0.16b, #8
|
|
st1 {v0.16b}, [x0]
|
|
|
|
ret
|
|
|
|
|
|
.section __TEXT,__const
|
|
.align 4
|
|
Lmasks:
|
|
.quad 0x0000ffffffffffff // k48
|
|
.quad 0x00000000ffffffff // k32
|
|
.quad 0x000000000000ffff // k16
|
|
.quad 0x0000000000000000 // k0
|
|
.byte 71,72,65,83,72,32,102,111,114,32,65,82,77,118,56,44,32,100,101,114,105,118,101,100,32,102,114,111,109,32,65,82,77,118,52,32,118,101,114,115,105,111,110,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
|
|
.align 2
|
|
.align 2
|
|
#endif // !OPENSSL_NO_ASM
|