ZeroTierOne/node/Peer.hpp
2019-08-26 20:18:28 -07:00

554 lines
16 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_PEER_HPP
#define ZT_PEER_HPP
#include <vector>
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Path.hpp"
#include "Address.hpp"
#include "Utils.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Packet.hpp"
#include "SharedPtr.hpp"
#include "AtomicCounter.hpp"
#include "Hashtable.hpp"
#include "Mutex.hpp"
#define ZT_PEER_MAX_SERIALIZED_STATE_SIZE (sizeof(Peer) + 32 + (sizeof(Path) * 2))
namespace ZeroTier {
/**
* Peer on P2P Network (virtual layer 1)
*/
class Peer
{
friend class SharedPtr<Peer>;
private:
inline Peer() {} // disabled to prevent bugs -- should not be constructed uninitialized
public:
inline ~Peer() { Utils::burn(_key,sizeof(_key)); }
/**
* Construct a new peer
*
* @param renv Runtime environment
* @param myIdentity Identity of THIS node (for key agreement)
* @param peerIdentity Identity of peer
* @throws std::runtime_error Key agreement with peer's identity failed
*/
Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity);
/**
* @return This peer's ZT address (short for identity().address())
*/
ZT_ALWAYS_INLINE const Address &address() const { return _id.address(); }
/**
* @return This peer's identity
*/
ZT_ALWAYS_INLINE const Identity &identity() const { return _id; }
/**
* Log receipt of an authenticated packet
*
* This is called by the decode pipe when a packet is proven to be authentic
* and appears to be valid.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param path Path over which packet was received
* @param hops ZeroTier (not IP) hops
* @param packetId Packet ID
* @param verb Packet verb
* @param inRePacketId Packet ID in reply to (default: none)
* @param inReVerb Verb in reply to (for OK/ERROR, default: VERB_NOP)
* @param networkId Network ID if this packet is related to a network, 0 otherwise
*/
void received(
void *tPtr,
const SharedPtr<Path> &path,
const unsigned int hops,
const uint64_t packetId,
const unsigned int payloadLength,
const Packet::Verb verb,
const uint64_t inRePacketId,
const Packet::Verb inReVerb,
const uint64_t networkId);
/**
* Check whether we have an active path to this peer via the given address
*
* @param now Current time
* @param addr Remote address
* @return True if we have an active path to this destination
*/
inline bool hasActivePathTo(int64_t now,const InetAddress &addr) const
{
Mutex::Lock _l(_paths_m);
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i]) {
if ((_paths[i]->address() == addr)&&(_paths[i]->alive(now)))
return true;
} else break;
}
return false;
}
/**
* Send via best direct path
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param data Packet data
* @param len Packet length
* @param now Current time
* @param force If true, send even if path is not alive
* @return True if we actually sent something
*/
ZT_ALWAYS_INLINE bool sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force)
{
SharedPtr<Path> bp(getAppropriatePath(now,force));
if (bp)
return bp->send(RR,tPtr,data,len,now);
return false;
}
/**
* Record statistics on outgoing packets
*
* @param path Path over which packet was sent
* @param id Packet ID
* @param len Length of packet payload
* @param verb Packet verb
* @param now Current time
*/
void recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, int64_t now);
/**
* Record statistics on incoming packets
*
* @param path Path over which packet was sent
* @param id Packet ID
* @param len Length of packet payload
* @param verb Packet verb
* @param now Current time
*/
void recordIncomingPacket(void *tPtr, const SharedPtr<Path> &path, const uint64_t packetId, uint16_t payloadLength, const Packet::Verb verb, int64_t now);
/**
* Send an ACK to peer for the most recent packets received
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param localSocket Raw socket the ACK packet will be sent over
* @param atAddress Destination for the ACK packet
* @param now Current time
*/
void sendACK(void *tPtr, const SharedPtr<Path> &path, const int64_t localSocket,const InetAddress &atAddress,int64_t now);
/**
* Send a QoS packet to peer so that it can evaluate the quality of this link
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param localSocket Raw socket the QoS packet will be sent over
* @param atAddress Destination for the QoS packet
* @param now Current time
*/
void sendQOS_MEASUREMENT(void *tPtr, const SharedPtr<Path> &path, const int64_t localSocket,const InetAddress &atAddress,int64_t now);
/**
* Compute relative quality values and allocations for the components of the aggregate link
*
* @param now Current time
*/
void computeAggregateProportionalAllocation(int64_t now);
/**
* @return The aggregate link Packet Delay Variance (PDV)
*/
int computeAggregateLinkPacketDelayVariance();
/**
* @return The aggregate link mean latency
*/
int computeAggregateLinkMeanLatency();
/**
* @return The number of currently alive "physical" paths in the aggregate link
*/
int aggregateLinkPhysicalPathCount();
/**
* @return The number of currently alive "logical" paths in the aggregate link
*/
int aggregateLinkLogicalPathCount();
/**
* Get the most appropriate direct path based on current multipath and QoS configuration
*
* @param now Current time
* @param includeExpired If true, include even expired paths
* @return Best current path or NULL if none
*/
SharedPtr<Path> getAppropriatePath(int64_t now, bool includeExpired);
/**
* Generate a human-readable string of interface names making up the aggregate link, also include
* moving allocation and IP version number for each (for tracing)
*/
char *interfaceListStr();
/**
* Send VERB_RENDEZVOUS to this and another peer via the best common IP scope and path
*/
void introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const;
/**
* Send a HELLO to this peer at a specified physical address
*
* No statistics or sent times are updated here.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param localSocket Local source socket
* @param atAddress Destination address
* @param now Current time
*/
void sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now);
/**
* Send pings to active paths
*
* This also cleans up some internal data structures. It's called periodically from Node.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time
* @param v4SendCount Number of IPv4 packets sent (result parameter)
* @param v6SendCount Number of IPv6 packets sent (result parameter)
*/
void ping(void *tPtr,int64_t now,unsigned int &v4SendCount,unsigned int &v6SendCount);
/**
* Reset paths within a given IP scope and address family
*
* Resetting a path involves sending an ECHO to it and then deactivating
* it until or unless it responds. This is done when we detect a change
* to our external IP or another system change that might invalidate
* many or all current paths.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param scope IP scope
* @param inetAddressFamily Family e.g. AF_INET
* @param now Current time
*/
void resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now);
/**
* @param now Current time
* @return All known paths to this peer
*/
inline std::vector< SharedPtr<Path> > paths(const int64_t now) const
{
std::vector< SharedPtr<Path> > pp;
Mutex::Lock _l(_paths_m);
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) break;
pp.push_back(_paths[i]);
}
return pp;
}
/**
* @return Time of last receive of anything, whether direct or relayed
*/
ZT_ALWAYS_INLINE int64_t lastReceive() const { return _lastReceive; }
/**
* @return True if we've heard from this peer in less than ZT_PEER_ACTIVITY_TIMEOUT
*/
ZT_ALWAYS_INLINE bool alive(const int64_t now) const { return ((now - _lastReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }
/**
* @return Latency in milliseconds of best/aggregate path or 0xffff if unknown / no paths
*/
ZT_ALWAYS_INLINE unsigned int latency(const int64_t now)
{
if (_canUseMultipath) {
return (int)computeAggregateLinkMeanLatency();
} else {
SharedPtr<Path> bp(getAppropriatePath(now,false));
if (bp)
return bp->latency();
return 0xffff;
}
}
/**
* This computes a quality score for relays and root servers
*
* If we haven't heard anything from these in ZT_PEER_ACTIVITY_TIMEOUT, they
* receive the worst possible quality (max unsigned int). Otherwise the
* quality is a product of latency and the number of potential missed
* pings. This causes roots and relays to switch over a bit faster if they
* fail.
*
* @return Relay quality score computed from latency and other factors, lower is better
*/
ZT_ALWAYS_INLINE unsigned int relayQuality(const int64_t now)
{
const uint64_t tsr = now - _lastReceive;
if (tsr >= ZT_PEER_ACTIVITY_TIMEOUT)
return (~(unsigned int)0);
unsigned int l = latency(now);
if (!l)
l = 0xffff;
return (l * (((unsigned int)tsr / (ZT_PEER_PING_PERIOD + 1000)) + 1));
}
/**
* @return 256-bit secret symmetric encryption key
*/
ZT_ALWAYS_INLINE const unsigned char *key() const { return _key; }
/**
* Set the currently known remote version of this peer's client
*
* @param vproto Protocol version
* @param vmaj Major version
* @param vmin Minor version
* @param vrev Revision
*/
ZT_ALWAYS_INLINE void setRemoteVersion(unsigned int vproto,unsigned int vmaj,unsigned int vmin,unsigned int vrev)
{
_vProto = (uint16_t)vproto;
_vMajor = (uint16_t)vmaj;
_vMinor = (uint16_t)vmin;
_vRevision = (uint16_t)vrev;
}
ZT_ALWAYS_INLINE unsigned int remoteVersionProtocol() const { return _vProto; }
ZT_ALWAYS_INLINE unsigned int remoteVersionMajor() const { return _vMajor; }
ZT_ALWAYS_INLINE unsigned int remoteVersionMinor() const { return _vMinor; }
ZT_ALWAYS_INLINE unsigned int remoteVersionRevision() const { return _vRevision; }
ZT_ALWAYS_INLINE bool remoteVersionKnown() const { return ((_vMajor > 0)||(_vMinor > 0)||(_vRevision > 0)); }
/**
* Periodically update known multipath activation constraints. This is done so that we know when and when
* not to use multipath logic. Doing this once every few seconds is sufficient.
*
* @param now Current time
*/
void processBackgroundPeerTasks(const int64_t now);
/**
* Record that the remote peer does have multipath enabled. As is evident by the receipt of a VERB_ACK
* or a VERB_QOS_MEASUREMENT packet at some point in the past. Until this flag is set, the local client
* shall assume that multipath is not enabled and should only use classical Protocol 9 logic.
*/
inline void inferRemoteMultipathEnabled() { _remotePeerMultipathEnabled = true; }
/**
* @return Whether the local client supports and is configured to use multipath
*/
inline bool localMultipathSupport() { return _localMultipathSupported; }
/**
* @return Whether the remote peer supports and is configured to use multipath
*/
inline bool remoteMultipathSupport() { return _remoteMultipathSupported; }
/**
* @return Whether this client can use multipath to communicate with this peer. True if both peers are using
* the correct protocol and if both peers have multipath enabled. False if otherwise.
*/
inline bool canUseMultipath() { return _canUseMultipath; }
/**
* Rate limit gate for VERB_PUSH_DIRECT_PATHS
*/
ZT_ALWAYS_INLINE bool rateGatePushDirectPaths(const int64_t now)
{
if ((now - _lastDirectPathPushReceive) <= ZT_PUSH_DIRECT_PATHS_CUTOFF_TIME)
++_directPathPushCutoffCount;
else _directPathPushCutoffCount = 0;
_lastDirectPathPushReceive = now;
return (_directPathPushCutoffCount < ZT_PUSH_DIRECT_PATHS_CUTOFF_LIMIT);
}
/**
* Rate limit gate for VERB_NETWORK_CREDENTIALS
*/
ZT_ALWAYS_INLINE bool rateGateCredentialsReceived(const int64_t now)
{
if ((now - _lastCredentialsReceived) <= ZT_PEER_CREDENTIALS_CUTOFF_TIME)
++_credentialsCutoffCount;
else _credentialsCutoffCount = 0;
_lastCredentialsReceived = now;
return (_directPathPushCutoffCount < ZT_PEER_CREDEITIALS_CUTOFF_LIMIT);
}
/**
* Rate limit gate for sending of ERROR_NEED_MEMBERSHIP_CERTIFICATE
*/
ZT_ALWAYS_INLINE bool rateGateRequestCredentials(const int64_t now)
{
if ((now - _lastCredentialRequestSent) >= ZT_PEER_GENERAL_RATE_LIMIT) {
_lastCredentialRequestSent = now;
return true;
}
return false;
}
/**
* Rate limit gate for inbound WHOIS requests
*/
ZT_ALWAYS_INLINE bool rateGateInboundWhoisRequest(const int64_t now)
{
if ((now - _lastWhoisRequestReceived) >= ZT_PEER_WHOIS_RATE_LIMIT) {
_lastWhoisRequestReceived = now;
return true;
}
return false;
}
/**
* Rate limit gate for inbound ECHO requests
*/
ZT_ALWAYS_INLINE bool rateGateEchoRequest(const int64_t now)
{
if ((now - _lastEchoRequestReceived) >= ZT_PEER_GENERAL_RATE_LIMIT) {
_lastEchoRequestReceived = now;
return true;
}
return false;
}
/**
* Rate limit gate for VERB_ACK
*/
ZT_ALWAYS_INLINE bool rateGateACK(const int64_t now)
{
if ((now - _lastACKWindowReset) >= ZT_PATH_QOS_ACK_CUTOFF_TIME) {
_lastACKWindowReset = now;
_ACKCutoffCount = 0;
} else {
++_ACKCutoffCount;
}
return (_ACKCutoffCount < ZT_PATH_QOS_ACK_CUTOFF_LIMIT);
}
/**
* Rate limit gate for VERB_QOS_MEASUREMENT
*/
ZT_ALWAYS_INLINE bool rateGateQoS(const int64_t now)
{
if ((now - _lastQoSWindowReset) >= ZT_PATH_QOS_ACK_CUTOFF_TIME) {
_lastQoSWindowReset = now;
_QoSCutoffCount = 0;
} else {
++_QoSCutoffCount;
}
return (_QoSCutoffCount < ZT_PATH_QOS_ACK_CUTOFF_LIMIT);
}
/**
* Rate limit gate for trying externally defined or static path
*/
ZT_ALWAYS_INLINE bool rateGateTryStaticPath(const int64_t now)
{
if ((now - _lastTriedStaticPath) >= ZT_PEER_PING_PERIOD) {
_lastTriedStaticPath = now;
return true;
}
return false;
}
/**
* @return Whether this peer is reachable via an aggregate link
*/
inline bool hasAggregateLink()
{
return _localMultipathSupported && _remoteMultipathSupported && _remotePeerMultipathEnabled;
}
private:
uint8_t _key[ZT_PEER_SECRET_KEY_LENGTH];
const RuntimeEnvironment *RR;
int64_t _lastReceive; // direct or indirect
int64_t _lastDirectPathPushSent;
int64_t _lastDirectPathPushReceive;
int64_t _lastCredentialRequestSent;
int64_t _lastWhoisRequestReceived;
int64_t _lastEchoRequestReceived;
int64_t _lastCredentialsReceived;
int64_t _lastACKWindowReset;
int64_t _lastQoSWindowReset;
int64_t _lastMultipathCompatibilityCheck;
int64_t _lastTriedStaticPath;
int _uniqueAlivePathCount;
bool _localMultipathSupported;
bool _remoteMultipathSupported;
bool _canUseMultipath;
uint8_t _freeRandomByte;
uint16_t _vProto;
uint16_t _vMajor;
uint16_t _vMinor;
uint16_t _vRevision;
SharedPtr<Path> _paths[ZT_MAX_PEER_NETWORK_PATHS];
Mutex _paths_m;
Identity _id;
unsigned int _directPathPushCutoffCount;
unsigned int _credentialsCutoffCount;
unsigned int _QoSCutoffCount;
unsigned int _ACKCutoffCount;
AtomicCounter __refCount;
RingBuffer<int,ZT_MULTIPATH_PROPORTION_WIN_SZ> _pathChoiceHist;
bool _linkIsBalanced;
bool _linkIsRedundant;
bool _remotePeerMultipathEnabled;
int64_t _lastAggregateStatsReport;
int64_t _lastAggregateAllocation;
char _interfaceListStr[256]; // 16 characters * 16 paths in a link
};
} // namespace ZeroTier
// Add a swap() for shared ptr's to peers to speed up peer sorts
namespace std {
template<>
inline void swap(ZeroTier::SharedPtr<ZeroTier::Peer> &a,ZeroTier::SharedPtr<ZeroTier::Peer> &b)
{
a.swap(b);
}
}
#endif