ZeroTierOne/node/Hashtable.hpp
2019-09-07 19:15:21 -07:00

406 lines
8.2 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_HASHTABLE_HPP
#define ZT_HASHTABLE_HPP
#include "Constants.hpp"
namespace ZeroTier {
/**
* A minimal hash table implementation for the ZeroTier core
*
* This is optimized for smaller data sets.
*/
template<typename K,typename V>
class Hashtable
{
private:
struct _Bucket
{
ZT_ALWAYS_INLINE _Bucket(const K &k,const V &v) : k(k),v(v) {}
ZT_ALWAYS_INLINE _Bucket(const K &k) : k(k),v() {}
ZT_ALWAYS_INLINE _Bucket(const _Bucket &b) : k(b.k),v(b.v) {}
ZT_ALWAYS_INLINE _Bucket &operator=(const _Bucket &b) { k = b.k; v = b.v; return *this; }
_Bucket *next; // must be set manually for each _Bucket
const K k;
V v;
};
public:
/**
* A simple forward iterator (different from STL)
*
* It's safe to erase the last key, but not others. Don't use set() since that
* may rehash and invalidate the iterator. Note the erasing the key will destroy
* the targets of the pointers returned by next().
*/
class Iterator
{
public:
/**
* @param ht Hash table to iterate over
*/
ZT_ALWAYS_INLINE Iterator(Hashtable &ht) :
_idx(0),
_ht(&ht),
_b(ht._t[0])
{
}
/**
* @param kptr Pointer to set to point to next key
* @param vptr Pointer to set to point to next value
* @return True if kptr and vptr are set, false if no more entries
*/
ZT_ALWAYS_INLINE bool next(K *&kptr,V *&vptr)
{
for(;;) {
if (_b) {
kptr = &(_b->k);
vptr = &(_b->v);
_b = _b->next;
return true;
}
++_idx;
if (_idx >= _ht->_bc)
return false;
_b = _ht->_t[_idx];
}
}
private:
unsigned long _idx;
Hashtable *_ht;
_Bucket *_b;
};
//friend class Hashtable<K,V>::Iterator;
/**
* @param bc Initial capacity in buckets (default: 32, must be nonzero)
*/
ZT_ALWAYS_INLINE Hashtable(unsigned long bc = 32) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * bc))),
_bc(bc),
_s(0)
{
if (!_t)
throw ZT_EXCEPTION_OUT_OF_MEMORY;
for(unsigned long i=0;i<bc;++i)
_t[i] = (_Bucket *)0;
}
ZT_ALWAYS_INLINE Hashtable(const Hashtable<K,V> &ht) :
_t(reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * ht._bc))),
_bc(ht._bc),
_s(ht._s)
{
if (!_t)
throw ZT_EXCEPTION_OUT_OF_MEMORY;
for(unsigned long i=0;i<_bc;++i)
_t[i] = (_Bucket *)0;
for(unsigned long i=0;i<_bc;++i) {
const _Bucket *b = ht._t[i];
while (b) {
_Bucket *nb = new _Bucket(*b);
nb->next = _t[i];
_t[i] = nb;
b = b->next;
}
}
}
ZT_ALWAYS_INLINE ~Hashtable()
{
this->clear();
::free(_t);
}
ZT_ALWAYS_INLINE Hashtable &operator=(const Hashtable<K,V> &ht)
{
this->clear();
if (ht._s) {
for(unsigned long i=0;i<ht._bc;++i) {
const _Bucket *b = ht._t[i];
while (b) {
this->set(b->k,b->v);
b = b->next;
}
}
}
return *this;
}
/**
* Erase all entries
*/
ZT_ALWAYS_INLINE void clear()
{
if (_s) {
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
_Bucket *const nb = b->next;
delete b;
b = nb;
}
_t[i] = (_Bucket *)0;
}
_s = 0;
}
}
/**
* @return Vector of all keys
*/
ZT_ALWAYS_INLINE typename std::vector<K> keys() const
{
typename std::vector<K> k;
if (_s) {
k.reserve(_s);
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
k.push_back(b->k);
b = b->next;
}
}
}
return k;
}
/**
* Append all keys (in unspecified order) to the supplied vector or list
*
* @param v Vector, list, or other compliant container
* @tparam Type of V (generally inferred)
*/
template<typename C>
ZT_ALWAYS_INLINE void appendKeys(C &v) const
{
if (_s) {
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
v.push_back(b->k);
b = b->next;
}
}
}
}
/**
* @return Vector of all entries (pairs of K,V)
*/
ZT_ALWAYS_INLINE typename std::vector< std::pair<K,V> > entries() const
{
typename std::vector< std::pair<K,V> > k;
if (_s) {
k.reserve(_s);
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
k.push_back(std::pair<K,V>(b->k,b->v));
b = b->next;
}
}
}
return k;
}
/**
* @param k Key
* @return Pointer to value or NULL if not found
*/
ZT_ALWAYS_INLINE V *get(const K k)
{
_Bucket *b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k)
return &(b->v);
b = b->next;
}
return (V *)0;
}
ZT_ALWAYS_INLINE const V *get(const K k) const { return const_cast<Hashtable *>(this)->get(k); }
/**
* @param k Key
* @param v Value to fill with result
* @return True if value was found and set (if false, v is not modified)
*/
ZT_ALWAYS_INLINE bool get(const K &k,V &v) const
{
_Bucket *b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k) {
v = b->v;
return true;
}
b = b->next;
}
return false;
}
/**
* @param k Key to check
* @return True if key is present
*/
ZT_ALWAYS_INLINE bool contains(const K &k) const
{
_Bucket *b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k)
return true;
b = b->next;
}
return false;
}
/**
* @param k Key
* @return True if value was present
*/
ZT_ALWAYS_INLINE bool erase(const K &k)
{
const unsigned long bidx = _hc(k) % _bc;
_Bucket *lastb = (_Bucket *)0;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k) {
if (lastb)
lastb->next = b->next;
else _t[bidx] = b->next;
delete b;
--_s;
return true;
}
lastb = b;
b = b->next;
}
return false;
}
/**
* @param k Key
* @param v Value
* @return Reference to value in table
*/
ZT_ALWAYS_INLINE V &set(const K &k,const V &v)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k) {
b->v = v;
return b->v;
}
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k,v);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @param k Key
* @return Value, possibly newly created
*/
ZT_ALWAYS_INLINE V &operator[](const K k)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket *b = _t[bidx];
while (b) {
if (b->k == k)
return b->v;
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @return Number of entries
*/
ZT_ALWAYS_INLINE unsigned long size() const { return _s; }
/**
* @return True if table is empty
*/
ZT_ALWAYS_INLINE bool empty() const { return (_s == 0); }
private:
template<typename O>
static ZT_ALWAYS_INLINE unsigned long _hc(const O &obj) { return (unsigned long)obj.hashCode(); }
static ZT_ALWAYS_INLINE unsigned long _hc(const uint64_t i) { return (unsigned long)(i ^ (i >> 32)); }
static ZT_ALWAYS_INLINE unsigned long _hc(const uint32_t i) { return ((unsigned long)i * (unsigned long)0x9e3779b1); }
static ZT_ALWAYS_INLINE unsigned long _hc(const uint16_t i) { return ((unsigned long)i * (unsigned long)0x9e3779b1); }
static ZT_ALWAYS_INLINE unsigned long _hc(const int i) { return ((unsigned long)i * (unsigned long)0x9e3379b1); }
static ZT_ALWAYS_INLINE unsigned long _hc(void *p) { return ((unsigned long)((uintptr_t)p) * (unsigned long)0x9e3779b1); }
static ZT_ALWAYS_INLINE unsigned long _hc(const void *p) { return ((unsigned long)((uintptr_t)p) * (unsigned long)0x9e3779b1); }
ZT_ALWAYS_INLINE void _grow()
{
const unsigned long nc = _bc * 2;
_Bucket **nt = reinterpret_cast<_Bucket **>(::malloc(sizeof(_Bucket *) * nc));
if (nt) {
for(unsigned long i=0;i<nc;++i)
nt[i] = (_Bucket *)0;
for(unsigned long i=0;i<_bc;++i) {
_Bucket *b = _t[i];
while (b) {
_Bucket *const nb = b->next;
const unsigned long nidx = _hc(b->k) % nc;
b->next = nt[nidx];
nt[nidx] = b;
b = nb;
}
}
::free(_t);
_t = nt;
_bc = nc;
}
}
_Bucket **_t;
unsigned long _bc;
unsigned long _s;
};
} // namespace ZeroTier
#endif