ZeroTierOne/node/IncomingPacket.cpp
2016-08-23 11:57:56 -07:00

1389 lines
60 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "../version.h"
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "IncomingPacket.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
#include "Peer.hpp"
#include "NetworkController.hpp"
#include "SelfAwareness.hpp"
#include "Salsa20.hpp"
#include "SHA512.hpp"
#include "World.hpp"
#include "Cluster.hpp"
#include "Node.hpp"
#include "CertificateOfMembership.hpp"
#include "Capability.hpp"
#include "Tag.hpp"
namespace ZeroTier {
bool IncomingPacket::tryDecode(const RuntimeEnvironment *RR)
{
const Address sourceAddress(source());
try {
// Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear)
const unsigned int c = cipher();
bool trusted = false;
if (c == ZT_PROTO_CIPHER_SUITE__NO_CRYPTO_TRUSTED_PATH) {
// If this is marked as a packet via a trusted path, check source address and path ID.
// Obviously if no trusted paths are configured this always returns false and such
// packets are dropped on the floor.
if (RR->topology->shouldInboundPathBeTrusted(_remoteAddress,trustedPathId())) {
trusted = true;
TRACE("TRUSTED PATH packet approved from %s(%s), trusted path ID %llx",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str(),trustedPathId());
} else {
TRACE("dropped packet from %s(%s), cipher set to trusted path mode but path %llx@%s is not trusted!",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str(),trustedPathId(),_remoteAddress.toString().c_str());
return true;
}
} else if ((c == ZT_PROTO_CIPHER_SUITE__C25519_POLY1305_NONE)&&(verb() == Packet::VERB_HELLO)) {
// A null pointer for peer to _doHELLO() tells it to run its own
// special internal authentication logic. This is done for unencrypted
// HELLOs to learn new identities, etc.
SharedPtr<Peer> tmp;
return _doHELLO(RR,tmp);
}
SharedPtr<Peer> peer(RR->topology->getPeer(sourceAddress));
if (peer) {
if (!trusted) {
if (!dearmor(peer->key())) {
TRACE("dropped packet from %s(%s), MAC authentication failed (size: %u)",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str(),size());
return true;
}
}
if (!uncompress()) {
TRACE("dropped packet from %s(%s), compressed data invalid",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
const Packet::Verb v = verb();
//TRACE("<< %s from %s(%s)",Packet::verbString(v),sourceAddress.toString().c_str(),_remoteAddress.toString().c_str());
switch(v) {
//case Packet::VERB_NOP:
default: // ignore unknown verbs, but if they pass auth check they are "received"
peer->received(_localAddress,_remoteAddress,hops(),packetId(),v,0,Packet::VERB_NOP);
return true;
case Packet::VERB_HELLO: return _doHELLO(RR,peer);
case Packet::VERB_ERROR: return _doERROR(RR,peer);
case Packet::VERB_OK: return _doOK(RR,peer);
case Packet::VERB_WHOIS: return _doWHOIS(RR,peer);
case Packet::VERB_RENDEZVOUS: return _doRENDEZVOUS(RR,peer);
case Packet::VERB_FRAME: return _doFRAME(RR,peer);
case Packet::VERB_EXT_FRAME: return _doEXT_FRAME(RR,peer);
case Packet::VERB_ECHO: return _doECHO(RR,peer);
case Packet::VERB_MULTICAST_LIKE: return _doMULTICAST_LIKE(RR,peer);
case Packet::VERB_NETWORK_CREDENTIALS: return _doNETWORK_CREDENTIALS(RR,peer);
case Packet::VERB_NETWORK_CONFIG_REQUEST: return _doNETWORK_CONFIG_REQUEST(RR,peer);
case Packet::VERB_NETWORK_CONFIG_REFRESH: return _doNETWORK_CONFIG_REFRESH(RR,peer);
case Packet::VERB_MULTICAST_GATHER: return _doMULTICAST_GATHER(RR,peer);
case Packet::VERB_MULTICAST_FRAME: return _doMULTICAST_FRAME(RR,peer);
case Packet::VERB_PUSH_DIRECT_PATHS: return _doPUSH_DIRECT_PATHS(RR,peer);
case Packet::VERB_CIRCUIT_TEST: return _doCIRCUIT_TEST(RR,peer);
case Packet::VERB_CIRCUIT_TEST_REPORT: return _doCIRCUIT_TEST_REPORT(RR,peer);
case Packet::VERB_REQUEST_PROOF_OF_WORK: return _doREQUEST_PROOF_OF_WORK(RR,peer);
}
} else {
RR->sw->requestWhois(sourceAddress);
return false;
}
} catch ( ... ) {
// Exceptions are more informatively caught in _do...() handlers but
// this outer try/catch will catch anything else odd.
TRACE("dropped ??? from %s(%s): unexpected exception in tryDecode()",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
}
bool IncomingPacket::_doERROR(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID);
const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
//TRACE("ERROR %s from %s(%s) in-re %s",Packet::errorString(errorCode),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
switch(errorCode) {
case Packet::ERROR_OBJ_NOT_FOUND:
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_UNSUPPORTED_OPERATION:
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_IDENTITY_COLLISION:
if (RR->topology->isRoot(peer->identity()))
RR->node->postEvent(ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION);
break;
case Packet::ERROR_NETWORK_ACCESS_DENIED_: {
SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setAccessDenied();
} break;
case Packet::ERROR_UNWANTED_MULTICAST: {
uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8,6),6),at<uint32_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14));
TRACE("%.16llx: peer %s unsubscrubed from multicast group %s",nwid,peer->address().toString().c_str(),mg.toString().c_str());
RR->mc->remove(nwid,mg,peer->address());
} break;
default: break;
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_ERROR,inRePacketId,inReVerb);
} catch ( ... ) {
TRACE("dropped ERROR from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,SharedPtr<Peer> &peer)
{
/* Note: this is the only packet ever sent in the clear, and it's also
* the only packet that we authenticate via a different path. Authentication
* occurs here and is based on the validity of the identity and the
* integrity of the packet's MAC, but it must be done after we check
* the identity since HELLO is a mechanism for learning new identities
* in the first place. */
try {
const uint64_t pid = packetId();
const Address fromAddress(source());
const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const uint64_t timestamp = at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id;
InetAddress externalSurfaceAddress;
uint64_t worldId = ZT_WORLD_ID_NULL;
uint64_t worldTimestamp = 0;
{
unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
// Get external surface address if present (was not in old versions)
if (ptr < size())
ptr += externalSurfaceAddress.deserialize(*this,ptr);
// Get world ID and world timestamp if present (was not in old versions)
if ((ptr + 16) <= size()) {
worldId = at<uint64_t>(ptr); ptr += 8;
worldTimestamp = at<uint64_t>(ptr);
}
}
if (protoVersion < ZT_PROTO_VERSION_MIN) {
TRACE("dropped HELLO from %s(%s): protocol version too old",id.address().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
if (fromAddress != id.address()) {
TRACE("dropped HELLO from %s(%s): identity not for sending address",fromAddress.toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
if (!peer) { // peer == NULL is the normal case here
peer = RR->topology->getPeer(id.address());
if (peer) {
// We already have an identity with this address -- check for collisions
if (peer->identity() != id) {
// Identity is different from the one we already have -- address collision
unsigned char key[ZT_PEER_SECRET_KEY_LENGTH];
if (RR->identity.agree(id,key,ZT_PEER_SECRET_KEY_LENGTH)) {
if (dearmor(key)) { // ensure packet is authentic, otherwise drop
TRACE("rejected HELLO from %s(%s): address already claimed",id.address().toString().c_str(),_remoteAddress.toString().c_str());
Packet outp(id.address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION);
outp.armor(key,true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
} else {
TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
}
} else {
TRACE("rejected HELLO from %s(%s): key agreement failed",id.address().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
} else {
// Identity is the same as the one we already have -- check packet integrity
if (!dearmor(peer->key())) {
TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
// Continue at // VALID
}
} else {
// We don't already have an identity with this address -- validate and learn it
// Check identity proof of work
if (!id.locallyValidate()) {
TRACE("dropped HELLO from %s(%s): identity invalid",id.address().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
// Check packet integrity and authentication
SharedPtr<Peer> newPeer(new Peer(RR,RR->identity,id));
if (!dearmor(newPeer->key())) {
TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
peer = RR->topology->addPeer(newPeer);
// Continue at // VALID
}
// VALID -- if we made it here, packet passed identity and authenticity checks!
}
if (externalSurfaceAddress)
RR->sa->iam(id.address(),_localAddress,_remoteAddress,externalSurfaceAddress,RR->topology->isUpstream(id),RR->node->now());
Packet outp(id.address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint64_t)timestamp);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
if (protoVersion >= 5) {
_remoteAddress.serialize(outp);
} else {
/* LEGACY COMPATIBILITY HACK:
*
* For a while now (since 1.0.3), ZeroTier has recognized changes in
* its network environment empirically by examining its external network
* address as reported by trusted peers. In versions prior to 1.1.0
* (protocol version < 5), they did this by saving a snapshot of this
* information (in SelfAwareness.hpp) keyed by reporting device ID and
* address type.
*
* This causes problems when clustering is combined with symmetric NAT.
* Symmetric NAT remaps ports, so different endpoints in a cluster will
* report back different exterior addresses. Since the old code keys
* this by device ID and not sending physical address and compares the
* entire address including port, it constantly thinks its external
* surface is changing and resets connections when talking to a cluster.
*
* In new code we key by sending physical address and device and we also
* take the more conservative position of only interpreting changes in
* IP address (neglecting port) as a change in network topology that
* necessitates a reset. But we can make older clients work here by
* nulling out the port field. Since this info is only used for empirical
* detection of link changes, it doesn't break anything else.
*/
InetAddress tmpa(_remoteAddress);
tmpa.setPort(0);
tmpa.serialize(outp);
}
if ((worldId != ZT_WORLD_ID_NULL)&&(RR->topology->worldTimestamp() > worldTimestamp)&&(worldId == RR->topology->worldId())) {
World w(RR->topology->world());
const unsigned int sizeAt = outp.size();
outp.addSize(2); // make room for 16-bit size field
w.serialize(outp,false);
outp.setAt<uint16_t>(sizeAt,(uint16_t)(outp.size() - (sizeAt + 2)));
} else {
outp.append((uint16_t)0); // no world update needed
}
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
peer->setRemoteVersion(protoVersion,vMajor,vMinor,vRevision); // important for this to go first so received() knows the version
peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_HELLO,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped HELLO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID);
//TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
switch(inReVerb) {
case Packet::VERB_HELLO: {
const unsigned int latency = std::min((unsigned int)(RR->node->now() - at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff);
const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION);
if (vProto < ZT_PROTO_VERSION_MIN) {
TRACE("%s(%s): OK(HELLO) dropped, protocol version too old",source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
InetAddress externalSurfaceAddress;
unsigned int ptr = ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2;
// Get reported external surface address if present (was not on old versions)
if (ptr < size())
ptr += externalSurfaceAddress.deserialize(*this,ptr);
// Handle world updates from root servers if present (was not on old versions)
if (((ptr + 2) <= size())&&(RR->topology->isRoot(peer->identity()))) {
World worldUpdate;
const unsigned int worldLen = at<uint16_t>(ptr); ptr += 2;
if (worldLen > 0) {
World w;
w.deserialize(*this,ptr);
RR->topology->worldUpdateIfValid(w);
}
}
TRACE("%s(%s): OK(HELLO), version %u.%u.%u, latency %u, reported external address %s",source().toString().c_str(),_remoteAddress.toString().c_str(),vMajor,vMinor,vRevision,latency,((externalSurfaceAddress) ? externalSurfaceAddress.toString().c_str() : "(none)"));
peer->addDirectLatencyMeasurment(latency);
peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision);
if (externalSurfaceAddress)
RR->sa->iam(peer->address(),_localAddress,_remoteAddress,externalSurfaceAddress,RR->topology->isUpstream(peer->identity()),RR->node->now());
} break;
case Packet::VERB_WHOIS: {
if (RR->topology->isUpstream(peer->identity())) {
const Identity id(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY);
RR->sw->doAnythingWaitingForPeer(RR->topology->addPeer(SharedPtr<Peer>(new Peer(RR,RR->identity,id))));
}
} break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: {
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
if ((network)&&(network->controller() == peer->address())) {
const unsigned int chunkLen = at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN);
const void *chunkData = field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,chunkLen);
unsigned int chunkIndex = 0;
unsigned int totalSize = chunkLen;
if ((ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT + chunkLen) < size()) {
totalSize = at<uint32_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT + chunkLen);
chunkIndex = at<uint32_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT + chunkLen + 4);
}
TRACE("%s(%s): OK(NETWORK_CONFIG_REQUEST) chunkLen==%u chunkIndex==%u totalSize==%u",source().toString().c_str(),_remoteAddress.toString().c_str(),chunkLen,chunkIndex,totalSize);
network->handleInboundConfigChunk(inRePacketId,chunkData,chunkLen,chunkIndex,totalSize);
}
} break;
//case Packet::VERB_ECHO: {
//} break;
case Packet::VERB_MULTICAST_GATHER: {
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID);
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI));
//TRACE("%s(%s): OK(MULTICAST_GATHER) %.16llx/%s length %u",source().toString().c_str(),_remoteAddress.toString().c_str(),nwid,mg.toString().c_str(),size());
const unsigned int count = at<uint16_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4);
RR->mc->addMultiple(RR->node->now(),nwid,mg,field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6,count * 5),count,at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS));
} break;
case Packet::VERB_MULTICAST_FRAME: {
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS];
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_NETWORK_ID);
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI));
//TRACE("%s(%s): OK(MULTICAST_FRAME) %.16llx/%s flags %.2x",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),nwid,mg.toString().c_str(),flags);
unsigned int offset = 0;
if ((flags & 0x01) != 0) { // deprecated but still used by older peers
CertificateOfMembership com;
offset += com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS);
if (com) {
SharedPtr<Network> network(RR->node->network(com.networkId()));
if (network)
network->addCredential(com);
}
}
if ((flags & 0x02) != 0) {
// OK(MULTICAST_FRAME) includes implicit gather results
offset += ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS;
unsigned int totalKnown = at<uint32_t>(offset); offset += 4;
unsigned int count = at<uint16_t>(offset); offset += 2;
RR->mc->addMultiple(RR->node->now(),nwid,mg,field(offset,count * 5),count,totalKnown);
}
} break;
default: break;
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_OK,inRePacketId,inReVerb);
} catch ( ... ) {
TRACE("dropped OK from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packetId());
unsigned int count = 0;
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
while ((ptr + ZT_ADDRESS_LENGTH) <= size()) {
const Address addr(field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
ptr += ZT_ADDRESS_LENGTH;
const Identity id(RR->topology->getIdentity(addr));
if (id) {
id.serialize(outp,false);
++count;
} else {
// If I am not the root and don't know this identity, ask upstream. Downstream
// peer may re-request in the future and if so we will be able to provide it.
if (!RR->topology->amRoot())
RR->sw->requestWhois(addr);
#ifdef ZT_ENABLE_CLUSTER
// Distribute WHOIS queries across a cluster if we do not know the ID.
// This may result in duplicate OKs to the querying peer, which is fine.
if (RR->cluster)
RR->cluster->sendDistributedQuery(*this);
#endif
}
}
if (count > 0) {
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_WHOIS,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped WHOIS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
const SharedPtr<Peer> withPeer(RR->topology->getPeer(with));
if (withPeer) {
const unsigned int port = at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
const InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
if (!RR->topology->isUpstream(peer->identity())) {
TRACE("RENDEZVOUS from %s says %s might be at %s, ignoring since peer is not upstream",peer->address().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str());
} else if (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,atAddr)) {
const uint64_t now = RR->node->now();
peer->sendHELLO(_localAddress,atAddr,now,2); // send low-TTL packet to 'open' local NAT(s)
if (!peer->pushDirectPaths(_localAddress,atAddr,now,true))
peer->sendHELLO(_localAddress,atAddr,now);
TRACE("RENDEZVOUS from %s says %s might be at %s, sent verification attempt",peer->address().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str());
} else {
TRACE("RENDEZVOUS from %s says %s might be at %s, ignoring since path is not suitable",peer->address().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str());
}
} else {
TRACE("dropped corrupt RENDEZVOUS from %s(%s) (bad address or port)",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
} else {
TRACE("ignored RENDEZVOUS from %s(%s) to meet unknown peer %s",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),with.toString().c_str());
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_RENDEZVOUS,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped RENDEZVOUS from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doFRAME(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)));
if (network) {
if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
if (!network->isAllowed(peer)) {
TRACE("dropped FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id());
return true;
}
const unsigned int etherType = at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
const MAC sourceMac(peer->address(),network->id());
const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
const uint8_t *const frameData = reinterpret_cast<const uint8_t *>(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
if (network->filterIncomingPacket(peer,RR->identity.address(),sourceMac,network->mac(),frameData,frameLen,etherType,0)) {
RR->node->putFrame(network->id(),network->userPtr(),sourceMac,network->mac(),etherType,0,(const void *)frameData,frameLen);
}
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_FRAME,0,Packet::VERB_NOP);
} else {
TRACE("dropped FRAME from %s(%s): we are not connected to network %.16llx",source().toString().c_str(),_remoteAddress.toString().c_str(),at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
}
} catch ( ... ) {
TRACE("dropped FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID)));
if (network) {
if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS];
unsigned int comLen = 0;
if ((flags & 0x01) != 0) { // deprecated but still used by old peers
CertificateOfMembership com;
comLen = com.deserialize(*this,ZT_PROTO_VERB_EXT_FRAME_IDX_COM);
if (com)
network->addCredential(com);
}
if (!network->isAllowed(peer)) {
TRACE("dropped EXT_FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),network->id());
return true;
}
// Everything after flags must be adjusted based on the length
// of the certificate, if there was one...
const unsigned int etherType = at<uint16_t>(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE);
const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO,ZT_PROTO_VERB_EXT_FRAME_LEN_TO),ZT_PROTO_VERB_EXT_FRAME_LEN_TO);
const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM,ZT_PROTO_VERB_EXT_FRAME_LEN_FROM),ZT_PROTO_VERB_EXT_FRAME_LEN_FROM);
if ((!from)||(from.isMulticast())||(from == network->mac())) {
TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: invalid source MAC",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
return true;
}
if (from != MAC(peer->address(),network->id())) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from,peer->address());
} else {
TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: sender not allowed to bridge into %.16llx",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
return true;
}
} else if (to != network->mac()) {
if (!network->config().permitsBridging(RR->identity.address())) {
TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: I cannot bridge to %.16llx or bridging disabled on network",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
return true;
}
}
const unsigned int frameLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD);
const uint8_t *const frameData = (const uint8_t *)field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD,frameLen);
if (network->filterIncomingPacket(peer,RR->identity.address(),from,to,frameData,frameLen,etherType,0)) {
RR->node->putFrame(network->id(),network->userPtr(),from,to,etherType,0,(const void *)frameData,frameLen);
}
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP);
} else {
TRACE("dropped EXT_FRAME from %s(%s): we are not connected to network %.16llx",source().toString().c_str(),_remoteAddress.toString().c_str(),at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
}
} catch ( ... ) {
TRACE("dropped EXT_FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doECHO(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t pid = packetId();
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_ECHO);
outp.append((uint64_t)pid);
if (size() > ZT_PACKET_IDX_PAYLOAD)
outp.append(reinterpret_cast<const unsigned char *>(data()) + ZT_PACKET_IDX_PAYLOAD,size() - ZT_PACKET_IDX_PAYLOAD);
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_ECHO,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped ECHO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t now = RR->node->now();
// Iterate through 18-byte network,MAC,ADI tuples
for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;ptr<size();ptr+=18) {
const uint64_t nwid = at<uint64_t>(ptr);
const MulticastGroup group(MAC(field(ptr + 8,6),6),at<uint32_t>(ptr + 14));
RR->mc->add(now,nwid,group,peer->address());
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_LIKE,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doNETWORK_CREDENTIALS(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
CertificateOfMembership com;
Capability cap;
Tag tag;
unsigned int p = ZT_PACKET_IDX_PAYLOAD;
while ((p < size())&&((*this)[p])) {
p += com.deserialize(*this,p);
if (com) {
SharedPtr<Network> network(RR->node->network(com.networkId()));
if (network) {
if (network->addCredential(com) == 1)
return false; // wait for WHOIS
}
}
}
++p; // skip trailing 0 after COMs if present
if (p < size()) { // check if new capabilities and tags fields are present
const unsigned int numCapabilities = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numCapabilities;++i) {
p += cap.deserialize(*this,p);
SharedPtr<Network> network(RR->node->network(cap.networkId()));
if (network) {
if (network->addCredential(cap) == 1)
return false; // wait for WHOIS
}
}
const unsigned int numTags = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numTags;++i) {
p += tag.deserialize(*this,p);
SharedPtr<Network> network(RR->node->network(tag.networkId()));
if (network) {
if (network->addCredential(tag) == 1)
return false; // wait for WHOIS
}
}
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_NETWORK_CREDENTIALS,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped NETWORK_CREDENTIALS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
const unsigned int metaDataLength = at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN);
const char *metaDataBytes = (const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength);
const Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> metaData(metaDataBytes,metaDataLength);
const unsigned int hopCount = hops();
const uint64_t requestPacketId = packetId();
peer->received(_localAddress,_remoteAddress,hopCount,requestPacketId,Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP);
if (RR->localNetworkController) {
NetworkConfig *netconf = new NetworkConfig();
try {
switch(RR->localNetworkController->doNetworkConfigRequest((hopCount > 0) ? InetAddress() : _remoteAddress,RR->identity,peer->identity(),nwid,metaData,*netconf)) {
case NetworkController::NETCONF_QUERY_OK: {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (netconf->toDictionary(*dconf,metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,0) < 6)) {
dconf->wrapWithSignature(ZT_NETWORKCONFIG_DICT_KEY_SIGNATURE,RR->identity.privateKeyPair());
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 32)));
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
outp.compress();
RR->sw->send(outp,true);
chunkIndex += chunkLen;
}
}
delete dconf;
} catch ( ... ) {
delete dconf;
throw;
}
} break;
case NetworkController::NETCONF_QUERY_OBJECT_NOT_FOUND: {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
outp.append(nwid);
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
} break;
case NetworkController::NETCONF_QUERY_ACCESS_DENIED: {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
outp.append(nwid);
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
} break;
case NetworkController::NETCONF_QUERY_INTERNAL_SERVER_ERROR:
break;
case NetworkController::NETCONF_QUERY_IGNORE:
break;
default:
TRACE("NETWORK_CONFIG_REQUEST failed: invalid return value from NetworkController::doNetworkConfigRequest()");
break;
}
delete netconf;
} catch ( ... ) {
delete netconf;
throw;
}
} else {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
outp.append(nwid);
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
} catch (std::exception &exc) {
fprintf(stderr,"WARNING: network config request failed with exception: %s" ZT_EOL_S,exc.what());
TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what());
} catch ( ... ) {
fprintf(stderr,"WARNING: network config request failed with exception: unknown exception" ZT_EOL_S);
TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unknown exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REFRESH(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
unsigned int p = ZT_PACKET_IDX_PAYLOAD;
while ((p + 8) <= size()) {
const uint64_t nwid = at<uint64_t>(p); p += 8;
if (Network::controllerFor(nwid) == peer->address()) {
SharedPtr<Network> network(RR->node->network(nwid));
if (network)
network->requestConfiguration();
}
}
} catch ( ... ) {
TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
const unsigned int gatherLimit = at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
//TRACE("<<MC %s(%s) GATHER up to %u in %.16llx/%s",source().toString().c_str(),_remoteAddress.toString().c_str(),gatherLimit,nwid,mg.toString().c_str());
if ((flags & 0x01) != 0) {
try {
CertificateOfMembership com;
com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM);
if (com) {
SharedPtr<Network> network(RR->node->network(nwid));
if (network)
network->addCredential(com);
}
} catch ( ... ) {
TRACE("MULTICAST_GATHER from %s(%s): discarded invalid COM",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
}
if (gatherLimit) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
outp.append(packetId());
outp.append(nwid);
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
const unsigned int gatheredLocally = RR->mc->gather(peer->address(),nwid,mg,outp,gatherLimit);
if (gatheredLocally) {
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
// If we are a member of a cluster, distribute this GATHER across it
#ifdef ZT_ENABLE_CLUSTER
if ((RR->cluster)&&(gatheredLocally < gatherLimit))
RR->cluster->sendDistributedQuery(*this);
#endif
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_GATHER,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped MULTICAST_GATHER from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID);
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FLAGS];
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
// Offset -- size of optional fields added to position of later fields
unsigned int offset = 0;
if ((flags & 0x01) != 0) {
// This is deprecated but may still be sent by old peers
CertificateOfMembership com;
offset += com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_FRAME_IDX_COM);
if (com)
network->addCredential(com);
}
// Check membership after we've read any included COM, since
// that cert might be what we needed.
if (!network->isAllowed(peer)) {
TRACE("dropped MULTICAST_FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id());
return true;
}
unsigned int gatherLimit = 0;
if ((flags & 0x02) != 0) {
gatherLimit = at<uint32_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_GATHER_LIMIT);
offset += 4;
}
MAC from;
if ((flags & 0x04) != 0) {
from.setTo(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC,6),6);
offset += 6;
} else {
from.fromAddress(peer->address(),nwid);
}
const MulticastGroup to(MAC(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_MAC,6),6),at<uint32_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_ADI));
const unsigned int etherType = at<uint16_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
const unsigned int frameLen = size() - (offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME);
//TRACE("<<MC FRAME %.16llx/%s from %s@%s flags %.2x length %u",nwid,to.toString().c_str(),from.toString().c_str(),peer->address().toString().c_str(),flags,frameLen);
if ((frameLen > 0)&&(frameLen <= ZT_IF_MTU)) {
if (!to.mac().isMulticast()) {
TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: destination is unicast, must use FRAME or EXT_FRAME",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
return true;
}
if ((!from)||(from.isMulticast())||(from == network->mac())) {
TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: invalid source MAC",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
return true;
}
if (from != MAC(peer->address(),network->id())) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from,peer->address());
} else {
TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: sender not allowed to bridge into %.16llx",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
return true;
}
}
const uint8_t *const frameData = (const uint8_t *)field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME,frameLen);
if (network->filterIncomingPacket(peer,RR->identity.address(),from,to.mac(),frameData,frameLen,etherType,0)) {
RR->node->putFrame(network->id(),network->userPtr(),from,to.mac(),etherType,0,(const void *)frameData,frameLen);
}
}
if (gatherLimit) {
Packet outp(source(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME);
outp.append(packetId());
outp.append(nwid);
to.mac().appendTo(outp);
outp.append((uint32_t)to.adi());
outp.append((unsigned char)0x02); // flag 0x02 = contains gather results
if (RR->mc->gather(peer->address(),nwid,to,outp,gatherLimit)) {
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
}
} // else ignore -- not a member of this network
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const uint64_t now = RR->node->now();
// First, subject this to a rate limit
if (!peer->shouldRespondToDirectPathPush(now)) {
TRACE("dropped PUSH_DIRECT_PATHS from %s(%s): circuit breaker tripped",source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
// Second, limit addresses by scope and type
uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE+1][2]; // [][0] is v4, [][1] is v6
memset(countPerScope,0,sizeof(countPerScope));
unsigned int count = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD);
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2;
while (count--) { // if ptr overflows Buffer will throw
// TODO: some flags are not yet implemented
unsigned int flags = (*this)[ptr++];
unsigned int extLen = at<uint16_t>(ptr); ptr += 2;
ptr += extLen; // unused right now
unsigned int addrType = (*this)[ptr++];
unsigned int addrLen = (*this)[ptr++];
switch(addrType) {
case 4: {
InetAddress a(field(ptr,4),4,at<uint16_t>(ptr + 4));
bool redundant = false;
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->setClusterOptimalPathForAddressFamily(a);
} else {
redundant = peer->hasActivePathTo(now,a);
}
if ( ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && (!redundant) && (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,a)) ) {
if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
TRACE("attempting to contact %s at pushed direct path %s",peer->address().toString().c_str(),a.toString().c_str());
peer->sendHELLO(InetAddress(),a,now);
} else {
TRACE("ignoring contact for %s at %s -- too many per scope",peer->address().toString().c_str(),a.toString().c_str());
}
}
} break;
case 6: {
InetAddress a(field(ptr,16),16,at<uint16_t>(ptr + 16));
bool redundant = false;
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->setClusterOptimalPathForAddressFamily(a);
} else {
redundant = peer->hasActivePathTo(now,a);
}
if ( ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && (!redundant) && (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,a)) ) {
if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
TRACE("attempting to contact %s at pushed direct path %s",peer->address().toString().c_str(),a.toString().c_str());
peer->sendHELLO(InetAddress(),a,now);
} else {
TRACE("ignoring contact for %s at %s -- too many per scope",peer->address().toString().c_str(),a.toString().c_str());
}
}
} break;
}
ptr += addrLen;
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped PUSH_DIRECT_PATHS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doCIRCUIT_TEST(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
const Address originatorAddress(field(ZT_PACKET_IDX_PAYLOAD,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
SharedPtr<Peer> originator(RR->topology->getPeer(originatorAddress));
if (!originator) {
RR->sw->requestWhois(originatorAddress);
return false;
}
const unsigned int flags = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 5);
const uint64_t timestamp = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 7);
const uint64_t testId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 15);
// Tracks total length of variable length fields, initialized to originator credential length below
unsigned int vlf;
// Originator credentials -- right now only a network ID for which the originator is controller or is authorized by controller is allowed
const unsigned int originatorCredentialLength = vlf = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 23);
uint64_t originatorCredentialNetworkId = 0;
if (originatorCredentialLength >= 1) {
switch((*this)[ZT_PACKET_IDX_PAYLOAD + 25]) {
case 0x01: { // 64-bit network ID, originator must be controller
if (originatorCredentialLength >= 9)
originatorCredentialNetworkId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 26);
} break;
default: break;
}
}
// Add length of "additional fields," which are currently unused
vlf += at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 25 + vlf);
// Verify signature -- only tests signed by their originators are allowed
const unsigned int signatureLength = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 27 + vlf);
if (!originator->identity().verify(field(ZT_PACKET_IDX_PAYLOAD,27 + vlf),27 + vlf,field(ZT_PACKET_IDX_PAYLOAD + 29 + vlf,signatureLength),signatureLength)) {
TRACE("dropped CIRCUIT_TEST from %s(%s): signature by originator %s invalid",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str());
return true;
}
vlf += signatureLength;
// Save this length so we can copy the immutable parts of this test
// into the one we send along to next hops.
const unsigned int lengthOfSignedPortionAndSignature = 29 + vlf;
// Add length of second "additional fields" section.
vlf += at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 29 + vlf);
// Check credentials (signature already verified)
if (originatorCredentialNetworkId) {
SharedPtr<Network> network(RR->node->network(originatorCredentialNetworkId));
if ((!network)||(!network->config().circuitTestingAllowed(originatorAddress))) {
TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s specified network ID %.16llx as credential, and we don't belong to that network or originator is not allowed'",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str(),originatorCredentialNetworkId);
return true;
}
} else {
TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s did not specify a credential or credential type",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str());
return true;
}
const uint64_t now = RR->node->now();
unsigned int breadth = 0;
Address nextHop[256]; // breadth is a uin8_t, so this is the max
InetAddress nextHopBestPathAddress[256];
unsigned int remainingHopsPtr = ZT_PACKET_IDX_PAYLOAD + 33 + vlf;
if ((ZT_PACKET_IDX_PAYLOAD + 31 + vlf) < size()) {
// unsigned int nextHopFlags = (*this)[ZT_PACKET_IDX_PAYLOAD + 31 + vlf]
breadth = (*this)[ZT_PACKET_IDX_PAYLOAD + 32 + vlf];
for(unsigned int h=0;h<breadth;++h) {
nextHop[h].setTo(field(remainingHopsPtr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
remainingHopsPtr += ZT_ADDRESS_LENGTH;
SharedPtr<Peer> nhp(RR->topology->getPeer(nextHop[h]));
if (nhp) {
Path *const rp = nhp->getBestPath(now);
if (rp)
nextHopBestPathAddress[h] = rp->address();
}
}
}
// Report back to originator, depending on flags and whether we are last hop
if ( ((flags & 0x01) != 0) || ((breadth == 0)&&((flags & 0x02) != 0)) ) {
Packet outp(originatorAddress,RR->identity.address(),Packet::VERB_CIRCUIT_TEST_REPORT);
outp.append((uint64_t)timestamp);
outp.append((uint64_t)testId);
outp.append((uint64_t)0); // field reserved for future use
outp.append((uint8_t)ZT_VENDOR_ZEROTIER);
outp.append((uint8_t)ZT_PROTO_VERSION);
outp.append((uint8_t)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((uint8_t)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append((uint16_t)ZT_PLATFORM_UNSPECIFIED);
outp.append((uint16_t)ZT_ARCHITECTURE_UNSPECIFIED);
outp.append((uint16_t)0); // error code, currently unused
outp.append((uint64_t)0); // flags, currently unused
outp.append((uint64_t)packetId());
peer->address().appendTo(outp);
outp.append((uint8_t)hops());
_localAddress.serialize(outp);
_remoteAddress.serialize(outp);
outp.append((uint16_t)0); // no additional fields
outp.append((uint8_t)breadth);
for(unsigned int h=0;h<breadth;++h) {
nextHop[h].appendTo(outp);
nextHopBestPathAddress[h].serialize(outp); // appends 0 if null InetAddress
}
RR->sw->send(outp,true);
}
// If there are next hops, forward the test along through the graph
if (breadth > 0) {
Packet outp(Address(),RR->identity.address(),Packet::VERB_CIRCUIT_TEST);
outp.append(field(ZT_PACKET_IDX_PAYLOAD,lengthOfSignedPortionAndSignature),lengthOfSignedPortionAndSignature);
outp.append((uint16_t)0); // no additional fields
if (remainingHopsPtr < size())
outp.append(field(remainingHopsPtr,size() - remainingHopsPtr),size() - remainingHopsPtr);
for(unsigned int h=0;h<breadth;++h) {
if (RR->identity.address() != nextHop[h]) { // next hops that loop back to the current hop are not valid
outp.newInitializationVector();
outp.setDestination(nextHop[h]);
RR->sw->send(outp,true);
}
}
}
peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_CIRCUIT_TEST,0,Packet::VERB_NOP);
} catch ( ... ) {
TRACE("dropped CIRCUIT_TEST from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doCIRCUIT_TEST_REPORT(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
ZT_CircuitTestReport report;
memset(&report,0,sizeof(report));
report.current = peer->address().toInt();
report.upstream = Address(field(ZT_PACKET_IDX_PAYLOAD + 52,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
report.testId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 8);
report.timestamp = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD);
report.remoteTimestamp = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 16);
report.sourcePacketId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 44);
report.flags = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD + 36);
report.sourcePacketHopCount = (*this)[ZT_PACKET_IDX_PAYLOAD + 57]; // end of fixed length headers: 58
report.errorCode = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 34);
report.vendor = (enum ZT_Vendor)((*this)[ZT_PACKET_IDX_PAYLOAD + 24]);
report.protocolVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 25];
report.majorVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 26];
report.minorVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 27];
report.revision = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 28);
report.platform = (enum ZT_Platform)at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 30);
report.architecture = (enum ZT_Architecture)at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 32);
const unsigned int receivedOnLocalAddressLen = reinterpret_cast<InetAddress *>(&(report.receivedOnLocalAddress))->deserialize(*this,ZT_PACKET_IDX_PAYLOAD + 58);
const unsigned int receivedFromRemoteAddressLen = reinterpret_cast<InetAddress *>(&(report.receivedFromRemoteAddress))->deserialize(*this,ZT_PACKET_IDX_PAYLOAD + 58 + receivedOnLocalAddressLen);
unsigned int nhptr = ZT_PACKET_IDX_PAYLOAD + 58 + receivedOnLocalAddressLen + receivedFromRemoteAddressLen;
nhptr += at<uint16_t>(nhptr) + 2; // add "additional field" length, which right now will be zero
report.nextHopCount = (*this)[nhptr++];
if (report.nextHopCount > ZT_CIRCUIT_TEST_MAX_HOP_BREADTH) // sanity check, shouldn't be possible
report.nextHopCount = ZT_CIRCUIT_TEST_MAX_HOP_BREADTH;
for(unsigned int h=0;h<report.nextHopCount;++h) {
report.nextHops[h].address = Address(field(nhptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt(); nhptr += ZT_ADDRESS_LENGTH;
nhptr += reinterpret_cast<InetAddress *>(&(report.nextHops[h].physicalAddress))->deserialize(*this,nhptr);
}
RR->node->postCircuitTestReport(&report);
} catch ( ... ) {
TRACE("dropped CIRCUIT_TEST_REPORT from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool IncomingPacket::_doREQUEST_PROOF_OF_WORK(const RuntimeEnvironment *RR,const SharedPtr<Peer> &peer)
{
try {
// If this were allowed from anyone, it would itself be a DOS vector. Right
// now we only allow it from roots and controllers of networks you have joined.
bool allowed = RR->topology->isUpstream(peer->identity());
if (!allowed) {
std::vector< SharedPtr<Network> > allNetworks(RR->node->allNetworks());
for(std::vector< SharedPtr<Network> >::const_iterator n(allNetworks.begin());n!=allNetworks.end();++n) {
if (peer->address() == (*n)->controller()) {
allowed = true;
break;
}
}
}
if (allowed) {
const uint64_t pid = packetId();
const unsigned int difficulty = (*this)[ZT_PACKET_IDX_PAYLOAD + 1];
const unsigned int challengeLength = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 2);
if (challengeLength > ZT_PROTO_MAX_PACKET_LENGTH)
return true; // sanity check, drop invalid size
const unsigned char *challenge = field(ZT_PACKET_IDX_PAYLOAD + 4,challengeLength);
switch((*this)[ZT_PACKET_IDX_PAYLOAD]) {
// Salsa20/12+SHA512 hashcash
case 0x01: {
if (difficulty <= 14) {
unsigned char result[16];
computeSalsa2012Sha512ProofOfWork(difficulty,challenge,challengeLength,result);
TRACE("PROOF_OF_WORK computed for %s: difficulty==%u, challengeLength==%u, result: %.16llx%.16llx",peer->address().toString().c_str(),difficulty,challengeLength,Utils::ntoh(*(reinterpret_cast<const uint64_t *>(result))),Utils::ntoh(*(reinterpret_cast<const uint64_t *>(result + 8))));
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_REQUEST_PROOF_OF_WORK);
outp.append(pid);
outp.append((uint16_t)sizeof(result));
outp.append(result,sizeof(result));
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
} else {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_REQUEST_PROOF_OF_WORK);
outp.append(pid);
outp.append((unsigned char)Packet::ERROR_INVALID_REQUEST);
outp.armor(peer->key(),true);
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
} break;
default:
TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): unrecognized proof of work type",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
break;
}
peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_REQUEST_PROOF_OF_WORK,0,Packet::VERB_NOP);
} else {
TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): not trusted enough",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
} catch ( ... ) {
TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
void IncomingPacket::computeSalsa2012Sha512ProofOfWork(unsigned int difficulty,const void *challenge,unsigned int challengeLength,unsigned char result[16])
{
unsigned char salsabuf[131072]; // 131072 == protocol constant, size of memory buffer for this proof of work function
char candidatebuf[ZT_PROTO_MAX_PACKET_LENGTH + 256];
unsigned char shabuf[ZT_SHA512_DIGEST_LEN];
const uint64_t s20iv = 0; // zero IV for Salsa20
char *const candidate = (char *)(( ((uintptr_t)&(candidatebuf[0])) | 0xf ) + 1); // align to 16-byte boundary to ensure that uint64_t type punning of initial nonce is okay
Salsa20 s20;
unsigned int d;
unsigned char *p;
Utils::getSecureRandom(candidate,16);
memcpy(candidate + 16,challenge,challengeLength);
if (difficulty > 512)
difficulty = 512; // sanity check
try_salsa2012sha512_again:
++*(reinterpret_cast<volatile uint64_t *>(candidate));
SHA512::hash(shabuf,candidate,16 + challengeLength);
s20.init(shabuf,256,&s20iv);
memset(salsabuf,0,sizeof(salsabuf));
s20.encrypt12(salsabuf,salsabuf,sizeof(salsabuf));
SHA512::hash(shabuf,salsabuf,sizeof(salsabuf));
d = difficulty;
p = shabuf;
while (d >= 8) {
if (*(p++))
goto try_salsa2012sha512_again;
d -= 8;
}
if (d > 0) {
if ( ((((unsigned int)*p) << d) & 0xff00) != 0 )
goto try_salsa2012sha512_again;
}
memcpy(result,candidate,16);
}
bool IncomingPacket::testSalsa2012Sha512ProofOfWorkResult(unsigned int difficulty,const void *challenge,unsigned int challengeLength,const unsigned char proposedResult[16])
{
unsigned char salsabuf[131072]; // 131072 == protocol constant, size of memory buffer for this proof of work function
char candidate[ZT_PROTO_MAX_PACKET_LENGTH + 256];
unsigned char shabuf[ZT_SHA512_DIGEST_LEN];
const uint64_t s20iv = 0; // zero IV for Salsa20
Salsa20 s20;
unsigned int d;
unsigned char *p;
if (difficulty > 512)
difficulty = 512; // sanity check
memcpy(candidate,proposedResult,16);
memcpy(candidate + 16,challenge,challengeLength);
SHA512::hash(shabuf,candidate,16 + challengeLength);
s20.init(shabuf,256,&s20iv);
memset(salsabuf,0,sizeof(salsabuf));
s20.encrypt12(salsabuf,salsabuf,sizeof(salsabuf));
SHA512::hash(shabuf,salsabuf,sizeof(salsabuf));
d = difficulty;
p = shabuf;
while (d >= 8) {
if (*(p++))
return false;
d -= 8;
}
if (d > 0) {
if ( ((((unsigned int)*p) << d) & 0xff00) != 0 )
return false;
}
return true;
}
} // namespace ZeroTier