ZeroTierOne/node/Identity.cpp
2024-09-26 08:52:29 -04:00

204 lines
6.7 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Identity.hpp"
#include "Constants.hpp"
#include "ECC.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// These can't be changed without a new identity type. They define the
// parameters of the hashcash hashing/searching algorithm.
#define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17
#define ZT_IDENTITY_GEN_MEMORY 2097152
namespace ZeroTier {
// A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing
static inline void _computeMemoryHardHash(const void* publicKey, unsigned int publicKeyBytes, void* digest, void* genmem)
{
// Digest publicKey[] to obtain initial digest
SHA512(digest, publicKey, publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
memset(genmem, 0, ZT_IDENTITY_GEN_MEMORY);
Salsa20 s20(digest, (char*)digest + 32);
s20.crypt20((char*)genmem, (char*)genmem, 64);
for (unsigned long i = 64; i < ZT_IDENTITY_GEN_MEMORY; i += 64) {
unsigned long k = i - 64;
*((uint64_t*)((char*)genmem + i)) = *((uint64_t*)((char*)genmem + k));
*((uint64_t*)((char*)genmem + i + 8)) = *((uint64_t*)((char*)genmem + k + 8));
*((uint64_t*)((char*)genmem + i + 16)) = *((uint64_t*)((char*)genmem + k + 16));
*((uint64_t*)((char*)genmem + i + 24)) = *((uint64_t*)((char*)genmem + k + 24));
*((uint64_t*)((char*)genmem + i + 32)) = *((uint64_t*)((char*)genmem + k + 32));
*((uint64_t*)((char*)genmem + i + 40)) = *((uint64_t*)((char*)genmem + k + 40));
*((uint64_t*)((char*)genmem + i + 48)) = *((uint64_t*)((char*)genmem + k + 48));
*((uint64_t*)((char*)genmem + i + 56)) = *((uint64_t*)((char*)genmem + k + 56));
s20.crypt20((char*)genmem + i, (char*)genmem + i, 64);
}
// Render final digest using genmem as a lookup table
for (unsigned long i = 0; i < (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t*)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t*)genmem)[i++]) % (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t*)genmem)[idx2];
((uint64_t*)genmem)[idx2] = ((uint64_t*)digest)[idx1];
((uint64_t*)digest)[idx1] = tmp;
s20.crypt20(digest, digest, 64);
}
}
// Hashcash generation halting condition -- halt when first byte is less than
// threshold value.
struct _Identity_generate_cond {
_Identity_generate_cond()
{
}
_Identity_generate_cond(unsigned char* sb, char* gm) : digest(sb), genmem(gm)
{
}
inline bool operator()(const ECC::Pair& kp) const
{
_computeMemoryHardHash(kp.pub.data, ZT_ECC_PUBLIC_KEY_SET_LEN, digest, genmem);
return (digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN);
}
unsigned char* digest;
char* genmem;
};
void Identity::generate()
{
unsigned char digest[64];
char* genmem = new char[ZT_IDENTITY_GEN_MEMORY];
ECC::Pair kp;
do {
kp = ECC::generateSatisfying(_Identity_generate_cond(digest, genmem));
_address.setTo(digest + 59, ZT_ADDRESS_LENGTH); // last 5 bytes are address
} while (_address.isReserved());
_publicKey = kp.pub;
if (! _privateKey) {
_privateKey = new ECC::Private();
}
*_privateKey = kp.priv;
delete[] genmem;
}
bool Identity::locallyValidate() const
{
if (_address.isReserved()) {
return false;
}
unsigned char digest[64];
char* genmem = new char[ZT_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN, digest, genmem);
delete[] genmem;
unsigned char addrb[5];
_address.copyTo(addrb, 5);
return ((digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN) && (digest[59] == addrb[0]) && (digest[60] == addrb[1]) && (digest[61] == addrb[2]) && (digest[62] == addrb[3]) && (digest[63] == addrb[4]));
}
char* Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char* p = buf;
Utils::hex10(_address.toInt(), p);
p += 10;
*(p++) = ':';
*(p++) = '0';
*(p++) = ':';
Utils::hex(_publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN, p);
p += ZT_ECC_PUBLIC_KEY_SET_LEN * 2;
if ((_privateKey) && (includePrivate)) {
*(p++) = ':';
Utils::hex(_privateKey->data, ZT_ECC_PRIVATE_KEY_SET_LEN, p);
p += ZT_ECC_PRIVATE_KEY_SET_LEN * 2;
}
*p = (char)0;
return buf;
}
bool Identity::fromString(const char* str)
{
if (! str) {
_address.zero();
return false;
}
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
if (! Utils::scopy(tmp, sizeof(tmp), str)) {
_address.zero();
return false;
}
delete _privateKey;
_privateKey = (ECC::Private*)0;
int fno = 0;
char* saveptr = (char*)0;
for (char* f = Utils::stok(tmp, ":", &saveptr); (f); f = Utils::stok((char*)0, ":", &saveptr)) {
switch (fno++) {
case 0:
_address = Address(Utils::hexStrToU64(f));
if (_address.isReserved()) {
_address.zero();
return false;
}
break;
case 1:
if ((f[0] != '0') || (f[1])) {
_address.zero();
return false;
}
break;
case 2:
if (Utils::unhex(f, _publicKey.data, ZT_ECC_PUBLIC_KEY_SET_LEN) != ZT_ECC_PUBLIC_KEY_SET_LEN) {
_address.zero();
return false;
}
break;
case 3:
_privateKey = new ECC::Private();
if (Utils::unhex(f, _privateKey->data, ZT_ECC_PRIVATE_KEY_SET_LEN) != ZT_ECC_PRIVATE_KEY_SET_LEN) {
_address.zero();
return false;
}
break;
default:
_address.zero();
return false;
}
}
if (fno < 3) {
_address.zero();
return false;
}
return true;
}
} // namespace ZeroTier