ZeroTierOne/node/Bond.cpp
2020-05-14 20:09:25 -07:00

1867 lines
70 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <cmath>
#include "Peer.hpp"
#include "Bond.hpp"
#include "Switch.hpp"
#include "Flow.hpp"
#include "Path.hpp"
namespace ZeroTier {
Bond::Bond(const RuntimeEnvironment *renv, int policy, const SharedPtr<Peer>& peer) :
RR(renv),
_peer(peer)
{
setReasonableDefaults(policy);
_policyAlias = BondController::getPolicyStrByCode(policy);
}
Bond::Bond(std::string& basePolicy, std::string& policyAlias, const SharedPtr<Peer>& peer) :
_policyAlias(policyAlias),
_peer(peer)
{
setReasonableDefaults(BondController::getPolicyCodeByStr(basePolicy));
}
Bond::Bond(const RuntimeEnvironment *renv, const Bond &originalBond, const SharedPtr<Peer>& peer) :
RR(renv),
_peer(peer)
{
// First, set everything to sane defaults
setReasonableDefaults(originalBond._bondingPolicy);
_policyAlias = originalBond._policyAlias;
// Second, apply user specified values (only if they make sense)
_downDelay = originalBond._downDelay;
_upDelay = originalBond._upDelay;
if (originalBond._bondMonitorInterval > 0 && originalBond._bondMonitorInterval < 65535) {
_bondMonitorInterval = originalBond._bondMonitorInterval;
}
else {
fprintf(stderr, "warning: bondMonitorInterval (%d) is out of range, using default (%d)\n", originalBond._bondMonitorInterval, _bondMonitorInterval);
}
if (originalBond._slaveMonitorStrategy == ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_PASSIVE
&& originalBond._failoverInterval != 0) {
fprintf(stderr, "warning: passive path monitoring was specified, this will prevent failovers from happening in a timely manner.\n");
}
_abSlaveSelectMethod = originalBond._abSlaveSelectMethod;
memcpy(_qualityWeights, originalBond._qualityWeights, ZT_QOS_WEIGHT_SIZE * sizeof(float));
}
void Bond::nominatePath(const SharedPtr<Path>& path, int64_t now)
{
char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "nominatePath: %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
Mutex::Lock _l(_paths_m);
if (!RR->bc->slaveAllowed(_policyAlias, getSlave(path))) {
return;
}
bool alreadyPresent = false;
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (path.ptr() == _paths[i].ptr()) {
fprintf(stderr, "previously encountered path, not notifying bond (%s)\n", pathStr);
alreadyPresent = true;
break;
}
}
if (!alreadyPresent) {
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (!_paths[i]) {
fprintf(stderr, "notifyOfNewPath(): Setting path %s to idx=%d\n", pathStr, i);
_paths[i] = path;
//_paths[i]->slave = RR->bc->getSlaveBySocket(_policyAlias, path->localSocket());
_paths[i]->startTrial(now);
break;
}
}
}
curateBond(now, true);
estimatePathQuality(now);
}
SharedPtr<Path> Bond::getAppropriatePath(int64_t now, int32_t flowId)
{
Mutex::Lock _l(_paths_m);
/**
* active-backup
*/
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
if (_abPath) {
return _abPath;
}
}
/**
* broadcast
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BROADCAST) {
return SharedPtr<Path>(); // Handled in Switch::_trySend()
}
if (!_numBondedPaths) {
return SharedPtr<Path>(); // No paths assigned to bond yet, cannot balance traffic
}
/**
* balance-rr
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR) {
if (!_allowFlowHashing) {
//fprintf(stderr, "_rrPacketsSentOnCurrSlave=%d, _numBondedPaths=%d, _rrIdx=%d\n", _rrPacketsSentOnCurrSlave, _numBondedPaths, _rrIdx);
if (_packetsPerSlave == 0) {
// Randomly select a path
return _paths[_bondedIdx[_freeRandomByte % _numBondedPaths]]; // TODO: Optimize
}
if (_rrPacketsSentOnCurrSlave < _packetsPerSlave) {
// Continue to use this slave
++_rrPacketsSentOnCurrSlave;
return _paths[_bondedIdx[_rrIdx]];
}
// Reset striping counter
_rrPacketsSentOnCurrSlave = 0;
if (_numBondedPaths == 1) {
_rrIdx = 0;
}
else {
int _tempIdx = _rrIdx;
for (int searchCount = 0; searchCount < (_numBondedPaths-1); searchCount++) {
_tempIdx = (_tempIdx == (_numBondedPaths-1)) ? 0 : _tempIdx+1;
if (_paths[_bondedIdx[_tempIdx]] && _paths[_bondedIdx[_tempIdx]]->eligible(now,_ackSendInterval)) {
_rrIdx = _tempIdx;
break;
}
}
}
fprintf(stderr, "_rrIdx=%d\n", _rrIdx);
if (_paths[_bondedIdx[_rrIdx]]) {
return _paths[_bondedIdx[_rrIdx]];
}
}
}
/**
* balance-xor
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR || _bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE) {
if (!_allowFlowHashing || flowId == -1) {
// No specific path required for unclassified traffic, send on anything
return _paths[_bondedIdx[_freeRandomByte % _numBondedPaths]]; // TODO: Optimize
}
else if (_allowFlowHashing) {
// TODO: Optimize
Mutex::Lock _l(_flows_m);
SharedPtr<Flow> flow;
if (_flows.count(flowId)) {
flow = _flows[flowId];
flow->updateActivity(now);
}
else {
unsigned char entropy;
Utils::getSecureRandom(&entropy, 1);
flow = createFlow(SharedPtr<Path>(), flowId, entropy, now);
}
if (flow) {
return flow->assignedPath();
}
}
}
return SharedPtr<Path>();
}
void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordIncomingInvalidPacket() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
Mutex::Lock _l(_paths_m);
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i] == path) {
_paths[i]->packetValiditySamples.push(false);
}
}
}
void Bond::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordOutgoingPacket() %s %s, packetId=%llx, payloadLength=%d, verb=%x, flowId=%lx\n", getSlave(path)->ifname().c_str(), pathStr, packetId, payloadLength, verb, flowId);
_freeRandomByte += (unsigned char)(packetId >> 8); // Grab entropy to use in path selection logic
if (!_shouldCollectPathStatistics) {
return;
}
bool isFrame = (verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1)
&& (verb != Packet::VERB_ACK)
&& (verb != Packet::VERB_QOS_MEASUREMENT));
if (isFrame || shouldRecord) {
Mutex::Lock _l(_paths_m);
if (isFrame) {
++(path->_packetsOut);
_lastFrame=now;
}
if (shouldRecord) {
path->_unackedBytes += payloadLength;
// Take note that we're expecting a VERB_ACK on this path as of a specific time
if (path->qosStatsOut.size() < ZT_QOS_MAX_OUTSTANDING_RECORDS) {
path->qosStatsOut[packetId] = now;
}
}
}
if (_allowFlowHashing) {
if (_allowFlowHashing && (flowId != ZT_QOS_NO_FLOW)) {
Mutex::Lock _l(_flows_m);
if (_flows.count(flowId)) {
_flows[flowId]->recordOutgoingBytes(payloadLength);
}
}
}
}
void Bond::recordIncomingPacket(const SharedPtr<Path>& path, uint64_t packetId, uint16_t payloadLength,
Packet::Verb verb, int32_t flowId, int64_t now)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordIncomingPacket() %s %s, packetId=%llx, payloadLength=%d, verb=%x, flowId=%lx\n", getSlave(path)->ifname().c_str(), pathStr, packetId, payloadLength, verb, flowId);
bool isFrame = (verb == Packet::VERB_FRAME || verb == Packet::VERB_EXT_FRAME);
bool shouldRecord = (packetId & (ZT_QOS_ACK_DIVISOR - 1)
&& (verb != Packet::VERB_ACK)
&& (verb != Packet::VERB_QOS_MEASUREMENT));
if (isFrame || shouldRecord) {
Mutex::Lock _l(_paths_m);
if (isFrame) {
++(path->_packetsIn);
_lastFrame=now;
}
if (shouldRecord) {
path->ackStatsIn[packetId] = payloadLength;
++(path->_packetsReceivedSinceLastAck);
path->qosStatsIn[packetId] = now;
++(path->_packetsReceivedSinceLastQoS);
path->packetValiditySamples.push(true);
}
}
/**
* Learn new flows and pro-actively create entries for them in the bond so
* that the next time we send a packet out that is part of a flow we know
* which path to use.
*/
if ((flowId != ZT_QOS_NO_FLOW)
&& (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE)) {
Mutex::Lock _l(_flows_m);
SharedPtr<Flow> flow;
if (!_flows.count(flowId)) {
flow = createFlow(path, flowId, 0, now);
} else {
flow = _flows[flowId];
}
if (flow) {
flow->recordIncomingBytes(payloadLength);
}
}
}
void Bond::receivedQoS(const SharedPtr<Path>& path, int64_t now, int count, uint64_t *rx_id, uint16_t *rx_ts)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "receivedQoS() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
Mutex::Lock _l(_paths_m);
// Look up egress times and compute latency values for each record
std::map<uint64_t,uint64_t>::iterator it;
for (int j=0; j<count; j++) {
it = path->qosStatsOut.find(rx_id[j]);
if (it != path->qosStatsOut.end()) {
path->latencySamples.push(((uint16_t)(now - it->second) - rx_ts[j]) / 2);
path->qosStatsOut.erase(it);
}
}
path->qosRecordSize.push(count);
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "receivedQoS() on path %s %s, count=%d, successful=%d, qosStatsOut.size()=%d\n", getSlave(path)->ifname().c_str(), pathStr, count, path->aknowledgedQoSRecordCountSinceLastCheck, path->qosStatsOut.size());
}
void Bond::receivedAck(const SharedPtr<Path>& path, int64_t now, int32_t ackedBytes)
{
Mutex::Lock _l(_paths_m);
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "receivedAck() %s %s, (ackedBytes=%d, lastAckReceived=%lld, ackAge=%lld)\n", getSlave(path)->ifname().c_str(), pathStr, ackedBytes, path->lastAckReceived, path->ackAge(now));
path->_lastAckReceived = now;
path->_unackedBytes = (ackedBytes > path->_unackedBytes) ? 0 : path->_unackedBytes - ackedBytes;
int64_t timeSinceThroughputEstimate = (now - path->_lastThroughputEstimation);
if (timeSinceThroughputEstimate >= throughputMeasurementInterval) {
// TODO: See if this floating point math can be reduced
uint64_t throughput = (uint64_t)((float)(path->_bytesAckedSinceLastThroughputEstimation) / ((float)timeSinceThroughputEstimate / (float)1000));
throughput /= 1000;
if (throughput > 0.0) {
path->throughputSamples.push(throughput);
path->_throughputMax = throughput > path->_throughputMax ? throughput : path->_throughputMax;
}
path->_lastThroughputEstimation = now;
path->_bytesAckedSinceLastThroughputEstimation = 0;
} else {
path->_bytesAckedSinceLastThroughputEstimation += ackedBytes;
}
}
int32_t Bond::generateQoSPacket(const SharedPtr<Path>& path, int64_t now, char *qosBuffer)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "generateQoSPacket() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
int32_t len = 0;
std::map<uint64_t,uint64_t>::iterator it = path->qosStatsIn.begin();
int i=0;
int numRecords = std::min(path->_packetsReceivedSinceLastQoS,ZT_QOS_TABLE_SIZE);
while (i<numRecords && it != path->qosStatsIn.end()) {
uint64_t id = it->first;
memcpy(qosBuffer, &id, sizeof(uint64_t));
qosBuffer+=sizeof(uint64_t);
uint16_t holdingTime = (uint16_t)(now - it->second);
memcpy(qosBuffer, &holdingTime, sizeof(uint16_t));
qosBuffer+=sizeof(uint16_t);
len+=sizeof(uint64_t)+sizeof(uint16_t);
path->qosStatsIn.erase(it++);
++i;
}
return len;
}
bool Bond::assignFlowToBondedPath(SharedPtr<Flow> &flow, int64_t now)
{
//fprintf(stderr, "assignFlowToBondedPath\n");
char curPathStr[128];
unsigned int idx = ZT_MAX_PEER_NETWORK_PATHS;
if (_bondingPolicy == ZT_BONDING_POLICY_BALANCE_XOR) {
idx = abs((int)(flow->id() % (_numBondedPaths)));
flow->assignPath(_paths[_bondedIdx[idx]],now);
}
if (_bondingPolicy == ZT_BONDING_POLICY_BALANCE_AWARE) {
unsigned char entropy;
Utils::getSecureRandom(&entropy, 1);
if (_totalBondUnderload) {
entropy %= _totalBondUnderload;
}
if (!_numBondedPaths) {
fprintf(stderr, "no bonded paths for flow assignment\n");
return false;
}
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->bonded()) {
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
_paths[i]->address().toString(curPathStr);
uint8_t probabilitySegment = (_totalBondUnderload > 0) ? _paths[i]->_affinity : _paths[i]->_allocation;
//fprintf(stderr, "i=%2d, entropy=%3d, alloc=%3d, byteload=%4d, segment=%3d, _totalBondUnderload=%3d, ifname=%s, path=%20s\n", i, entropy, _paths[i]->allocation, _paths[i]->relativeByteLoad, probabilitySegment, _totalBondUnderload, slave->ifname().c_str(), curPathStr);
if (entropy <= probabilitySegment) {
idx = i;
//fprintf(stderr, "\t is best path\n");
break;
}
entropy -= probabilitySegment;
}
}
if (idx < ZT_MAX_PEER_NETWORK_PATHS) {
flow->assignPath(_paths[idx],now);
++(_paths[idx]->_assignedFlowCount);
}
else {
fprintf(stderr, "could not assign flow?\n"); exit(0); // TODO: Remove
return false;
}
}
flow->assignedPath()->address().toString(curPathStr);
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, flow->assignedPath()->localSocket());
fprintf(stderr, "assigned (tx) flow %x with peer %llx to path %s on %s (idx=%d)\n", flow->id(), _peer->_id.address().toInt(), curPathStr, slave->ifname().c_str(), idx);
return true;
}
SharedPtr<Flow> Bond::createFlow(const SharedPtr<Path> &path, int32_t flowId, unsigned char entropy, int64_t now)
{
//fprintf(stderr, "createFlow\n");
char curPathStr[128];
// ---
if (!_numBondedPaths) {
fprintf(stderr, "there are no bonded paths, cannot assign flow\n");
return SharedPtr<Flow>();
}
if (_flows.size() >= ZT_FLOW_MAX_COUNT) {
fprintf(stderr, "max number of flows reached (%d), forcibly forgetting oldest flow\n", ZT_FLOW_MAX_COUNT);
forgetFlowsWhenNecessary(0,true,now);
}
SharedPtr<Flow> flow = new Flow(flowId, now);
_flows[flowId] = flow;
fprintf(stderr, "new flow %x detected with peer %llx, %lu active flow(s)\n", flowId, _peer->_id.address().toInt(), (_flows.size()));
/**
* Add a flow with a given Path already provided. This is the case when a packet
* is received on a path but no flow exists, in this case we simply assign the path
* that the remote peer chose for us.
*/
if (path) {
flow->assignPath(path,now);
path->address().toString(curPathStr);
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, flow->assignedPath()->localSocket());
fprintf(stderr, "assigned (rx) flow %x with peer %llx to path %s on %s\n", flow->id(), _peer->_id.address().toInt(), curPathStr, slave->ifname().c_str());
}
/**
* Add a flow when no path was provided. This means that it is an outgoing packet
* and that it is up to the local peer to decide how to load-balance its transmission.
*/
else if (!path) {
assignFlowToBondedPath(flow, now);
}
return flow;
}
void Bond::forgetFlowsWhenNecessary(uint64_t age, bool oldest, int64_t now)
{
//fprintf(stderr, "forgetFlowsWhenNecessary\n");
std::map<int32_t,SharedPtr<Flow> >::iterator it = _flows.begin();
std::map<int32_t,SharedPtr<Flow> >::iterator oldestFlow = _flows.end();
SharedPtr<Flow> expiredFlow;
if (age) { // Remove by specific age
while (it != _flows.end()) {
if (it->second->age(now) > age) {
fprintf(stderr, "forgetting flow %x between this node and %llx, %lu active flow(s)\n", it->first, _peer->_id.address().toInt(), (_flows.size()-1));
it = _flows.erase(it);
} else {
++it;
}
}
}
else if (oldest) { // Remove single oldest by natural expiration
uint64_t maxAge = 0;
while (it != _flows.end()) {
if (it->second->age(now) > maxAge) {
maxAge = (now - it->second->age(now));
oldestFlow = it;
}
++it;
}
if (oldestFlow != _flows.end()) {
fprintf(stderr, "forgetting oldest flow %x (of age %llu) between this node and %llx, %lu active flow(s)\n", oldestFlow->first, oldestFlow->second->age(now), _peer->_id.address().toInt(), (_flows.size()-1));
_flows.erase(oldestFlow);
}
}
fprintf(stderr, "000\n");
}
void Bond::processIncomingPathNegotiationRequest(uint64_t now, SharedPtr<Path> &path, int16_t remoteUtility)
{
//fprintf(stderr, "processIncomingPathNegotiationRequest\n");
if (_abSlaveSelectMethod != ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE) {
return;
}
Mutex::Lock _l(_paths_m);
char pathStr[128];
path->address().toString(pathStr);
if (!_lastPathNegotiationCheck) {
return;
}
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, path->localSocket());
if (remoteUtility > _localUtility) {
fprintf(stderr, "peer suggests path, its utility (%d) is greater than ours (%d), we will switch to %s on %s (ls=%llx)\n", remoteUtility, _localUtility, pathStr, slave->ifname().c_str(), path->localSocket());
negotiatedPath = path;
}
if (remoteUtility < _localUtility) {
fprintf(stderr, "peer suggests path, its utility (%d) is less than ours (%d), we will NOT switch to %s on %s (ls=%llx)\n", remoteUtility, _localUtility, pathStr, slave->ifname().c_str(), path->localSocket());
}
if (remoteUtility == _localUtility) {
fprintf(stderr, "peer suggest path, but utility is equal, picking choice made by peer with greater identity.\n");
if (_peer->_id.address().toInt() > RR->node->identity().address().toInt()) {
fprintf(stderr, "peer identity was greater, going with their choice of %s on %s (ls=%llx)\n", pathStr, slave->ifname().c_str(), path->localSocket());
negotiatedPath = path;
} else {
fprintf(stderr, "our identity was greater, no change\n");
}
}
}
void Bond::pathNegotiationCheck(void *tPtr, const int64_t now)
{
//fprintf(stderr, "pathNegotiationCheck\n");
char pathStr[128];
int maxInPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
int maxOutPathIdx = ZT_MAX_PEER_NETWORK_PATHS;
uint64_t maxInCount = 0;
uint64_t maxOutCount = 0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
if (_paths[i]->_packetsIn > maxInCount) {
maxInCount = _paths[i]->_packetsIn;
maxInPathIdx = i;
}
if (_paths[i]->_packetsOut > maxOutCount) {
maxOutCount = _paths[i]->_packetsOut;
maxOutPathIdx = i;
}
_paths[i]->resetPacketCounts();
}
bool _peerLinksSynchronized = ((maxInPathIdx != ZT_MAX_PEER_NETWORK_PATHS)
&& (maxOutPathIdx != ZT_MAX_PEER_NETWORK_PATHS)
&& (maxInPathIdx != maxOutPathIdx)) ? false : true;
/**
* Determine utility and attempt to petition remote peer to switch to our chosen path
*/
if (!_peerLinksSynchronized) {
_localUtility = _paths[maxOutPathIdx]->_failoverScore - _paths[maxInPathIdx]->_failoverScore;
if (_paths[maxOutPathIdx]->_negotiated) {
_localUtility -= ZT_MULTIPATH_FAILOVER_HANDICAP_NEGOTIATED;
}
if ((now - _lastSentPathNegotiationRequest) > ZT_PATH_NEGOTIATION_CUTOFF_TIME) {
fprintf(stderr, "BT: (sync) it's been long enough, sending more requests.\n");
_numSentPathNegotiationRequests = 0;
}
if (_numSentPathNegotiationRequests < ZT_PATH_NEGOTIATION_TRY_COUNT) {
if (_localUtility >= 0) {
fprintf(stderr, "BT: (sync) paths appear to be out of sync (utility=%d)\n", _localUtility);
sendPATH_NEGOTIATION_REQUEST(tPtr, _paths[maxOutPathIdx]);
++_numSentPathNegotiationRequests;
_lastSentPathNegotiationRequest = now;
_paths[maxOutPathIdx]->address().toString(pathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[maxOutPathIdx]->localSocket());
fprintf(stderr, "sending request to use %s on %s, ls=%llx, utility=%d\n", pathStr, slave->ifname().c_str(), _paths[maxOutPathIdx]->localSocket(), _localUtility);
}
}
/**
* Give up negotiating and consider switching
*/
else if ((now - _lastSentPathNegotiationRequest) > (2 * ZT_PATH_NEGOTIATION_CHECK_INTERVAL)) {
if (_localUtility == 0) {
// There's no loss to us, just switch without sending a another request
fprintf(stderr, "BT: (sync) giving up, switching to remote peer's path.\n");
negotiatedPath = _paths[maxInPathIdx];
}
}
}
}
void Bond::sendPATH_NEGOTIATION_REQUEST(void *tPtr, const SharedPtr<Path> &path)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "sendPATH_NEGOTIATION_REQUEST() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
if (_abSlaveSelectMethod != ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE) {
return;
}
Packet outp(_peer->_id.address(),RR->identity.address(),Packet::VERB_PATH_NEGOTIATION_REQUEST);
outp.append<int16_t>(_localUtility);
if (path->address()) {
outp.armor(_peer->key(),false);
RR->node->putPacket(tPtr,path->localSocket(),path->address(),outp.data(),outp.size());
}
}
void Bond::sendACK(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,
const InetAddress &atAddress,int64_t now)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "sendACK() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
Packet outp(_peer->_id.address(),RR->identity.address(),Packet::VERB_ACK);
int32_t bytesToAck = 0;
std::map<uint64_t,uint16_t>::iterator it = path->ackStatsIn.begin();
while (it != path->ackStatsIn.end()) {
bytesToAck += it->second;
++it;
}
outp.append<uint32_t>(bytesToAck);
if (atAddress) {
outp.armor(_peer->key(),false);
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
} else {
RR->sw->send(tPtr,outp,false);
}
path->ackStatsIn.clear();
path->_packetsReceivedSinceLastAck = 0;
path->_lastAckSent = now;
}
void Bond::sendQOS_MEASUREMENT(void *tPtr,const SharedPtr<Path> &path,const int64_t localSocket,
const InetAddress &atAddress,int64_t now)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "sendQOS() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
const int64_t _now = RR->node->now();
Packet outp(_peer->_id.address(),RR->identity.address(),Packet::VERB_QOS_MEASUREMENT);
char qosData[ZT_QOS_MAX_PACKET_SIZE];
int16_t len = generateQoSPacket(path, _now,qosData);
outp.append(qosData,len);
if (atAddress) {
outp.armor(_peer->key(),false);
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
} else {
RR->sw->send(tPtr,outp,false);
}
// Account for the fact that a VERB_QOS_MEASUREMENT was just sent. Reset timers.
path->_packetsReceivedSinceLastQoS = 0;
path->_lastQoSMeasurement = now;
}
void Bond::processBackgroundTasks(void *tPtr, const int64_t now)
{
Mutex::Lock _l(_paths_m);
if (!_peer->_canUseMultipath || (now - _lastBackgroundTaskCheck) < ZT_BOND_BACKGROUND_TASK_MIN_INTERVAL) {
return;
}
_lastBackgroundTaskCheck = now;
// Compute dynamic path monitor timer interval
if (_slaveMonitorStrategy == ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC) {
int suggestedMonitorInterval = (now - _lastFrame) / 100;
_dynamicPathMonitorInterval = std::min(ZT_PATH_HEARTBEAT_PERIOD, ((suggestedMonitorInterval > _bondMonitorInterval) ? suggestedMonitorInterval : _bondMonitorInterval));
//fprintf(stderr, "_lastFrame=%llu, suggestedMonitorInterval=%d, _dynamicPathMonitorInterval=%d\n",
// (now-_lastFrame), suggestedMonitorInterval, _dynamicPathMonitorInterval);
}
if (_slaveMonitorStrategy == ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC) {
_shouldCollectPathStatistics = true;
}
// Memoize oft-used properties in the packet ingress/egress logic path
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE) {
// Required for real-time balancing
_shouldCollectPathStatistics = true;
}
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
if (_abSlaveSelectMethod == ZT_MULTIPATH_RESELECTION_POLICY_BETTER) {
// Required for judging suitability of primary slave after recovery
_shouldCollectPathStatistics = true;
}
if (_abSlaveSelectMethod == ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE) {
// Required for judging suitability of new candidate primary
_shouldCollectPathStatistics = true;
}
}
if ((now - _lastCheckUserPreferences) > 1000) {
_lastCheckUserPreferences = now;
applyUserPrefs();
}
curateBond(now,false);
if ((now - _lastQualityEstimation) > _qualityEstimationInterval) {
_lastQualityEstimation = now;
estimatePathQuality(now);
}
dumpInfo(now);
// Send QOS/ACK packets as needed
if (_shouldCollectPathStatistics) {
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->allowed()) {
if (_paths[i]->needsToSendQoS(now,_qosSendInterval)) {
sendQOS_MEASUREMENT(tPtr, _paths[i], _paths[i]->localSocket(), _paths[i]->address(), now);
}
if (_paths[i]->needsToSendAck(now,_ackSendInterval)) {
sendACK(tPtr, _paths[i], _paths[i]->localSocket(), _paths[i]->address(), now);
}
}
}
}
// Perform periodic background tasks unique to each bonding policy
switch (_bondingPolicy)
{
case ZT_BONDING_POLICY_ACTIVE_BACKUP:
processActiveBackupTasks(now);
break;
case ZT_BONDING_POLICY_BROADCAST:
break;
case ZT_BONDING_POLICY_BALANCE_RR:
case ZT_BONDING_POLICY_BALANCE_XOR:
case ZT_BONDING_POLICY_BALANCE_AWARE:
processBalanceTasks(now);
break;
default:
break;
}
// Check whether or not a path negotiation needs to be performed
if (((now - _lastPathNegotiationCheck) > ZT_PATH_NEGOTIATION_CHECK_INTERVAL) && _allowPathNegotiation) {
_lastPathNegotiationCheck = now;
pathNegotiationCheck(tPtr, now);
}
}
void Bond::applyUserPrefs()
{
fprintf(stderr, "applyUserPrefs, _minReqPathMonitorInterval=%d\n", RR->bc->minReqPathMonitorInterval());
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
SharedPtr<Slave> sl = getSlave(_paths[i]);
if (sl) {
if (sl->monitorInterval() == 0) { // If no interval was specified for this slave, use more generic bond-wide interval
sl->setMonitorInterval(_bondMonitorInterval);
}
RR->bc->setMinReqPathMonitorInterval((sl->monitorInterval() < RR->bc->minReqPathMonitorInterval()) ? sl->monitorInterval() : RR->bc->minReqPathMonitorInterval());
bool bFoundCommonSlave = false;
SharedPtr<Slave> commonSlave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
for(unsigned int j=0;j<ZT_MAX_PEER_NETWORK_PATHS;++j) {
if (_paths[j] && _paths[j].ptr() != _paths[i].ptr()) {
if (RR->bc->getSlaveBySocket(_policyAlias, _paths[j]->localSocket()) == commonSlave) {
bFoundCommonSlave = true;
}
}
}
_paths[i]->_monitorInterval = sl->monitorInterval();
_paths[i]->_upDelay = sl->upDelay() ? sl->upDelay() : _upDelay;
_paths[i]->_downDelay = sl->downDelay() ? sl->downDelay() : _downDelay;
_paths[i]->_ipvPref = sl->ipvPref();
_paths[i]->_mode = sl->mode();
_paths[i]->_enabled = sl->enabled();
_paths[i]->_onlyPathOnSlave = !bFoundCommonSlave;
}
}
if (_peer) {
_peer->_shouldCollectPathStatistics = _shouldCollectPathStatistics;
_peer->_bondingPolicy = _bondingPolicy;
}
}
void Bond::curateBond(const int64_t now, bool rebuildBond)
{
//fprintf(stderr, "%lu curateBond (rebuildBond=%d)\n", ((now - RR->bc->getBondStartTime())), rebuildBond);
char pathStr[128];
/**
* Update path states
*/
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
bool currEligibility = _paths[i]->eligible(now,_ackSendInterval);
if (currEligibility != _paths[i]->_lastEligibilityState) {
_paths[i]->address().toString(pathStr);
//fprintf(stderr, "\n\n%ld path eligibility (for %s, %s) has changed (from %d to %d)\n", (RR->node->now() - RR->bc->getBondStartTime()), getSlave(_paths[i])->ifname().c_str(), pathStr, _paths[i]->lastCheckedEligibility, _paths[i]->eligible(now,_ackSendInterval));
if (currEligibility) {
rebuildBond = true;
}
if (!currEligibility) {
_paths[i]->adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, !currEligibility);
if (_paths[i]->bonded()) {
//fprintf(stderr, "the path was bonded, reallocation of its flows will occur soon\n");
rebuildBond = true;
_paths[i]->_shouldReallocateFlows = _paths[i]->bonded();
_paths[i]->setBonded(false);
} else {
//fprintf(stderr, "the path was not bonded, no consequences\n");
}
}
}
if (currEligibility) {
_paths[i]->adjustRefractoryPeriod(now, _defaultPathRefractoryPeriod, false);
}
_paths[i]->_lastEligibilityState = currEligibility;
}
/**
* Curate the set of paths that are part of the bond proper. Selects a single path
* per logical slave according to eligibility and user-specified constraints.
*/
if ((_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR)
|| (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR)
|| (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE)) {
if (!_numBondedPaths) {
rebuildBond = true;
}
// TODO: Optimize
if (rebuildBond) {
int updatedBondedPathCount = 0;
std::map<SharedPtr<Slave>,int> slaveMap;
for (int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->allowed() && (_paths[i]->eligible(now,_ackSendInterval) || !_numBondedPaths)) {
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (!slaveMap.count(slave)) {
slaveMap[slave] = i;
}
else {
bool overriden = false;
_paths[i]->address().toString(pathStr);
//fprintf(stderr, " slave representative path already exists! (%s %s)\n", getSlave(_paths[i])->ifname().c_str(), pathStr);
if (_paths[i]->preferred() && !_paths[slaveMap[slave]]->preferred()) {
// Override previous choice if preferred
//fprintf(stderr, "overriding since its preferred!\n");
if (_paths[slaveMap[slave]]->_assignedFlowCount) {
_paths[slaveMap[slave]]->_deprecated = true;
}
else {
_paths[slaveMap[slave]]->_deprecated = true;
_paths[slaveMap[slave]]->setBonded(false);
}
slaveMap[slave] = i;
overriden = true;
}
if ((_paths[i]->preferred() && _paths[slaveMap[slave]]->preferred())
|| (!_paths[i]->preferred() && !_paths[slaveMap[slave]]->preferred())) {
if (_paths[i]->preferenceRank() > _paths[slaveMap[slave]]->preferenceRank()) {
// Override if higher preference
//fprintf(stderr, "overriding according to preference preferenceRank!\n");
if (_paths[slaveMap[slave]]->_assignedFlowCount) {
_paths[slaveMap[slave]]->_deprecated = true;
}
else {
_paths[slaveMap[slave]]->_deprecated = true;
_paths[slaveMap[slave]]->setBonded(false);
}
slaveMap[slave] = i;
}
}
}
}
}
std::map<SharedPtr<Slave>,int>::iterator it = slaveMap.begin();
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (!_paths[i]) {
continue;
}
_bondedIdx[i] = ZT_MAX_PEER_NETWORK_PATHS;
if (it != slaveMap.end()) {
_bondedIdx[i] = it->second;
_paths[_bondedIdx[i]]->setBonded(true);
++it;
++updatedBondedPathCount;
_paths[_bondedIdx[i]]->address().toString(pathStr);
fprintf(stderr, "setting i=%d, _bondedIdx[%d]=%d to bonded (%s %s)\n", i, i, _bondedIdx[i], getSlave(_paths[_bondedIdx[i]])->ifname().c_str(), pathStr);
}
}
_numBondedPaths = updatedBondedPathCount;
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR) {
// Cause a RR reset since the currently used index might no longer be valid
_rrPacketsSentOnCurrSlave = _packetsPerSlave;
}
}
}
}
void Bond::estimatePathQuality(const int64_t now)
{
char pathStr[128];
//---
uint32_t totUserSpecifiedSlaveSpeed = 0;
if (_numBondedPaths) { // Compute relative user-specified speeds of slaves
for(unsigned int i=0;i<_numBondedPaths;++i) {
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (_paths[i] && _paths[i]->allowed()) {
totUserSpecifiedSlaveSpeed += slave->speed();
}
}
for(unsigned int i=0;i<_numBondedPaths;++i) {
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (_paths[i] && _paths[i]->allowed()) {
slave->setRelativeSpeed(round( ((float)slave->speed() / (float)totUserSpecifiedSlaveSpeed) * 255));
}
}
}
float lat[ZT_MAX_PEER_NETWORK_PATHS];
float pdv[ZT_MAX_PEER_NETWORK_PATHS];
float plr[ZT_MAX_PEER_NETWORK_PATHS];
float per[ZT_MAX_PEER_NETWORK_PATHS];
float thr[ZT_MAX_PEER_NETWORK_PATHS];
float thm[ZT_MAX_PEER_NETWORK_PATHS];
float thv[ZT_MAX_PEER_NETWORK_PATHS];
float maxLAT = 0;
float maxPDV = 0;
float maxPLR = 0;
float maxPER = 0;
float maxTHR = 0;
float maxTHM = 0;
float maxTHV = 0;
float quality[ZT_MAX_PEER_NETWORK_PATHS];
uint8_t alloc[ZT_MAX_PEER_NETWORK_PATHS];
float totQuality = 0.0f;
memset(&lat, 0, sizeof(lat));
memset(&pdv, 0, sizeof(pdv));
memset(&plr, 0, sizeof(plr));
memset(&per, 0, sizeof(per));
memset(&thr, 0, sizeof(thr));
memset(&thm, 0, sizeof(thm));
memset(&thv, 0, sizeof(thv));
memset(&quality, 0, sizeof(quality));
memset(&alloc, 0, sizeof(alloc));
// Compute initial summary statistics
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i] || !_paths[i]->allowed()) {
continue;
}
// Compute/Smooth average of real-world observations
_paths[i]->_latencyMean = _paths[i]->latencySamples.mean();
_paths[i]->_latencyVariance = _paths[i]->latencySamples.stddev();
_paths[i]->_packetErrorRatio = 1.0 - (_paths[i]->packetValiditySamples.count() ? _paths[i]->packetValiditySamples.mean() : 1.0);
if (userHasSpecifiedSlaveSpeeds()) {
// Use user-reported metrics
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (slave) {
_paths[i]->_throughputMean = slave->speed();
_paths[i]->_throughputVariance = 0;
}
}
/*
else {
// Use estimated metrics
if (_paths[i]->throughputSamples.count()) {
// If we have samples, use them
_paths[i]->throughputMean = (uint64_t)_paths[i]->throughputSamples.mean();
if (_paths[i]->throughputMean > 0) {
_paths[i]->throughputVarianceSamples.push((float)_paths[i]->throughputSamples.stddev() / (float)_paths[i]->throughputMean);
_paths[i]->throughputVariance = _paths[i]->throughputVarianceSamples.mean();
}
}
else {
// No samples have been collected yet, assume best case scenario
_paths[i]->throughputMean = ZT_QOS_THR_NORM_MAX;
_paths[i]->throughputVariance = 0;
}
}
*/
// Drain unacknowledged QoS records
std::map<uint64_t,uint64_t>::iterator it = _paths[i]->qosStatsOut.begin();
uint64_t currentLostRecords = 0;
while (it != _paths[i]->qosStatsOut.end()) {
int qosRecordTimeout = 5000; //_paths[i]->monitorInterval() * ZT_MULTIPATH_QOS_ACK_INTERVAL_MULTIPLIER * 8;
if ((now - it->second) >= qosRecordTimeout) {
//fprintf(stderr, "packetId=%llx was lost\n", it->first);
it = _paths[i]->qosStatsOut.erase(it);
++currentLostRecords;
} else { ++it; }
}
quality[i]=0;
totQuality=0;
// Normalize raw observations according to sane limits and/or user specified values
lat[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyMean, 0, _maxAcceptableLatency, 0, 1));
pdv[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyVariance, 0, _maxAcceptablePacketDelayVariance, 0, 1));
plr[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetLossRatio, 0, _maxAcceptablePacketLossRatio, 0, 1));
per[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetErrorRatio, 0, _maxAcceptablePacketErrorRatio, 0, 1));
//thr[i] = 1.0; //Utils::normalize(_paths[i]->throughputMean, 0, ZT_QOS_THR_NORM_MAX, 0, 1);
//thm[i] = 1.0; //Utils::normalize(_paths[i]->throughputMax, 0, ZT_QOS_THM_NORM_MAX, 0, 1);
//thv[i] = 1.0; //1.0 / expf(4*Utils::normalize(_paths[i]->throughputVariance, 0, ZT_QOS_THV_NORM_MAX, 0, 1));
//scp[i] = _paths[i]->ipvPref != 0 ? 1.0 : Utils::normalize(_paths[i]->ipScope(), InetAddress::IP_SCOPE_NONE, InetAddress::IP_SCOPE_PRIVATE, 0, 1);
// Record bond-wide maximums to determine relative values
maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT;
maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV;
maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR;
maxPER = per[i] > maxPER ? per[i] : maxPER;
//maxTHR = thr[i] > maxTHR ? thr[i] : maxTHR;
//maxTHM = thm[i] > maxTHM ? thm[i] : maxTHM;
//maxTHV = thv[i] > maxTHV ? thv[i] : maxTHV;
//fprintf(stdout, "EH %d: lat=%8.3f, ltm=%8.3f, pdv=%8.3f, plr=%5.3f, per=%5.3f, thr=%8f, thm=%5.3f, thv=%5.3f, avl=%5.3f, age=%8.2f, scp=%4d, q=%5.3f, qtot=%5.3f, ac=%d if=%s, path=%s\n",
// i, lat[i], ltm[i], pdv[i], plr[i], per[i], thr[i], thm[i], thv[i], avl[i], age[i], scp[i], quality[i], totQuality, alloc[i], getSlave(_paths[i])->ifname().c_str(), pathStr);
}
// Convert metrics to relative quantities and apply contribution weights
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->bonded()) {
quality[i] += ((maxLAT > 0.0f ? lat[i] / maxLAT : 0.0f) * _qualityWeights[ZT_QOS_LAT_IDX]);
quality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qualityWeights[ZT_QOS_PDV_IDX]);
quality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qualityWeights[ZT_QOS_PLR_IDX]);
quality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qualityWeights[ZT_QOS_PER_IDX]);
//quality[i] += ((maxTHR > 0.0f ? thr[i] / maxTHR : 0.0f) * _qualityWeights[ZT_QOS_THR_IDX]);
//quality[i] += ((maxTHM > 0.0f ? thm[i] / maxTHM : 0.0f) * _qualityWeights[ZT_QOS_THM_IDX]);
//quality[i] += ((maxTHV > 0.0f ? thv[i] / maxTHV : 0.0f) * _qualityWeights[ZT_QOS_THV_IDX]);
//quality[i] += (scp[i] * _qualityWeights[ZT_QOS_SCP_IDX]);
totQuality += quality[i];
}
}
//
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->bonded()) {
alloc[i] = std::ceil((quality[i] / totQuality) * (float)255);
_paths[i]->_allocation = alloc[i];
}
}
/*
if ((now - _lastLogTS) > 500) {
if (!relevant()) {return;}
//fprintf(stderr, "\n");
_lastPrintTS = now;
_lastLogTS = now;
int numPlottablePaths=0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i]) {
++numPlottablePaths;
_paths[i]->address().toString(pathStr);
//fprintf(stderr, "%lu FIN [%d/%d]: pmi=%5d, lat=%4.3f, ltm=%4.3f, pdv=%4.3f, plr=%4.3f, per=%4.3f, thr=%4.3f, thm=%4.3f, thv=%4.3f, age=%4.3f, scp=%4d, q=%4.3f, qtot=%4.3f, ac=%4d, asf=%3d, if=%s, path=%20s, bond=%d, qosout=%d, plrraw=%d\n",
// ((now - RR->bc->getBondStartTime())), i, _numBondedPaths, _paths[i]->monitorInterval,
// lat[i], ltm[i], pdv[i], plr[i], per[i], thr[i], thm[i], thv[i], age[i], scp[i],
// quality[i], totQuality, alloc[i], _paths[i]->assignedFlowCount, getSlave(_paths[i])->ifname().c_str(), pathStr, _paths[i]->bonded(), _paths[i]->qosStatsOut.size(), _paths[i]->packetLossRatio);
}
}
if (numPlottablePaths < 2) {
return;
}
if (!_header) {
fprintf(stdout, "now, bonded, relativeUnderload, flows, ");
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i]) {
_paths[i]->address().toString(pathStr);
std::string label = std::string((pathStr)) + " " + getSlave(_paths[i])->ifname();
for (int i=0; i<19; ++i) {
fprintf(stdout, "%s, ", label.c_str());
}
}
}
_header=true;
}
fprintf(stdout, "%ld, %d, %d, %d, ",((now - RR->bc->getBondStartTime())),_numBondedPaths,_totalBondUnderload, _flows.size());
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i]) {
_paths[i]->address().toString(pathStr);
fprintf(stdout, "%s, %s, %8.3f, %8.3f, %8.3f, %5.3f, %5.3f, %5.3f, %8f, %5.3f, %5.3f, %d, %5.3f, %d, %d, %d, %d, %d, %d, ",
getSlave(_paths[i])->ifname().c_str(), pathStr, _paths[i]->latencyMean, lat[i],pdv[i], _paths[i]->packetLossRatio, plr[i],per[i],thr[i],thm[i],thv[i],(now - _paths[i]->lastIn()),quality[i],alloc[i],
_paths[i]->relativeByteLoad, _paths[i]->assignedFlowCount, _paths[i]->alive(now, true), _paths[i]->eligible(now,_ackSendInterval), _paths[i]->qosStatsOut.size());
}
}
fprintf(stdout, "\n");
}
*/
}
void Bond::processBalanceTasks(const int64_t now)
{
//fprintf(stderr, "processBalanceTasks\n");
char curPathStr[128];
if (_allowFlowHashing) {
/**
* Clean up and reset flows if necessary
*/
if ((now - _lastFlowExpirationCheck) > ZT_MULTIPATH_FLOW_CHECK_INTERVAL) {
Mutex::Lock _l(_flows_m);
forgetFlowsWhenNecessary(ZT_MULTIPATH_FLOW_EXPIRATION_INTERVAL,false,now);
_lastFlowExpirationCheck = now;
}
if ((now - _lastFlowStatReset) > ZT_FLOW_STATS_RESET_INTERVAL) {
Mutex::Lock _l(_flows_m);
_lastFlowStatReset = now;
std::map<int32_t,SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
it->second->resetByteCounts();
++it;
}
}
/**
* Re-allocate flows from dead paths
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR || _bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE) {
Mutex::Lock _l(_flows_m);
for (int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
if (!_paths[i]->eligible(now,_ackSendInterval) && _paths[i]->_shouldReallocateFlows) {
_paths[i]->address().toString(curPathStr);
fprintf(stderr, "%d reallocating flows from dead path %s on %s\n", (RR->node->now() - RR->bc->getBondStartTime()), curPathStr, getSlave(_paths[i])->ifname().c_str());
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->assignedPath() == _paths[i]) {
if(assignFlowToBondedPath(flow_it->second, now)) {
_paths[i]->_assignedFlowCount--;
}
}
++flow_it;
}
_paths[i]->_shouldReallocateFlows = false;
}
}
}
}
/**
* Tasks specific to (Balance Round Robin)
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR) {
if (_allowFlowHashing) {
// TODO: Should ideally failover from (idx) to a random slave, this is so that (idx+1) isn't overloaded
}
else if (!_allowFlowHashing) {
// Nothing
}
}
/**
* Tasks specific to (Balance XOR)
*/
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR) {
// Nothing specific for XOR
}
/**
* Tasks specific to (Balance Aware)
*/
if ((_bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE)) {
if (_allowFlowHashing) {
Mutex::Lock _l(_flows_m);
/**
* Re-balance flows in proportion to slave capacity (or when eligibility changes)
*/
if ((now - _lastFlowRebalance) > ZT_FLOW_REBALANCE_INTERVAL) {
/**
* Determine "load" for bonded paths
*/
uint64_t totalBytes = 0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) { // first pass: compute absolute byte load and total
if (_paths[i] && _paths[i]->bonded()) {
_paths[i]->_byteLoad = 0;
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->assignedPath() == _paths[i]) {
_paths[i]->_byteLoad += flow_it->second->totalBytes();
}
++flow_it;
}
totalBytes += _paths[i]->_byteLoad;
}
}
/**
* Determine "affinity" for bonded path
*/
//fprintf(stderr, "\n\n");
_totalBondUnderload = 0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) { // second pass: compute relative byte loads and total imbalance
if (_paths[i] && _paths[i]->bonded()) {
if (totalBytes) {
uint8_t relativeByteLoad = std::ceil(((float)_paths[i]->_byteLoad / (float)totalBytes) * (float)255);
//fprintf(stderr, "lastComputedAllocation = %d\n", _paths[i]->allocation);
//fprintf(stderr, " relativeByteLoad = %d\n", relativeByteLoad);
_paths[i]->_relativeByteLoad = relativeByteLoad;
uint8_t relativeUnderload = std::max(0, (int)_paths[i]->_allocation - (int)relativeByteLoad);
//fprintf(stderr, " relativeUnderload = %d\n", relativeUnderload);
_totalBondUnderload += relativeUnderload;
//fprintf(stderr, " _totalBondUnderload = %d\n\n", _totalBondUnderload);
//_paths[i]->affinity = (relativeUnderload > 0 ? relativeUnderload : _paths[i]->_allocation);
}
else { // set everything to base values
_totalBondUnderload = 0;
//_paths[i]->affinity = 0;
}
}
}
//fprintf(stderr, "_totalBondUnderload=%d (end)\n\n", _totalBondUnderload);
/**
*
*/
//fprintf(stderr, "_lastFlowRebalance\n");
std::map<int32_t, SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
int32_t flowId = it->first;
SharedPtr<Flow> flow = it->second;
if ((now - flow->_lastPathReassignment) > ZT_FLOW_MIN_REBALANCE_INTERVAL) {
//fprintf(stdout, " could move : %x\n", flowId);
}
++it;
}
_lastFlowRebalance = now;
}
}
else if (!_allowFlowHashing) {
// Nothing
}
}
}
void Bond::dequeueNextActiveBackupPath(const uint64_t now)
{
//fprintf(stderr, "dequeueNextActiveBackupPath\n");
if (_abFailoverQueue.empty()) {
return;
}
_abPath = _abFailoverQueue.front();
_abFailoverQueue.pop_front();
_lastActiveBackupPathChange = now;
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i]) {
_paths[i]->resetPacketCounts();
}
}
}
void Bond::processActiveBackupTasks(const int64_t now)
{
//fprintf(stderr, "%llu processActiveBackupTasks\n", (now - RR->bc->getBondStartTime()));
char pathStr[128]; char prevPathStr[128]; char curPathStr[128];
SharedPtr<Path> prevActiveBackupPath = _abPath;
SharedPtr<Path> nonPreferredPath;
bool bFoundPrimarySlave = false;
/**
* Select initial "active" active-backup slave
*/
if (!_abPath) {
fprintf(stderr, "%llu no active backup path yet...\n", ((now - RR->bc->getBondStartTime())));
/**
* [Automatic mode]
* The user has not explicitly specified slaves or their failover schedule,
* the bonding policy will now select the first eligible path and set it as
* its active backup path, if a substantially better path is detected the bonding
* policy will assign it as the new active backup path. If the path fails it will
* simply find the next eligible path.
*/
if (!userHasSpecifiedSlaves()) {
fprintf(stderr, "%llu AB: (auto) user did not specify any slaves. waiting until we know more\n", ((now - RR->bc->getBondStartTime())));
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i] && _paths[i]->eligible(now,_ackSendInterval)) {
_paths[i]->address().toString(curPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (slave) {
fprintf(stderr, "%llu AB: (initial) [%d] found eligible path %s on: %s\n", ((now - RR->bc->getBondStartTime())), i, curPathStr, slave->ifname().c_str());
}
_abPath = _paths[i];
break;
}
}
}
/**
* [Manual mode]
* The user has specified slaves or failover rules that the bonding policy should adhere to.
*/
else if (userHasSpecifiedSlaves()) {
fprintf(stderr, "%llu AB: (manual) no active backup slave, checking local.conf\n", ((now - RR->bc->getBondStartTime())));
if (userHasSpecifiedPrimarySlave()) {
fprintf(stderr, "%llu AB: (manual) user has specified primary slave, looking for it.\n", ((now - RR->bc->getBondStartTime())));
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (!_paths[i]) {
continue;
}
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (_paths[i]->eligible(now,_ackSendInterval) && slave->primary()) {
if (!_paths[i]->preferred()) {
_paths[i]->address().toString(curPathStr);
fprintf(stderr, "%llu AB: (initial) [%d] found path on primary slave, taking note in case we don't find a preferred path\n", ((now - RR->bc->getBondStartTime())), i);
nonPreferredPath = _paths[i];
bFoundPrimarySlave = true;
}
if (_paths[i]->preferred()) {
_abPath = _paths[i];
_abPath->address().toString(curPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
if (slave) {
fprintf(stderr, "%llu AB: (initial) [%d] found preferred path %s on primary slave: %s\n", ((now - RR->bc->getBondStartTime())), i, curPathStr, slave->ifname().c_str());
}
bFoundPrimarySlave = true;
break;
}
}
}
if (_abPath) {
_abPath->address().toString(curPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _abPath->localSocket());
if (slave) {
fprintf(stderr, "%llu AB: (initial) found preferred primary path: %s on %s\n", ((now - RR->bc->getBondStartTime())), curPathStr, slave->ifname().c_str());
}
}
else {
if (bFoundPrimarySlave && nonPreferredPath) {
fprintf(stderr, "%llu AB: (initial) found a non-preferred primary path\n", ((now - RR->bc->getBondStartTime())));
_abPath = nonPreferredPath;
}
}
if (!_abPath) {
fprintf(stderr, "%llu AB: (initial) designated primary slave is not yet ready\n", ((now - RR->bc->getBondStartTime())));
// TODO: Should fail-over to specified backup or just wait?
}
}
else if (!userHasSpecifiedPrimarySlave()) {
int _abIdx = ZT_MAX_PEER_NETWORK_PATHS;
fprintf(stderr, "%llu AB: (initial) user did not specify primary slave, just picking something\n", ((now - RR->bc->getBondStartTime())));
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i] && _paths[i]->eligible(now,_ackSendInterval)) {
_abIdx = i;
break;
}
}
if (_abIdx == ZT_MAX_PEER_NETWORK_PATHS) {
fprintf(stderr, "%llu AB: (initial) unable to find a candidate next-best, no change\n", ((now - RR->bc->getBondStartTime())));
}
else {
_abPath = _paths[_abIdx];
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _abPath->localSocket());
if (slave) {
fprintf(stderr, "%llu AB: (initial) selected non-primary slave idx=%d, %s on %s\n", ((now - RR->bc->getBondStartTime())), _abIdx, pathStr, slave->ifname().c_str());
}
}
}
}
}
/**
* Update and maintain the active-backup failover queue
*/
if (_abPath) {
// Don't worry about the failover queue until we have an active slave
// Remove ineligible paths from the failover slave queue
for (std::list<SharedPtr<Path> >::iterator it(_abFailoverQueue.begin()); it!=_abFailoverQueue.end();) {
if ((*it) && !(*it)->eligible(now,_ackSendInterval)) {
(*it)->address().toString(curPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, (*it)->localSocket());
if (slave) {
fprintf(stderr, "%llu AB: (fq) %s on %s is now ineligible, removing from failover queue\n", ((now - RR->bc->getBondStartTime())), curPathStr, slave->ifname().c_str());
}
it = _abFailoverQueue.erase(it);
} else {
++it;
}
}
/**
* Failover instructions were provided by user, build queue according those as well as IPv
* preference, disregarding performance.
*/
if (userHasSpecifiedFailoverInstructions()) {
/**
* Clear failover scores
*/
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i]) {
_paths[i]->_failoverScore = 0;
}
}
//fprintf(stderr, "AB: (fq) user has specified specific failover instructions, will follow them.\n");
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (!_paths[i] || !_paths[i]->allowed() || !_paths[i]->eligible(now,_ackSendInterval)) {
continue;
}
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
_paths[i]->address().toString(pathStr);
int failoverScoreHandicap = _paths[i]->_failoverScore;
if (_paths[i]->preferred())
{
failoverScoreHandicap += ZT_MULTIPATH_FAILOVER_HANDICAP_PREFERRED;
//fprintf(stderr, "%s on %s ----> %d for preferred\n", pathStr, _paths[i]->ifname().c_str(), failoverScoreHandicap);
}
if (slave->primary()) {
// If using "optimize" primary reselect mode, ignore user slave designations
failoverScoreHandicap += ZT_MULTIPATH_FAILOVER_HANDICAP_PRIMARY;
//fprintf(stderr, "%s on %s ----> %d for primary\n", pathStr, _paths[i]->ifname().c_str(), failoverScoreHandicap);
}
if (!_paths[i]->_failoverScore) {
// If we didn't inherit a failover score from a "parent" that wants to use this path as a failover
int newHandicap = failoverScoreHandicap ? failoverScoreHandicap : _paths[i]->_allocation;
_paths[i]->_failoverScore = newHandicap;
//fprintf(stderr, "%s on %s ----> %d for allocation\n", pathStr, _paths[i]->ifname().c_str(), newHandicap);
}
SharedPtr<Slave> failoverSlave;
if (slave->failoverToSlave().length()) {
failoverSlave = RR->bc->getSlaveByName(_policyAlias, slave->failoverToSlave());
}
if (failoverSlave) {
for (int j=0; j<ZT_MAX_PEER_NETWORK_PATHS; j++) {
if (_paths[j] && getSlave(_paths[j]) == failoverSlave.ptr()) {
_paths[j]->address().toString(pathStr);
int inheritedHandicap = failoverScoreHandicap - 10;
int newHandicap = _paths[j]->_failoverScore > inheritedHandicap ? _paths[j]->_failoverScore : inheritedHandicap;
//fprintf(stderr, "\thanding down %s on %s ----> %d\n", pathStr, getSlave(_paths[j])->ifname().c_str(), newHandicap);
if (!_paths[j]->preferred()) {
newHandicap--;
}
_paths[j]->_failoverScore = newHandicap;
}
}
}
if (_paths[i].ptr() != _abPath.ptr()) {
bool bFoundPathInQueue = false;
for (std::list<SharedPtr<Path> >::iterator it(_abFailoverQueue.begin()); it!=_abFailoverQueue.end();++it) {
if (_paths[i].ptr() == (*it).ptr()) {
bFoundPathInQueue = true;
}
}
if (!bFoundPathInQueue) {
_paths[i]->address().toString(curPathStr);
fprintf(stderr, "%llu AB: (fq) [%d] added %s on %s to queue\n", ((now - RR->bc->getBondStartTime())), i, curPathStr, getSlave(_paths[i])->ifname().c_str());
_abFailoverQueue.push_front(_paths[i]);
}
}
}
}
/**
* No failover instructions provided by user, build queue according to performance
* and IPv preference.
*/
else if (!userHasSpecifiedFailoverInstructions()) {
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (!_paths[i]
|| !_paths[i]->allowed()
|| !_paths[i]->eligible(now,_ackSendInterval)) {
continue;
}
int failoverScoreHandicap = 0;
if (_paths[i]->preferred()) {
failoverScoreHandicap = ZT_MULTIPATH_FAILOVER_HANDICAP_PREFERRED;
}
bool includeRefractoryPeriod = true;
if (!_paths[i]->eligible(now,includeRefractoryPeriod)) {
failoverScoreHandicap = -10000;
}
if (getSlave(_paths[i])->primary() && _abSlaveSelectMethod != ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE) {
// If using "optimize" primary reselect mode, ignore user slave designations
failoverScoreHandicap = ZT_MULTIPATH_FAILOVER_HANDICAP_PRIMARY;
}
if (_paths[i].ptr() == negotiatedPath.ptr()) {
_paths[i]->_negotiated = true;
failoverScoreHandicap = ZT_MULTIPATH_FAILOVER_HANDICAP_NEGOTIATED;
} else {
_paths[i]->_negotiated = false;
}
_paths[i]->_failoverScore = _paths[i]->_allocation + failoverScoreHandicap;
if (_paths[i].ptr() != _abPath.ptr()) {
bool bFoundPathInQueue = false;
for (std::list<SharedPtr<Path> >::iterator it(_abFailoverQueue.begin()); it!=_abFailoverQueue.end();++it) {
if (_paths[i].ptr() == (*it).ptr()) {
bFoundPathInQueue = true;
}
}
if (!bFoundPathInQueue) {
_paths[i]->address().toString(curPathStr);
fprintf(stderr, "%llu AB: (fq) [%d] added %s on %s to queue\n", ((now - RR->bc->getBondStartTime())), i, curPathStr, getSlave(_paths[i])->ifname().c_str());
_abFailoverQueue.push_front(_paths[i]);
}
}
}
}
_abFailoverQueue.sort(PathQualityComparator());
if (_abFailoverQueue.empty()) {
fprintf(stderr, "%llu AB: (fq) the failover queue is empty, the active-backup bond is no longer fault-tolerant\n", ((now - RR->bc->getBondStartTime())));
}
}
/**
* Short-circuit if we have no queued paths
*/
if (_abFailoverQueue.empty()) {
return;
}
/**
* Fulfill primary reselect obligations
*/
if (_abPath && !_abPath->eligible(now,_ackSendInterval)) { // Implicit ZT_MULTIPATH_RESELECTION_POLICY_FAILURE
_abPath->address().toString(curPathStr); fprintf(stderr, "%llu AB: (failure) failover event!, active backup path (%s) is no-longer eligible\n", ((now - RR->bc->getBondStartTime())), curPathStr);
if (!_abFailoverQueue.empty()) {
fprintf(stderr, "%llu AB: (failure) there are (%lu) slaves in queue to choose from...\n", ((now - RR->bc->getBondStartTime())), _abFailoverQueue.size());
dequeueNextActiveBackupPath(now);
_abPath->address().toString(curPathStr); fprintf(stderr, "%llu sAB: (failure) switched to %s on %s\n", ((now - RR->bc->getBondStartTime())), curPathStr, getSlave(_abPath)->ifname().c_str());
} else {
fprintf(stderr, "%llu AB: (failure) nothing available in the slave queue, doing nothing.\n", ((now - RR->bc->getBondStartTime())));
}
}
/**
* Detect change to prevent flopping during later optimization step.
*/
if (prevActiveBackupPath != _abPath) {
_lastActiveBackupPathChange = now;
}
if (_abSlaveSelectMethod == ZT_MULTIPATH_RESELECTION_POLICY_ALWAYS) {
if (_abPath && !getSlave(_abPath)->primary()
&& getSlave(_abFailoverQueue.front())->primary()) {
fprintf(stderr, "%llu AB: (always) switching to available primary\n", ((now - RR->bc->getBondStartTime())));
dequeueNextActiveBackupPath(now);
}
}
if (_abSlaveSelectMethod == ZT_MULTIPATH_RESELECTION_POLICY_BETTER) {
if (_abPath && !getSlave(_abPath)->primary()) {
fprintf(stderr, "%llu AB: (better) active backup has switched to \"better\" primary slave according to re-select policy.\n", ((now - RR->bc->getBondStartTime())));
if (getSlave(_abFailoverQueue.front())->primary()
&& (_abFailoverQueue.front()->_failoverScore > _abPath->_failoverScore)) {
dequeueNextActiveBackupPath(now);
fprintf(stderr, "%llu AB: (better) switched back to user-defined primary\n", ((now - RR->bc->getBondStartTime())));
}
}
}
if (_abSlaveSelectMethod == ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE && !_abFailoverQueue.empty()) {
/**
* Implement link negotiation that was previously-decided
*/
if (_abFailoverQueue.front()->_negotiated) {
dequeueNextActiveBackupPath(now);
_abPath->address().toString(prevPathStr);
fprintf(stderr, "%llu AB: (optimize) switched to negotiated path %s on %s\n", ((now - RR->bc->getBondStartTime())), prevPathStr, getSlave(_abPath)->ifname().c_str());
_lastPathNegotiationCheck = now;
}
else {
// Try to find a better path and automatically switch to it -- not too often, though.
if ((now - _lastActiveBackupPathChange) > ZT_MULTIPATH_MIN_ACTIVE_BACKUP_AUTOFLOP_INTERVAL) {
if (!_abFailoverQueue.empty()) {
//fprintf(stderr, "AB: (optimize) there are (%d) slaves in queue to choose from...\n", _abFailoverQueue.size());
int newFScore = _abFailoverQueue.front()->_failoverScore;
int prevFScore = _abPath->_failoverScore;
// Establish a minimum switch threshold to prevent flapping
int failoverScoreDifference = _abFailoverQueue.front()->_failoverScore - _abPath->_failoverScore;
int thresholdQuantity = (ZT_MULTIPATH_ACTIVE_BACKUP_OPTIMIZE_MIN_THRESHOLD * (float)_abPath->_allocation);
if ((failoverScoreDifference > 0) && (failoverScoreDifference > thresholdQuantity)) {
SharedPtr<Path> oldPath = _abPath;
_abPath->address().toString(prevPathStr);
dequeueNextActiveBackupPath(now);
_abPath->address().toString(curPathStr);
fprintf(stderr, "%llu AB: (optimize) switched from %s on %s (fs=%d) to %s on %s (fs=%d)\n", ((now - RR->bc->getBondStartTime())), prevPathStr, getSlave(oldPath)->ifname().c_str(), prevFScore, curPathStr, getSlave(_abPath)->ifname().c_str(), newFScore);
}
}
}
}
}
}
void Bond::setReasonableDefaults(int policy)
{
// If invalid bonding policy, try default
int _defaultBondingPolicy = BondController::defaultBondingPolicy();
if (policy <= ZT_BONDING_POLICY_NONE || policy > ZT_BONDING_POLICY_BALANCE_AWARE) {
// If no default set, use NONE (effectively disabling this bond)
if (_defaultBondingPolicy < ZT_BONDING_POLICY_NONE || _defaultBondingPolicy > ZT_BONDING_POLICY_BALANCE_AWARE) {
_bondingPolicy= ZT_BONDING_POLICY_NONE;
}
_bondingPolicy= _defaultBondingPolicy;
} else {
_bondingPolicy= policy;
}
_downDelay = 0;
_upDelay = 0;
_allowFlowHashing=false;
_bondMonitorInterval=0;
_allowPathNegotiation=false;
_shouldCollectPathStatistics=false;
_lastPathNegotiationReceived=0;
_lastBackgroundTaskCheck=0;
_lastPathNegotiationCheck=0;
_lastFlowStatReset=0;
_lastFlowExpirationCheck=0;
_localUtility=0;
_numBondedPaths=0;
_rrPacketsSentOnCurrSlave=0;
_rrIdx=0;
_lastPathNegotiationReceived=0;
_pathNegotiationCutoffCount=0;
_lastFlowRebalance=0;
_totalBondUnderload = 0;
//_maxAcceptableLatency
_maxAcceptablePacketDelayVariance = 50;
_maxAcceptablePacketLossRatio = 0.10;
_maxAcceptablePacketErrorRatio = 0.10;
_userHasSpecifiedSlaveSpeeds=0;
_lastFrame=0;
// TODO: Remove
_header=false;
_lastLogTS = 0;
_lastPrintTS = 0;
/**
* Paths are actively monitored to provide a real-time quality/preference-ordered rapid failover queue.
*/
switch (policy) {
case ZT_BONDING_POLICY_ACTIVE_BACKUP:
_failoverInterval = 5000;
_abSlaveSelectMethod = ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.2f;
_qualityWeights[ZT_QOS_LTM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.2f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.2f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.2f;
_qualityWeights[ZT_QOS_THR_IDX] = 0.2f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THV_IDX] = 0.0f;
_qualityWeights[ZT_QOS_SCP_IDX] = 0.0f;
break;
/**
* All seemingly-alive paths are used. Paths are not actively monitored.
*/
case ZT_BONDING_POLICY_BROADCAST:
_downDelay = 30000;
_upDelay = 0;
break;
/**
* Paths are monitored to determine when/if one needs to be added or removed from the rotation
*/
case ZT_BONDING_POLICY_BALANCE_RR:
_failoverInterval = 5000;
_allowFlowHashing = false;
_packetsPerSlave = 512;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.4f;
_qualityWeights[ZT_QOS_LTM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.2f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.1f;
_qualityWeights[ZT_QOS_THR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THV_IDX] = 0.0f;
_qualityWeights[ZT_QOS_SCP_IDX] = 0.0f;
break;
/**
* Path monitoring is used to determine the capacity of each
* path and where to place the next flow.
*/
case ZT_BONDING_POLICY_BALANCE_XOR:
_failoverInterval = 5000;;
_upDelay=_bondMonitorInterval*2;
_allowFlowHashing = true;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.4f;
_qualityWeights[ZT_QOS_LTM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.2f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.1f;
_qualityWeights[ZT_QOS_THR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THV_IDX] = 0.0f;
_qualityWeights[ZT_QOS_SCP_IDX] = 0.0f;
break;
/**
* Path monitoring is used to determine the capacity of each
* path and where to place the next flow. Additionally, re-shuffling
* of flows may take place.
*/
case ZT_BONDING_POLICY_BALANCE_AWARE:
_failoverInterval = 3000;
_allowFlowHashing = true;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.3f;
_qualityWeights[ZT_QOS_LTM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.1f;
_qualityWeights[ZT_QOS_THR_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.4f;
_qualityWeights[ZT_QOS_THV_IDX] = 0.0f;
_qualityWeights[ZT_QOS_SCP_IDX] = 0.0f;
break;
default:
break;
}
/**
* Timer geometries and counters
*/
_bondMonitorInterval = _failoverInterval / 3;
_ackSendInterval = _failoverInterval;
_qualityEstimationInterval = _failoverInterval * 2;
_dynamicPathMonitorInterval = 0;
_downDelay=0;
_upDelay=0;
_ackCutoffCount = 0;
_lastAckRateCheck = 0;
_qosSendInterval = _bondMonitorInterval * 4;
_qosCutoffCount = 0;
_lastQoSRateCheck = 0;
throughputMeasurementInterval = _ackSendInterval * 2;
BondController::setMinReqPathMonitorInterval(_bondMonitorInterval);
_defaultPathRefractoryPeriod = 8000;
fprintf(stderr, "TIMERS: strat=%d, fi= %d, bmi= %d, qos= %d, ack= %d, estimateInt= %d, refractory= %d, ud= %d, dd= %d\n",
_slaveMonitorStrategy,
_failoverInterval,
_bondMonitorInterval,
_qosSendInterval,
_ackSendInterval,
_qualityEstimationInterval,
_defaultPathRefractoryPeriod,
_upDelay,
_downDelay);
_lastQualityEstimation=0;
}
void Bond::setUserQualityWeights(float weights[], int len)
{
if (len == ZT_QOS_WEIGHT_SIZE) {
float weightTotal = 0.0;
for (unsigned int i=0; i<ZT_QOS_WEIGHT_SIZE; ++i) {
weightTotal += weights[i];
}
if (weightTotal > 0.99 && weightTotal < 1.01) {
memcpy(_qualityWeights, weights, len * sizeof(float));
}
}
}
bool Bond::relevant() {
return _peer->identity().address().toInt() == 0x16a03a3d03
|| _peer->identity().address().toInt() == 0x4410300d03
|| _peer->identity().address().toInt() == 0x795cbf86fa;
}
SharedPtr<Slave> Bond::getSlave(const SharedPtr<Path>& path)
{
return RR->bc->getSlaveBySocket(_policyAlias, path->localSocket());
}
void Bond::dumpInfo(const int64_t now)
{
char pathStr[128];
//char oldPathStr[128];
char currPathStr[128];
if (!relevant()) {
return;
}
/*
fprintf(stderr, "---[ bp=%d, id=%llx, dd=%d, up=%d, pmi=%d, specifiedSlaves=%d, _specifiedPrimarySlave=%d, _specifiedFailInst=%d ]\n",
_policy, _peer->identity().address().toInt(), _downDelay, _upDelay, _monitorInterval, _userHasSpecifiedSlaves, _userHasSpecifiedPrimarySlave, _userHasSpecifiedFailoverInstructions);
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
fprintf(stderr, "Paths (bp=%d, stats=%d, primaryReselect=%d) :\n",
_policy, _shouldCollectPathStatistics, _abSlaveSelectMethod);
}
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE) {
fprintf(stderr, "Paths (bp=%d, stats=%d, fh=%d) :\n",
_policy, _shouldCollectPathStatistics, _allowFlowHashing);
}*/
if ((now - _lastLogTS) < 1000) {
return;
}
_lastPrintTS = now;
_lastLogTS = now;
fprintf(stderr, "\n\n");
for(int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i]) {
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
_paths[i]->address().toString(pathStr);
fprintf(stderr, " %2d: lat=%8.3f, ac=%3d, fail%5s, fscore=%6d, in=%7d, out=%7d, age=%7ld, ack=%7ld, ref=%6d, ls=%llx",
i,
_paths[i]->_latencyMean,
_paths[i]->_allocation,
slave->failoverToSlave().c_str(),
_paths[i]->_failoverScore,
_paths[i]->_packetsIn,
_paths[i]->_packetsOut,
(long)_paths[i]->age(now),
(long)_paths[i]->ackAge(now),
_paths[i]->_refractoryPeriod,
_paths[i]->localSocket()
);
if (slave->spare()) {
fprintf(stderr, " SPR.");
} else {
fprintf(stderr, " ");
}
if (slave->primary()) {
fprintf(stderr, " PRIM.");
} else {
fprintf(stderr, " ");
}
if (_paths[i]->allowed()) {
fprintf(stderr, " ALL.");
} else {
fprintf(stderr, " ");
}
if (_paths[i]->eligible(now,_ackSendInterval)) {
fprintf(stderr, " ELI.");
} else {
fprintf(stderr, " ");
}
if (_paths[i]->preferred()) {
fprintf(stderr, " PREF.");
} else {
fprintf(stderr, " ");
}
if (_paths[i]->_negotiated) {
fprintf(stderr, " NEG.");
} else {
fprintf(stderr, " ");
}
if (_paths[i]->bonded()) {
fprintf(stderr, " BOND ");
} else {
fprintf(stderr, " ");
}
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP && _abPath && (_abPath == _paths[i].ptr())) {
fprintf(stderr, " ACTIVE ");
} else if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
fprintf(stderr, " ");
}
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP && _abFailoverQueue.size() && (_abFailoverQueue.front().ptr() == _paths[i].ptr())) {
fprintf(stderr, " NEXT ");
} else if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
fprintf(stderr, " ");
}
fprintf(stderr, "%5s %s\n", slave->ifname().c_str(), pathStr);
}
}
if (_bondingPolicy== ZT_BONDING_POLICY_ACTIVE_BACKUP) {
if (!_abFailoverQueue.empty()) {
fprintf(stderr, "\nFailover Queue:\n");
for (std::list<SharedPtr<Path> >::iterator it(_abFailoverQueue.begin()); it!=_abFailoverQueue.end();++it) {
(*it)->address().toString(currPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, (*it)->localSocket());
fprintf(stderr, "\t%8s\tspeed=%7d\trelSpeed=%3d\tipvPref=%3d\tfscore=%9d\t\t%s\n",
slave->ifname().c_str(),
slave->speed(),
slave->relativeSpeed(),
slave->ipvPref(),
(*it)->_failoverScore,
currPathStr);
}
}
else
{
fprintf(stderr, "\nFailover Queue size = %lu\n", _abFailoverQueue.size());
}
}
if (_bondingPolicy== ZT_BONDING_POLICY_BALANCE_RR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_XOR
|| _bondingPolicy== ZT_BONDING_POLICY_BALANCE_AWARE) {
/*
if (_numBondedPaths) {
fprintf(stderr, "\nBonded Paths:\n");
for (int i=0; i<_numBondedPaths; ++i) {
_paths[_bondedIdx[i]].p->address().toString(currPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, _paths[_bondedIdx[i]].p->localSocket());
fprintf(stderr, " [%d]\t%8s\tflows=%3d\tspeed=%7d\trelSpeed=%3d\tipvPref=%3d\tfscore=%9d\t\t%s\n", i,
//fprintf(stderr, " [%d]\t%8s\tspeed=%7d\trelSpeed=%3d\tflowCount=%2d\tipvPref=%3d\tfscore=%9d\t\t%s\n", i,
slave->ifname().c_str(),
numberOfAssignedFlows(_paths[_bondedIdx[i]].p),
slave->speed(),
slave->relativeSpeed(),
//_paths[_bondedIdx[i]].p->assignedFlows.size(),
slave->ipvPref(),
_paths[_bondedIdx[i]].p->failoverScore(),
currPathStr);
}
}
*/
/*
if (_allowFlowHashing) {
//Mutex::Lock _l(_flows_m);
if (_flows.size()) {
fprintf(stderr, "\nFlows:\n");
std::map<int32_t,SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
it->second->assignedPath()->address().toString(currPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, it->second->assignedPath()->localSocket());
fprintf(stderr, " [%4x] in=%16llu, out=%16llu, bytes=%16llu, last=%16llu, if=%8s\t\t%s\n",
it->second->id(),
it->second->bytesInPerUnitTime(),
it->second->bytesOutPerUnitTime(),
it->second->totalBytes(),
it->second->age(now),
slave->ifname().c_str(),
currPathStr);
++it;
}
}
}
*/
}
//fprintf(stderr, "\n\n\n\n\n");
}
} // namespace ZeroTier