mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-25 22:00:14 +00:00
595 lines
15 KiB
C++
595 lines
15 KiB
C++
/*
|
|
* Copyright (c)2013-2020 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2025-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#ifndef ZT_AES_HPP
|
|
#define ZT_AES_HPP
|
|
|
|
#include "Constants.hpp"
|
|
#include "Utils.hpp"
|
|
#include "SHA512.hpp"
|
|
|
|
// Uncomment to disable all hardware acceleration (usually for testing)
|
|
//#define ZT_AES_NO_ACCEL
|
|
|
|
#if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64)
|
|
#define ZT_AES_AESNI 1
|
|
#endif
|
|
#if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_ARM_HAS_NEON)
|
|
#define ZT_AES_NEON 1
|
|
#endif
|
|
|
|
#ifndef ZT_INLINE
|
|
#define ZT_INLINE inline
|
|
#endif
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* AES-256 and pals including GMAC, CTR, etc.
|
|
*
|
|
* This includes hardware acceleration for certain processors. The software
|
|
* mode is fallback and is significantly slower.
|
|
*/
|
|
class AES
|
|
{
|
|
public:
|
|
/**
|
|
* @return True if this system has hardware AES acceleration
|
|
*/
|
|
static ZT_INLINE bool accelerated()
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
return Utils::CPUID.aes;
|
|
#else
|
|
#ifdef ZT_AES_NEON
|
|
return Utils::ARMCAP.aes;
|
|
#else
|
|
return false;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Create an un-initialized AES instance (must call init() before use)
|
|
*/
|
|
ZT_INLINE AES() noexcept
|
|
{}
|
|
|
|
/**
|
|
* Create an AES instance with the given key
|
|
*
|
|
* @param key 256-bit key
|
|
*/
|
|
explicit ZT_INLINE AES(const void *const key) noexcept
|
|
{ this->init(key); }
|
|
|
|
ZT_INLINE ~AES()
|
|
{ Utils::burn(&p_k, sizeof(p_k)); }
|
|
|
|
/**
|
|
* Set (or re-set) this AES256 cipher's key
|
|
*
|
|
* @param key 256-bit / 32-byte key
|
|
*/
|
|
ZT_INLINE void init(const void *const key) noexcept
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(Utils::CPUID.aes)) {
|
|
p_init_aesni(reinterpret_cast<const uint8_t *>(key));
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef ZT_AES_NEON
|
|
if (Utils::ARMCAP.aes) {
|
|
p_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key));
|
|
return;
|
|
}
|
|
#endif
|
|
p_initSW(reinterpret_cast<const uint8_t *>(key));
|
|
}
|
|
|
|
/**
|
|
* Encrypt a single AES block
|
|
*
|
|
* @param in Input block
|
|
* @param out Output block (can be same as input)
|
|
*/
|
|
ZT_INLINE void encrypt(const void *const in, void *const out) const noexcept
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(Utils::CPUID.aes)) {
|
|
p_encrypt_aesni(in, out);
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef ZT_AES_NEON
|
|
if (Utils::ARMCAP.aes) {
|
|
p_encrypt_armneon_crypto(in, out);
|
|
return;
|
|
}
|
|
#endif
|
|
p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
|
|
}
|
|
|
|
/**
|
|
* Decrypt a single AES block
|
|
*
|
|
* @param in Input block
|
|
* @param out Output block (can be same as input)
|
|
*/
|
|
ZT_INLINE void decrypt(const void *const in, void *const out) const noexcept
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(Utils::CPUID.aes)) {
|
|
p_decrypt_aesni(in, out);
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef ZT_AES_NEON
|
|
if (Utils::ARMCAP.aes) {
|
|
p_decrypt_armneon_crypto(in, out);
|
|
return;
|
|
}
|
|
#endif
|
|
p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
|
|
}
|
|
|
|
class GMACSIVEncryptor;
|
|
class GMACSIVDecryptor;
|
|
|
|
/**
|
|
* Streaming GMAC calculator
|
|
*/
|
|
class GMAC
|
|
{
|
|
friend class GMACSIVEncryptor;
|
|
friend class GMACSIVDecryptor;
|
|
|
|
public:
|
|
/**
|
|
* @return True if this system has hardware GMAC acceleration
|
|
*/
|
|
static ZT_INLINE bool accelerated()
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
return Utils::CPUID.aes;
|
|
#else
|
|
#ifdef ZT_AES_NEON
|
|
return Utils::ARMCAP.pmull;
|
|
#else
|
|
return false;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Create a new instance of GMAC (must be initialized with init() before use)
|
|
*
|
|
* @param aes Keyed AES instance to use
|
|
*/
|
|
ZT_INLINE GMAC(const AES &aes) : _aes(aes)
|
|
{}
|
|
|
|
/**
|
|
* Reset and initialize for a new GMAC calculation
|
|
*
|
|
* @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter)
|
|
*/
|
|
ZT_INLINE void init(const uint8_t iv[12]) noexcept
|
|
{
|
|
_rp = 0;
|
|
_len = 0;
|
|
// We fill the least significant 32 bits in the _iv field with 1 since in GCM mode
|
|
// this would hold the counter, but we're not doing GCM. The counter is therefore
|
|
// always 1.
|
|
#ifdef ZT_AES_AESNI // also implies an x64 processor
|
|
*reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv);
|
|
*reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8);
|
|
*reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order
|
|
#else
|
|
for(int i=0;i<12;++i)
|
|
_iv[i] = iv[i];
|
|
_iv[12] = 0;
|
|
_iv[13] = 0;
|
|
_iv[14] = 0;
|
|
_iv[15] = 1;
|
|
#endif
|
|
_y[0] = 0;
|
|
_y[1] = 0;
|
|
}
|
|
|
|
/**
|
|
* Process data through GMAC
|
|
*
|
|
* @param data Bytes to process
|
|
* @param len Length of input
|
|
*/
|
|
void update(const void *data, unsigned int len) noexcept;
|
|
|
|
/**
|
|
* Process any remaining cached bytes and generate tag
|
|
*
|
|
* Don't call finish() more than once or you'll get an invalid result.
|
|
*
|
|
* @param tag 128-bit GMAC tag (can be truncated)
|
|
*/
|
|
void finish(uint8_t tag[16]) noexcept;
|
|
|
|
private:
|
|
#ifdef ZT_AES_AESNI
|
|
void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept;
|
|
void p_aesNIFinish(uint8_t tag[16]) noexcept;
|
|
#endif
|
|
#ifdef ZT_AES_NEON
|
|
void p_armUpdate(const uint8_t *in, unsigned int len) noexcept;
|
|
void p_armFinish(uint8_t tag[16]) noexcept;
|
|
#endif
|
|
const AES &_aes;
|
|
unsigned int _rp;
|
|
unsigned int _len;
|
|
uint8_t _r[16]; // remainder
|
|
uint8_t _iv[16];
|
|
uint64_t _y[2];
|
|
};
|
|
|
|
/**
|
|
* Streaming AES-CTR encrypt/decrypt
|
|
*
|
|
* NOTE: this doesn't support overflow of the counter in the least significant 32 bits.
|
|
* AES-GMAC-CTR doesn't need this, so we don't support it as an optimization.
|
|
*/
|
|
class CTR
|
|
{
|
|
friend class GMACSIVEncryptor;
|
|
friend class GMACSIVDecryptor;
|
|
|
|
public:
|
|
ZT_INLINE CTR(const AES &aes) noexcept: _aes(aes)
|
|
{}
|
|
|
|
/**
|
|
* Initialize this CTR instance to encrypt a new stream
|
|
*
|
|
* @param iv Unique initialization vector and initial 32-bit counter (least significant 32 bits, big-endian)
|
|
* @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
|
|
*/
|
|
ZT_INLINE void init(const uint8_t iv[16], void *const output) noexcept
|
|
{
|
|
Utils::copy< 16 >(_ctr, iv);
|
|
_out = reinterpret_cast<uint8_t *>(output);
|
|
_len = 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize this CTR instance to encrypt a new stream
|
|
*
|
|
* @param iv Unique initialization vector
|
|
* @param ic Initial counter (must be in big-endian byte order!)
|
|
* @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
|
|
*/
|
|
ZT_INLINE void init(const uint8_t iv[12], const uint32_t ic, void *const output) noexcept
|
|
{
|
|
Utils::copy< 12 >(_ctr, iv);
|
|
reinterpret_cast<uint32_t *>(_ctr)[3] = ic;
|
|
_out = reinterpret_cast<uint8_t *>(output);
|
|
_len = 0;
|
|
}
|
|
|
|
/**
|
|
* Encrypt or decrypt data, writing result to the output provided to init()
|
|
*
|
|
* @param input Input data
|
|
* @param len Length of input
|
|
*/
|
|
void crypt(const void *input, unsigned int len) noexcept;
|
|
|
|
/**
|
|
* Finish any remaining bytes if total bytes processed wasn't a multiple of 16
|
|
*
|
|
* Don't call more than once for a given stream or data may be corrupted.
|
|
*/
|
|
void finish() noexcept;
|
|
|
|
private:
|
|
#ifdef ZT_AES_AESNI
|
|
void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
|
|
#endif
|
|
#ifdef ZT_AES_NEON
|
|
void p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
|
|
#endif
|
|
const AES &_aes;
|
|
uint64_t _ctr[2];
|
|
uint8_t *_out;
|
|
unsigned int _len;
|
|
};
|
|
|
|
/**
|
|
* Encryptor for AES-GMAC-SIV.
|
|
*
|
|
* Encryption requires two passes. The first pass starts after init
|
|
* with aad (if any) followed by update1() and finish1(). Then the
|
|
* update2() and finish2() methods must be used over the same data
|
|
* (but NOT AAD) again.
|
|
*
|
|
* This supports encryption of a maximum of 2^31 bytes of data per
|
|
* call to init().
|
|
*/
|
|
class GMACSIVEncryptor
|
|
{
|
|
public:
|
|
/**
|
|
* Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances
|
|
*
|
|
* @param k0 First of two AES instances keyed with K0
|
|
* @param k1 Second of two AES instances keyed with K1
|
|
*/
|
|
ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept :
|
|
_gmac(k0),
|
|
_ctr(k1)
|
|
{}
|
|
|
|
/**
|
|
* Initialize AES-GMAC-SIV
|
|
*
|
|
* @param iv IV in network byte order (byte order in which it will appear on the wire)
|
|
* @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data!
|
|
*/
|
|
ZT_INLINE void init(const uint64_t iv, void *const output) noexcept
|
|
{
|
|
// Output buffer to receive the result of AES-CTR encryption.
|
|
_output = output;
|
|
|
|
// Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero).
|
|
_tag[0] = iv;
|
|
_tag[1] = 0;
|
|
_gmac.init(reinterpret_cast<const uint8_t *>(_tag));
|
|
}
|
|
|
|
/**
|
|
* Process AAD (additional authenticated data) that is not being encrypted.
|
|
*
|
|
* If such data exists this must be called before update1() and finish1().
|
|
*
|
|
* Note: current code only supports one single chunk of AAD. Don't call this
|
|
* multiple times per message.
|
|
*
|
|
* @param aad Additional authenticated data
|
|
* @param len Length of AAD in bytes
|
|
*/
|
|
ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept
|
|
{
|
|
// Feed ADD into GMAC first
|
|
_gmac.update(aad, len);
|
|
|
|
// End of AAD is padded to a multiple of 16 bytes to ensure unique encoding.
|
|
len &= 0xfU;
|
|
if (len != 0)
|
|
_gmac.update(Utils::ZERO256, 16 - len);
|
|
}
|
|
|
|
/**
|
|
* First pass plaintext input function
|
|
*
|
|
* @param input Plaintext chunk
|
|
* @param len Length of plaintext chunk
|
|
*/
|
|
ZT_INLINE void update1(const void *const input, const unsigned int len) noexcept
|
|
{ _gmac.update(input, len); }
|
|
|
|
/**
|
|
* Finish first pass, compute CTR IV, initialize second pass.
|
|
*/
|
|
ZT_INLINE void finish1() noexcept
|
|
{
|
|
// Compute 128-bit GMAC tag.
|
|
uint64_t tmp[2];
|
|
_gmac.finish(reinterpret_cast<uint8_t *>(tmp));
|
|
|
|
// Shorten to 64 bits, concatenate with message IV, and encrypt with AES to
|
|
// yield the CTR IV and opaque IV/MAC blob. In ZeroTier's use of GMAC-SIV
|
|
// this get split into the packet ID (64 bits) and the MAC (64 bits) in each
|
|
// packet and then recombined on receipt for legacy reasons (but with no
|
|
// cryptographic or performance impact).
|
|
_tag[1] = tmp[0] ^ tmp[1];
|
|
_ctr._aes.encrypt(_tag, _tag);
|
|
|
|
// Initialize CTR with 96-bit CTR nonce and 32-bit counter. The counter
|
|
// incorporates 31 more bits of entropy which should raise our security margin
|
|
// a bit, but this is not included in the worst case analysis of GMAC-SIV.
|
|
// The most significant bit of the counter is masked to zero to allow up to
|
|
// 2^31 bytes to be encrypted before the counter loops. Some CTR implementations
|
|
// increment the whole big-endian 128-bit integer in which case this could be
|
|
// used for more than 2^31 bytes, but ours does not for performance reasons
|
|
// and so 2^31 should be considered the input limit.
|
|
tmp[0] = _tag[0];
|
|
tmp[1] = _tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
|
|
_ctr.init(reinterpret_cast<const uint8_t *>(tmp), _output);
|
|
}
|
|
|
|
/**
|
|
* Second pass plaintext input function
|
|
*
|
|
* The same plaintext must be fed in the second time in the same order,
|
|
* though chunk boundaries do not have to be the same.
|
|
*
|
|
* @param input Plaintext chunk
|
|
* @param len Length of plaintext chunk
|
|
*/
|
|
ZT_INLINE void update2(const void *const input, const unsigned int len) noexcept
|
|
{ _ctr.crypt(input, len); }
|
|
|
|
/**
|
|
* Finish second pass and return a pointer to the opaque 128-bit IV+MAC block
|
|
*
|
|
* The returned pointer remains valid as long as this object exists and init()
|
|
* is not called again.
|
|
*
|
|
* @return Pointer to 128-bit opaque IV+MAC (packed into two 64-bit integers)
|
|
*/
|
|
ZT_INLINE const uint64_t *finish2()
|
|
{
|
|
_ctr.finish();
|
|
return _tag;
|
|
}
|
|
|
|
private:
|
|
void *_output;
|
|
uint64_t _tag[2];
|
|
AES::GMAC _gmac;
|
|
AES::CTR _ctr;
|
|
};
|
|
|
|
/**
|
|
* Decryptor for AES-GMAC-SIV.
|
|
*
|
|
* GMAC-SIV decryption is single-pass. AAD (if any) must be processed first.
|
|
*/
|
|
class GMACSIVDecryptor
|
|
{
|
|
public:
|
|
ZT_INLINE GMACSIVDecryptor(const AES &k0, const AES &k1) noexcept:
|
|
_ctr(k1),
|
|
_gmac(k0)
|
|
{}
|
|
|
|
/**
|
|
* Initialize decryptor for a new message
|
|
*
|
|
* @param tag 128-bit combined IV/MAC originally created by GMAC-SIV encryption
|
|
* @param output Buffer in which to write output plaintext (must be large enough!)
|
|
*/
|
|
ZT_INLINE void init(const uint64_t tag[2], void *const output) noexcept
|
|
{
|
|
uint64_t tmp[2];
|
|
tmp[0] = tag[0];
|
|
tmp[1] = tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
|
|
_ctr.init(reinterpret_cast<const uint8_t *>(tmp), output);
|
|
|
|
_ctr._aes.decrypt(tag, _ivMac);
|
|
|
|
tmp[0] = _ivMac[0];
|
|
tmp[1] = 0;
|
|
_gmac.init(reinterpret_cast<const uint8_t *>(tmp));
|
|
|
|
_output = output;
|
|
_decryptedLen = 0;
|
|
}
|
|
|
|
/**
|
|
* Process AAD (additional authenticated data) that wasn't encrypted
|
|
*
|
|
* @param aad Additional authenticated data
|
|
* @param len Length of AAD in bytes
|
|
*/
|
|
ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept
|
|
{
|
|
_gmac.update(aad, len);
|
|
len &= 0xfU;
|
|
if (len != 0)
|
|
_gmac.update(Utils::ZERO256, 16 - len);
|
|
}
|
|
|
|
/**
|
|
* Feed ciphertext into the decryptor
|
|
*
|
|
* Unlike encryption, GMAC-SIV decryption requires only one pass.
|
|
*
|
|
* @param input Input ciphertext
|
|
* @param len Length of ciphertext
|
|
*/
|
|
ZT_INLINE void update(const void *const input, const unsigned int len) noexcept
|
|
{
|
|
_ctr.crypt(input, len);
|
|
_decryptedLen += len;
|
|
}
|
|
|
|
/**
|
|
* Flush decryption, compute MAC, and verify
|
|
*
|
|
* @return True if resulting plaintext (and AAD) pass message authentication check
|
|
*/
|
|
ZT_INLINE bool finish() noexcept
|
|
{
|
|
_ctr.finish();
|
|
|
|
uint64_t gmacTag[2];
|
|
_gmac.update(_output, _decryptedLen);
|
|
_gmac.finish(reinterpret_cast<uint8_t *>(gmacTag));
|
|
return (gmacTag[0] ^ gmacTag[1]) == _ivMac[1];
|
|
}
|
|
|
|
private:
|
|
uint64_t _ivMac[2];
|
|
AES::CTR _ctr;
|
|
AES::GMAC _gmac;
|
|
void *_output;
|
|
unsigned int _decryptedLen;
|
|
};
|
|
|
|
private:
|
|
static const uint32_t Te0[256];
|
|
static const uint32_t Te4[256];
|
|
static const uint32_t Td0[256];
|
|
static const uint8_t Td4[256];
|
|
static const uint32_t rcon[15];
|
|
|
|
void p_initSW(const uint8_t *key) noexcept;
|
|
void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept;
|
|
void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept;
|
|
|
|
union
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
struct
|
|
{
|
|
__m128i k[28];
|
|
__m128i h[4]; // h, hh, hhh, hhhh
|
|
__m128i h2[4]; // _mm_xor_si128(_mm_shuffle_epi32(h, 78), h), etc.
|
|
} ni;
|
|
#endif
|
|
|
|
#ifdef ZT_AES_NEON
|
|
struct
|
|
{
|
|
uint64_t hsw[2]; // in case it has AES but not PMULL, not sure if that ever happens
|
|
uint8x16_t ek[15];
|
|
uint8x16_t dk[15];
|
|
uint8x16_t h;
|
|
} neon;
|
|
#endif
|
|
|
|
struct
|
|
{
|
|
uint64_t h[2];
|
|
uint32_t ek[60];
|
|
uint32_t dk[60];
|
|
} sw;
|
|
} p_k;
|
|
|
|
#ifdef ZT_AES_AESNI
|
|
void p_init_aesni(const uint8_t *key) noexcept;
|
|
void p_encrypt_aesni(const void *in, void *out) const noexcept;
|
|
void p_decrypt_aesni(const void *in, void *out) const noexcept;
|
|
#endif
|
|
|
|
#ifdef ZT_AES_NEON
|
|
void p_init_armneon_crypto(const uint8_t *key) noexcept;
|
|
void p_encrypt_armneon_crypto(const void *in, void *out) const noexcept;
|
|
void p_decrypt_armneon_crypto(const void *in, void *out) const noexcept;
|
|
#endif
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|