ZeroTierOne/node/IncomingPacket.cpp
Adam Ierymenko 607d8f72e8
cruftectomy
2019-08-15 15:43:35 -07:00

1182 lines
47 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <list>
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "IncomingPacket.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
#include "Peer.hpp"
#include "NetworkController.hpp"
#include "SelfAwareness.hpp"
#include "Salsa20.hpp"
#include "SHA512.hpp"
#include "Node.hpp"
#include "CertificateOfMembership.hpp"
#include "Capability.hpp"
#include "Tag.hpp"
#include "Revocation.hpp"
#include "Trace.hpp"
namespace ZeroTier {
bool IncomingPacket::tryDecode(const RuntimeEnvironment *RR,void *tPtr)
{
const Address sourceAddress(source());
try {
// Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear)
const unsigned int c = cipher();
bool trusted = false;
if (c == ZT_PROTO_CIPHER_SUITE__NO_CRYPTO_TRUSTED_PATH) {
// If this is marked as a packet via a trusted path, check source address and path ID.
// Obviously if no trusted paths are configured this always returns false and such
// packets are dropped on the floor.
const uint64_t tpid = trustedPathId();
if (RR->topology->shouldInboundPathBeTrusted(_path->address(),tpid)) {
trusted = true;
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"path not trusted");
return true;
}
} else if ((c == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(verb() == Packet::VERB_HELLO)) {
// Only HELLO is allowed in the clear, but will still have a MAC
return _doHELLO(RR,tPtr,false);
}
const SharedPtr<Peer> peer(RR->topology->get(sourceAddress));
if (peer) {
if (!trusted) {
if (!dearmor(peer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"invalid MAC");
_path->recordInvalidPacket();
return true;
}
}
if (!uncompress()) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),Packet::VERB_NOP,"LZ4 decompression failed");
return true;
}
const Packet::Verb v = verb();
bool r = true;
switch(v) {
//case Packet::VERB_NOP:
default: // ignore unknown verbs, but if they pass auth check they are "received"
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),v,0,Packet::VERB_NOP,false,0);
break;
case Packet::VERB_HELLO: r = _doHELLO(RR,tPtr,true); break;
case Packet::VERB_ACK: r = _doACK(RR,tPtr,peer); break;
case Packet::VERB_QOS_MEASUREMENT: r = _doQOS_MEASUREMENT(RR,tPtr,peer); break;
case Packet::VERB_ERROR: r = _doERROR(RR,tPtr,peer); break;
case Packet::VERB_OK: r = _doOK(RR,tPtr,peer); break;
case Packet::VERB_WHOIS: r = _doWHOIS(RR,tPtr,peer); break;
case Packet::VERB_RENDEZVOUS: r = _doRENDEZVOUS(RR,tPtr,peer); break;
case Packet::VERB_FRAME: r = _doFRAME(RR,tPtr,peer); break;
case Packet::VERB_EXT_FRAME: r = _doEXT_FRAME(RR,tPtr,peer); break;
case Packet::VERB_ECHO: r = _doECHO(RR,tPtr,peer); break;
case Packet::VERB_MULTICAST_LIKE: r = _doMULTICAST_LIKE(RR,tPtr,peer); break;
case Packet::VERB_NETWORK_CREDENTIALS: r = _doNETWORK_CREDENTIALS(RR,tPtr,peer); break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: r = _doNETWORK_CONFIG_REQUEST(RR,tPtr,peer); break;
case Packet::VERB_NETWORK_CONFIG: r = _doNETWORK_CONFIG(RR,tPtr,peer); break;
case Packet::VERB_MULTICAST_GATHER: r = _doMULTICAST_GATHER(RR,tPtr,peer); break;
case Packet::VERB_MULTICAST_FRAME: r = _doMULTICAST_FRAME(RR,tPtr,peer); break;
case Packet::VERB_PUSH_DIRECT_PATHS: r = _doPUSH_DIRECT_PATHS(RR,tPtr,peer); break;
case Packet::VERB_USER_MESSAGE: r = _doUSER_MESSAGE(RR,tPtr,peer); break;
case Packet::VERB_REMOTE_TRACE: r = _doREMOTE_TRACE(RR,tPtr,peer); break;
}
if (r) {
RR->node->statsLogVerb((unsigned int)v,(unsigned int)size());
return true;
}
return false;
} else {
RR->sw->requestWhois(tPtr,RR->node->now(),sourceAddress);
return false;
}
} catch ( ... ) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),verb(),"unexpected exception in tryDecode()");
return true;
}
}
bool IncomingPacket::_doERROR(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID);
const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
uint64_t networkId = 0;
/* Security note: we do not gate doERROR() with expectingReplyTo() to
* avoid having to log every outgoing packet ID. Instead we put the
* logic to determine whether we should consider an ERROR in each
* error handler. In most cases these are only trusted in specific
* circumstances. */
switch(errorCode) {
case Packet::ERROR_OBJ_NOT_FOUND:
// Object not found, currently only meaningful from network controllers.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_UNSUPPORTED_OPERATION:
// This can be sent in response to any operation, though right now we only
// consider it meaningful from network controllers. This would indicate
// that the queried node does not support acting as a controller.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_IDENTITY_COLLISION:
// This is a trusted upstream telling us our 5-digit ID is taken. This
// causes the node to generate another.
if (RR->topology->isRoot(peer->identity()))
RR->node->postEvent(tPtr,ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION);
break;
case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: {
// Peers can send this to ask for a cert for a network.
networkId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
const int64_t now = RR->node->now();
if ((network)&&(network->config().com))
network->pushCredentialsNow(tPtr,peer->address(),now);
} break;
case Packet::ERROR_NETWORK_ACCESS_DENIED_: {
// Network controller: network access denied.
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network)&&(network->controller() == peer->address()))
network->setAccessDenied();
} break;
case Packet::ERROR_UNWANTED_MULTICAST: {
// Members of networks can use this error to indicate that they no longer
// want to receive multicasts on a given channel.
networkId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if ((network)&&(network->gate(tPtr,peer))) {
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8,6),6),at<uint32_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14));
RR->mc->remove(network->id(),mg,peer->address());
}
} break;
default: break;
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_ERROR,inRePacketId,inReVerb,false,networkId);
return true;
}
bool IncomingPacket::_doACK(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (!peer->rateGateACK(RR->node->now()))
return true;
/* Dissect incoming ACK packet. From this we can estimate current throughput of the path, establish known
* maximums and detect packet loss. */
if (peer->localMultipathSupport()) {
int32_t ackedBytes;
if (payloadLength() != sizeof(ackedBytes)) {
return true; // ignore
}
memcpy(&ackedBytes, payload(), sizeof(ackedBytes));
_path->receivedAck(RR->node->now(), Utils::ntoh(ackedBytes));
peer->inferRemoteMultipathEnabled();
}
return true;
}
bool IncomingPacket::_doQOS_MEASUREMENT(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (!peer->rateGateQoS(RR->node->now()))
return true;
/* Dissect incoming QoS packet. From this we can compute latency values and their variance.
* The latency variance is used as a measure of "jitter". */
if (peer->localMultipathSupport()) {
if (payloadLength() > ZT_PATH_MAX_QOS_PACKET_SZ || payloadLength() < ZT_PATH_MIN_QOS_PACKET_SZ) {
return true; // ignore
}
const int64_t now = RR->node->now();
uint64_t rx_id[ZT_PATH_QOS_TABLE_SIZE];
uint16_t rx_ts[ZT_PATH_QOS_TABLE_SIZE];
char *begin = (char *)payload();
char *ptr = begin;
int count = 0;
int len = payloadLength();
// Read packet IDs and latency compensation intervals for each packet tracked by this QoS packet
while (ptr < (begin + len) && (count < ZT_PATH_QOS_TABLE_SIZE)) {
memcpy((void*)&rx_id[count], ptr, sizeof(uint64_t));
ptr+=sizeof(uint64_t);
memcpy((void*)&rx_ts[count], ptr, sizeof(uint16_t));
ptr+=sizeof(uint16_t);
count++;
}
_path->receivedQoS(now, count, rx_id, rx_ts);
peer->inferRemoteMultipathEnabled();
}
return true;
}
bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,void *tPtr,const bool alreadyAuthenticated)
{
const int64_t now = RR->node->now();
const uint64_t pid = packetId();
const Address fromAddress(source());
const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const int64_t timestamp = at<int64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id;
unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
if (protoVersion < ZT_PROTO_VERSION_MIN) {
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"protocol version too old");
return true;
}
if (fromAddress != id.address()) {
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"identity/address mismatch");
return true;
}
SharedPtr<Peer> peer(RR->topology->get(id.address()));
if (peer) {
// We already have an identity with this address -- check for collisions
if (!alreadyAuthenticated) {
if (peer->identity() != id) {
// Identity is different from the one we already have -- address collision
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,_path->address()))
return true;
uint8_t key[ZT_PEER_SECRET_KEY_LENGTH];
if (RR->identity.agree(id,key,ZT_PEER_SECRET_KEY_LENGTH)) {
if (dearmor(key)) { // ensure packet is authentic, otherwise drop
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"address collision");
Packet outp(id.address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((uint8_t)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION);
outp.armor(key,true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC");
}
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid identity");
}
return true;
} else {
// Identity is the same as the one we already have -- check packet integrity
if (!dearmor(peer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC");
return true;
}
// Continue at // VALID
}
} // else if alreadyAuthenticated then continue at // VALID
} else {
// We don't already have an identity with this address -- validate and learn it
// Sanity check: this basically can't happen
if (alreadyAuthenticated) {
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"illegal alreadyAuthenticated state");
return true;
}
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,_path->address())) {
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"rate limit exceeded");
return true;
}
// Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap)
SharedPtr<Peer> newPeer(new Peer(RR,RR->identity,id));
if (!dearmor(newPeer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC");
return true;
}
// Check that identity's address is valid as per the derivation function
if (!id.locallyValidate()) {
RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"invalid identity");
return true;
}
peer = RR->topology->add(newPeer);
// Continue at // VALID
}
// VALID -- if we made it here, packet passed identity and authenticity checks!
// Get external surface address if present (was not in old versions)
InetAddress externalSurfaceAddress;
if (ptr < size()) {
ptr += externalSurfaceAddress.deserialize(*this,ptr);
if ((externalSurfaceAddress)&&(hops() == 0))
RR->sa->iam(tPtr,id.address(),_path->localSocket(),_path->address(),externalSurfaceAddress,RR->topology->isRoot(id),now);
}
// Send OK(HELLO) with an echo of the packet's timestamp and some of the same
// information about us: version, sent-to address, etc.
Packet outp(id.address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint64_t)timestamp);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
if (protoVersion >= 5) {
_path->address().serialize(outp);
} else {
/* LEGACY COMPATIBILITY HACK:
*
* For a while now (since 1.0.3), ZeroTier has recognized changes in
* its network environment empirically by examining its external network
* address as reported by trusted peers. In versions prior to 1.1.0
* (protocol version < 5), they did this by saving a snapshot of this
* information (in SelfAwareness.hpp) keyed by reporting device ID and
* address type.
*
* This causes problems when clustering is combined with symmetric NAT.
* Symmetric NAT remaps ports, so different endpoints in a cluster will
* report back different exterior addresses. Since the old code keys
* this by device ID and not sending physical address and compares the
* entire address including port, it constantly thinks its external
* surface is changing and resets connections when talking to a cluster.
*
* In new code we key by sending physical address and device and we also
* take the more conservative position of only interpreting changes in
* IP address (neglecting port) as a change in network topology that
* necessitates a reset. But we can make older clients work here by
* nulling out the port field. Since this info is only used for empirical
* detection of link changes, it doesn't break anything else.
*/
InetAddress tmpa(_path->address());
tmpa.setPort(0);
tmpa.serialize(outp);
}
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),now);
peer->setRemoteVersion(protoVersion,vMajor,vMinor,vRevision); // important for this to go first so received() knows the version
peer->received(tPtr,_path,hops(),pid,payloadLength(),Packet::VERB_HELLO,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID);
uint64_t networkId = 0;
if (!RR->node->expectingReplyTo(inRePacketId))
return true;
switch(inReVerb) {
case Packet::VERB_HELLO: {
const uint64_t latency = RR->node->now() - at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP);
const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION);
if (vProto < ZT_PROTO_VERSION_MIN)
return true;
InetAddress externalSurfaceAddress;
unsigned int ptr = ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2;
// Get reported external surface address if present
if (ptr < size())
ptr += externalSurfaceAddress.deserialize(*this,ptr);
if (!hops()) {
_path->updateLatency((unsigned int)latency,RR->node->now());
}
peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision);
if ((externalSurfaceAddress)&&(hops() == 0))
RR->sa->iam(tPtr,peer->address(),_path->localSocket(),_path->address(),externalSurfaceAddress,RR->topology->isRoot(peer->identity()),RR->node->now());
} break;
case Packet::VERB_WHOIS:
if (RR->topology->isRoot(peer->identity())) {
const Identity id(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY);
RR->sw->doAnythingWaitingForPeer(tPtr,RR->topology->add(SharedPtr<Peer>(new Peer(RR,RR->identity,id))));
}
break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: {
networkId = at<uint64_t>(ZT_PROTO_VERB_OK_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if (network)
network->handleConfigChunk(tPtr,packetId(),source(),*this,ZT_PROTO_VERB_OK_IDX_PAYLOAD);
} break;
case Packet::VERB_MULTICAST_GATHER: {
networkId = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(networkId));
if (network) {
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI));
const unsigned int count = at<uint16_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4);
RR->mc->addMultiple(tPtr,RR->node->now(),networkId,mg,field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6,count * 5),count,at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS));
}
} break;
case Packet::VERB_MULTICAST_FRAME: {
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS];
networkId = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_NETWORK_ID);
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI));
const SharedPtr<Network> network(RR->node->network(networkId));
if (network) {
unsigned int offset = 0;
if ((flags & 0x01) != 0) { // deprecated but still used by older peers
CertificateOfMembership com;
offset += com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS);
if (com)
network->addCredential(tPtr,com);
}
if ((flags & 0x02) != 0) {
// OK(MULTICAST_FRAME) includes implicit gather results
offset += ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS;
unsigned int totalKnown = at<uint32_t>(offset); offset += 4;
unsigned int count = at<uint16_t>(offset); offset += 2;
RR->mc->addMultiple(tPtr,RR->node->now(),networkId,mg,field(offset,count * 5),count,totalKnown);
}
}
} break;
default: break;
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_OK,inRePacketId,inReVerb,false,networkId);
return true;
}
bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
// TODO
//if ((!RR->topology->amUpstream())&&(!peer->rateGateInboundWhoisRequest(RR->node->now())))
// return true;
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packetId());
unsigned int count = 0;
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
while ((ptr + ZT_ADDRESS_LENGTH) <= size()) {
const Address addr(field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
ptr += ZT_ADDRESS_LENGTH;
const Identity id(RR->topology->getIdentity(tPtr,addr));
if (id) {
id.serialize(outp,false);
++count;
} else {
// Request unknown WHOIS from upstream from us (if we have one)
RR->sw->requestWhois(tPtr,RR->node->now(),addr);
}
}
if (count > 0) {
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_WHOIS,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (RR->topology->isRoot(peer->identity())) {
const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
const SharedPtr<Peer> rendezvousWith(RR->topology->get(with));
if (rendezvousWith) {
const unsigned int port = at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,with,_path->localSocket(),atAddr)) {
const uint64_t junk = RR->node->prng();
RR->node->putPacket(tPtr,_path->localSocket(),atAddr,&junk,4,2); // send low-TTL junk packet to 'open' local NAT(s) and stateful firewalls
rendezvousWith->attemptToContactAt(tPtr,_path->localSocket(),atAddr,RR->node->now(),false);
}
}
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_RENDEZVOUS,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doFRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
bool trustEstablished = false;
if (network) {
if (network->gate(tPtr,peer)) {
trustEstablished = true;
if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
const MAC sourceMac(peer->address(),nwid);
const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
const uint8_t *const frameData = reinterpret_cast<const uint8_t *>(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
if (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),sourceMac,network->mac(),frameData,frameLen,etherType,0) > 0)
RR->node->putFrame(tPtr,nwid,network->userPtr(),sourceMac,network->mac(),etherType,0,(const void *)frameData,frameLen);
}
} else {
_sendErrorNeedCredentials(RR,tPtr,peer,nwid);
return false;
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_FRAME,0,Packet::VERB_NOP,trustEstablished,nwid);
return true;
}
bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS];
unsigned int comLen = 0;
if ((flags & 0x01) != 0) { // inline COM with EXT_FRAME is deprecated but still used with old peers
CertificateOfMembership com;
comLen = com.deserialize(*this,ZT_PROTO_VERB_EXT_FRAME_IDX_COM);
if (com)
network->addCredential(tPtr,com);
}
if (!network->gate(tPtr,peer)) {
RR->t->incomingNetworkAccessDenied(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,true);
_sendErrorNeedCredentials(RR,tPtr,peer,nwid);
return false;
}
if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = at<uint16_t>(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE);
const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO,ZT_PROTO_VERB_EXT_FRAME_LEN_TO),ZT_PROTO_VERB_EXT_FRAME_LEN_TO);
const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM,ZT_PROTO_VERB_EXT_FRAME_LEN_FROM),ZT_PROTO_VERB_EXT_FRAME_LEN_FROM);
const unsigned int frameLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD);
const uint8_t *const frameData = (const uint8_t *)field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD,frameLen);
if ((!from)||(from == network->mac())) {
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,true,nwid); // trustEstablished because COM is okay
return true;
}
switch (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),from,to,frameData,frameLen,etherType,0)) {
case 1:
if (from != MAC(peer->address(),nwid)) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from,peer->address());
} else {
RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (remote)");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,true,nwid); // trustEstablished because COM is okay
return true;
}
} else if (to != network->mac()) {
if (to.isMulticast()) {
if (network->config().multicastLimit == 0) {
RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"multicast disabled");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,true,nwid); // trustEstablished because COM is okay
return true;
}
} else if (!network->config().permitsBridging(RR->identity.address())) {
RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (local)");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,true,nwid); // trustEstablished because COM is okay
return true;
}
}
// fall through -- 2 means accept regardless of bridging checks or other restrictions
case 2:
RR->node->putFrame(tPtr,nwid,network->userPtr(),from,to,etherType,0,(const void *)frameData,frameLen);
break;
}
}
if ((flags & 0x10) != 0) { // ACK requested
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_EXT_FRAME);
outp.append((uint64_t)packetId());
outp.append((uint64_t)nwid);
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,true,nwid);
} else {
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,false,nwid);
}
return true;
}
bool IncomingPacket::_doECHO(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (!peer->rateGateEchoRequest(RR->node->now()))
return true;
const uint64_t pid = packetId();
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_ECHO);
outp.append((uint64_t)pid);
if (size() > ZT_PACKET_IDX_PAYLOAD)
outp.append(reinterpret_cast<const unsigned char *>(data()) + ZT_PACKET_IDX_PAYLOAD,size() - ZT_PACKET_IDX_PAYLOAD);
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
peer->received(tPtr,_path,hops(),pid,payloadLength(),Packet::VERB_ECHO,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const int64_t now = RR->node->now();
bool authorized = false;
uint64_t lastNwid = 0;
// Packet contains a series of 18-byte network,MAC,ADI tuples
for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;ptr<size();ptr+=18) {
const uint64_t nwid = at<uint64_t>(ptr);
if (nwid != lastNwid) {
lastNwid = nwid;
SharedPtr<Network> network(RR->node->network(nwid));
if (network)
authorized = network->gate(tPtr,peer);
//if (!authorized)
// authorized = ((RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())));
}
if (authorized)
RR->mc->add(tPtr,now,nwid,MulticastGroup(MAC(field(ptr + 8,6),6),at<uint32_t>(ptr + 14)),peer->address());
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_LIKE,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doNETWORK_CREDENTIALS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (!peer->rateGateCredentialsReceived(RR->node->now()))
return true;
CertificateOfMembership com;
Capability cap;
Tag tag;
Revocation revocation;
CertificateOfOwnership coo;
bool trustEstablished = false;
SharedPtr<Network> network;
unsigned int p = ZT_PACKET_IDX_PAYLOAD;
while ((p < size())&&((*this)[p] != 0)) {
p += com.deserialize(*this,p);
if (com) {
network = RR->node->network(com.networkId());
if (network) {
switch (network->addCredential(tPtr,com)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
}
++p; // skip trailing 0 after COMs if present
if (p < size()) { // older ZeroTier versions do not send capabilities, tags, or revocations
const unsigned int numCapabilities = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numCapabilities;++i) {
p += cap.deserialize(*this,p);
if ((!network)||(network->id() != cap.networkId()))
network = RR->node->network(cap.networkId());
if (network) {
switch (network->addCredential(tPtr,cap)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) return true;
const unsigned int numTags = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numTags;++i) {
p += tag.deserialize(*this,p);
if ((!network)||(network->id() != tag.networkId()))
network = RR->node->network(tag.networkId());
if (network) {
switch (network->addCredential(tPtr,tag)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) return true;
const unsigned int numRevocations = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numRevocations;++i) {
p += revocation.deserialize(*this,p);
if ((!network)||(network->id() != revocation.networkId()))
network = RR->node->network(revocation.networkId());
if (network) {
switch(network->addCredential(tPtr,peer->address(),revocation)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) return true;
const unsigned int numCoos = at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numCoos;++i) {
p += coo.deserialize(*this,p);
if ((!network)||(network->id() != coo.networkId()))
network = RR->node->network(coo.networkId());
if (network) {
switch(network->addCredential(tPtr,coo)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_NETWORK_CREDENTIALS,0,Packet::VERB_NOP,trustEstablished,(network) ? network->id() : 0);
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
const unsigned int hopCount = hops();
const uint64_t requestPacketId = packetId();
if (RR->localNetworkController) {
const unsigned int metaDataLength = (ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN <= size()) ? at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN) : 0;
const char *metaDataBytes = (metaDataLength != 0) ? (const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength) : (const char *)0;
const Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> metaData(metaDataBytes,metaDataLength);
RR->localNetworkController->request(nwid,(hopCount > 0) ? InetAddress() : _path->address(),requestPacketId,peer->identity(),metaData);
} else {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
outp.append(nwid);
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
peer->received(tPtr,_path,hopCount,requestPacketId,payloadLength(),Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP,false,nwid);
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PACKET_IDX_PAYLOAD)));
if (network) {
const uint64_t configUpdateId = network->handleConfigChunk(tPtr,packetId(),source(),*this,ZT_PACKET_IDX_PAYLOAD);
if (configUpdateId) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_ECHO);
outp.append((uint64_t)packetId());
outp.append((uint64_t)network->id());
outp.append((uint64_t)configUpdateId);
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_NETWORK_CONFIG,0,Packet::VERB_NOP,false,(network) ? network->id() : 0);
return true;
}
bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
const unsigned int gatherLimit = at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
const SharedPtr<Network> network(RR->node->network(nwid));
if ((flags & 0x01) != 0) {
try {
CertificateOfMembership com;
com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM);
if ((com)&&(network))
network->addCredential(tPtr,com);
} catch ( ... ) {} // discard invalid COMs
}
bool trustEstablished = false;
if (network) {
if (network->gate(tPtr,peer)) {
trustEstablished = true;
} else {
_sendErrorNeedCredentials(RR,tPtr,peer,nwid);
return false;
}
}
const int64_t now = RR->node->now();
//if ((gatherLimit > 0)&&((trustEstablished)||(RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address())))) {
if (gatherLimit) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
outp.append(packetId());
outp.append(nwid);
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
const unsigned int gatheredLocally = RR->mc->gather(peer->address(),nwid,mg,outp,gatherLimit);
if (gatheredLocally > 0) {
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),now);
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_GATHER,0,Packet::VERB_NOP,trustEstablished,nwid);
return true;
}
bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
unsigned int offset = ZT_PACKET_IDX_PAYLOAD;
const uint64_t nwid = at<uint64_t>(offset); offset += 8;
const unsigned int flags = (*this)[offset]; ++offset;
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
if ((flags & 0x01) != 0) {
// This is deprecated but may still be sent by old peers
CertificateOfMembership com;
offset += com.deserialize(*this,offset);
if (com)
network->addCredential(tPtr,com);
}
if (!network->gate(tPtr,peer)) {
_sendErrorNeedCredentials(RR,tPtr,peer,nwid);
return false;
}
unsigned int gatherLimit = 0;
if ((flags & 0x02) != 0) {
gatherLimit = at<uint32_t>(offset); offset += 4;
}
MAC from;
if ((flags & 0x04) != 0) {
from.setTo(field(offset,6),6); offset += 6;
} else {
from.fromAddress(peer->address(),nwid);
}
const unsigned int recipientsOffset = offset;
std::list<Address> recipients;
if ((flags & 0x08) != 0) {
const unsigned int rc = at<uint16_t>(offset); offset += 2;
for(unsigned int i=0;i<rc;++i) {
const Address a(field(offset,5),5);
if ((a != peer->address())&&(a != RR->identity.address())) {
recipients.push_back(a);
}
offset += 5;
}
}
const unsigned int afterRecipientsOffset = offset;
const MulticastGroup to(MAC(field(offset,6),6),at<uint32_t>(offset + 6)); offset += 10;
const unsigned int etherType = at<uint16_t>(offset); offset += 2;
const unsigned int frameLen = size() - offset;
if (network->config().multicastLimit == 0) {
RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_MULTICAST_FRAME,from,to.mac(),"multicast disabled");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,true,nwid);
return true;
}
if (!to.mac().isMulticast()) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),source(),hops(),Packet::VERB_MULTICAST_FRAME,"destination not multicast");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,true,nwid);
return true;
}
if ((!from)||(from.isMulticast())||(from == network->mac())) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),source(),hops(),Packet::VERB_MULTICAST_FRAME,"invalid source MAC");
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,true,nwid);
return true;
}
if ((frameLen > 0)&&(frameLen <= ZT_MAX_MTU)) {
const uint8_t *const frameData = ((const uint8_t *)unsafeData()) + offset;
if (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),from,to.mac(),frameData,frameLen,etherType,0) > 0) {
RR->node->putFrame(tPtr,nwid,network->userPtr(),from,to.mac(),etherType,0,(const void *)frameData,frameLen);
}
}
if (!recipients.empty()) {
const std::vector<Address> anchors = network->config().anchors();
const bool amAnchor = (std::find(anchors.begin(),anchors.end(),RR->identity.address()) != anchors.end());
for(std::list<Address>::iterator ra(recipients.begin());ra!=recipients.end();) {
SharedPtr<Peer> recipient(RR->topology->get(*ra));
if ((recipient)&&((recipient->remoteVersionProtocol() < 10)||(amAnchor))) {
Packet outp(*ra,RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append(field(ZT_PACKET_IDX_PAYLOAD,recipientsOffset - ZT_PACKET_IDX_PAYLOAD),recipientsOffset - ZT_PACKET_IDX_PAYLOAD);
outp.append(field(afterRecipientsOffset,size() - afterRecipientsOffset),size() - afterRecipientsOffset);
RR->sw->send(tPtr,outp,true);
recipients.erase(ra++);
} else ++ra;
}
if (!recipients.empty()) {
Packet outp(recipients.front(),RR->identity.address(),Packet::VERB_MULTICAST_FRAME);
recipients.pop_front();
outp.append(field(ZT_PACKET_IDX_PAYLOAD,recipientsOffset - ZT_PACKET_IDX_PAYLOAD),recipientsOffset - ZT_PACKET_IDX_PAYLOAD);
if (!recipients.empty()) {
outp.append((uint16_t)recipients.size());
for(std::list<Address>::iterator ra(recipients.begin());ra!=recipients.end();++ra)
ra->appendTo(outp);
}
outp.append(field(afterRecipientsOffset,size() - afterRecipientsOffset),size() - afterRecipientsOffset);
RR->sw->send(tPtr,outp,true);
}
}
if (gatherLimit) { // DEPRECATED but still supported
Packet outp(source(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME);
outp.append(packetId());
outp.append(nwid);
to.mac().appendTo(outp);
outp.append((uint32_t)to.adi());
outp.append((unsigned char)0x02); // flag 0x02 = contains gather results
if (RR->mc->gather(peer->address(),nwid,to,outp,gatherLimit)) {
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,true,nwid);
return true;
} else {
_sendErrorNeedCredentials(RR,tPtr,peer,nwid);
return false;
}
}
bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
const int64_t now = RR->node->now();
// First, subject this to a rate limit
if (!peer->rateGatePushDirectPaths(now)) {
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP,false,0);
return true;
}
// Second, limit addresses by scope and type
uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE+1][2]; // [][0] is v4, [][1] is v6
memset(countPerScope,0,sizeof(countPerScope));
unsigned int count = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD);
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2;
while (count--) { // if ptr overflows Buffer will throw
// TODO: some flags are not yet implemented
unsigned int flags = (*this)[ptr++];
unsigned int extLen = at<uint16_t>(ptr); ptr += 2;
ptr += extLen; // unused right now
unsigned int addrType = (*this)[ptr++];
unsigned int addrLen = (*this)[ptr++];
switch(addrType) {
case 4: {
const InetAddress a(field(ptr,4),4,at<uint16_t>(ptr + 4));
if ((!( ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now,a)) )) && // not already known
(RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),_path->localSocket(),a)) ) // should use path
{
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->clusterRedirect(tPtr,_path,a,now);
} else if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
peer->attemptToContactAt(tPtr,InetAddress(),a,now,false);
}
}
} break;
case 6: {
const InetAddress a(field(ptr,16),16,at<uint16_t>(ptr + 16));
if ((!( ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now,a)) )) && // not already known
(RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),_path->localSocket(),a)) ) // should use path
{
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->clusterRedirect(tPtr,_path,a,now);
} else if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
peer->attemptToContactAt(tPtr,InetAddress(),a,now,false);
}
}
} break;
}
ptr += addrLen;
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doUSER_MESSAGE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
if (likely(size() >= (ZT_PACKET_IDX_PAYLOAD + 8))) {
ZT_UserMessage um;
um.origin = peer->address().toInt();
um.typeId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD);
um.data = reinterpret_cast<const void *>(reinterpret_cast<const uint8_t *>(data()) + ZT_PACKET_IDX_PAYLOAD + 8);
um.length = size() - (ZT_PACKET_IDX_PAYLOAD + 8);
RR->node->postEvent(tPtr,ZT_EVENT_USER_MESSAGE,reinterpret_cast<const void *>(&um));
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_USER_MESSAGE,0,Packet::VERB_NOP,false,0);
return true;
}
bool IncomingPacket::_doREMOTE_TRACE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
ZT_RemoteTrace rt;
const char *ptr = reinterpret_cast<const char *>(data()) + ZT_PACKET_IDX_PAYLOAD;
const char *const eof = reinterpret_cast<const char *>(data()) + size();
rt.origin = peer->address().toInt();
rt.data = const_cast<char *>(ptr); // start of first string
while (ptr < eof) {
if (!*ptr) { // end of string
rt.len = (unsigned int)(ptr - rt.data);
if ((rt.len > 0)&&(rt.len <= ZT_MAX_REMOTE_TRACE_SIZE)) {
RR->node->postEvent(tPtr,ZT_EVENT_REMOTE_TRACE,&rt);
}
rt.data = const_cast<char *>(++ptr); // start of next string, if any
} else {
++ptr;
}
}
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_REMOTE_TRACE,0,Packet::VERB_NOP,false,0);
return true;
}
void IncomingPacket::_sendErrorNeedCredentials(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer,const uint64_t nwid)
{
Packet outp(source(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((uint8_t)verb());
outp.append(packetId());
outp.append((uint8_t)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE);
outp.append(nwid);
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
} // namespace ZeroTier