mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2024-12-19 13:07:55 +00:00
696 lines
23 KiB
C++
696 lines
23 KiB
C++
/*
|
|
* Copyright (c)2019 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2023-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#ifndef ZT_AES_HPP
|
|
#define ZT_AES_HPP
|
|
|
|
#include "Constants.hpp"
|
|
#include "Utils.hpp"
|
|
#include "SHA512.hpp"
|
|
|
|
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
|
|
|
|
#include <wmmintrin.h>
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
|
|
#define ZT_AES_AESNI 1
|
|
|
|
// AES-aesni.c
|
|
extern "C" void zt_crypt_ctr_aesni(const __m128i key[14],const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out);
|
|
|
|
#endif // x64
|
|
|
|
#define ZT_AES_KEY_SIZE 32
|
|
#define ZT_AES_BLOCK_SIZE 16
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* AES-256 and pals
|
|
*/
|
|
class AES
|
|
{
|
|
public:
|
|
/**
|
|
* This will be true if your platform's type of AES acceleration is supported on this machine
|
|
*/
|
|
static const bool HW_ACCEL;
|
|
|
|
ZT_ALWAYS_INLINE AES() {}
|
|
ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
|
|
ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
|
|
|
|
/**
|
|
* Set (or re-set) this AES256 cipher's key
|
|
*/
|
|
ZT_ALWAYS_INLINE void init(const uint8_t key[32])
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(HW_ACCEL)) {
|
|
_init_aesni(key);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
_initSW(key);
|
|
}
|
|
|
|
/**
|
|
* Encrypt a single AES block (ECB mode)
|
|
*
|
|
* @param in Input block
|
|
* @param out Output block (can be same as input)
|
|
*/
|
|
ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(HW_ACCEL)) {
|
|
_encrypt_aesni(in,out);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
_encryptSW(in,out);
|
|
}
|
|
|
|
/**
|
|
* Compute GMAC-AES256 (GCM without ciphertext)
|
|
*
|
|
* @param iv 96-bit IV
|
|
* @param in Input data
|
|
* @param len Length of input
|
|
* @param out 128-bit authorization tag from GMAC
|
|
*/
|
|
ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(HW_ACCEL)) {
|
|
_gmac_aesni(iv,(const uint8_t *)in,len,out);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
_gmacSW(iv,(const uint8_t *)in,len,out);
|
|
}
|
|
|
|
/**
|
|
* Encrypt or decrypt (they're the same) using AES256-CTR
|
|
*
|
|
* The counter here is a 128-bit big-endian that starts at the IV. The code only
|
|
* increments the least significant 64 bits, making it only safe to use for a
|
|
* maximum of 2^64-1 bytes (much larger than we ever do).
|
|
*
|
|
* @param iv 128-bit CTR IV
|
|
* @param in Input plaintext or ciphertext
|
|
* @param len Length of input
|
|
* @param out Output plaintext or ciphertext
|
|
*/
|
|
ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
|
|
{
|
|
#ifdef ZT_AES_AESNI
|
|
if (likely(HW_ACCEL)) {
|
|
zt_crypt_ctr_aesni(_k.ni.k,iv,(const uint8_t *)in,len,(uint8_t *)out);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
uint64_t ctr[2],cenc[2];
|
|
memcpy(ctr,iv,16);
|
|
uint64_t bctr = Utils::ntoh(ctr[1]);
|
|
|
|
const uint8_t *i = (const uint8_t *)in;
|
|
uint8_t *o = (uint8_t *)out;
|
|
|
|
while (len >= 16) {
|
|
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
|
|
ctr[1] = Utils::hton(++bctr);
|
|
#ifdef ZT_NO_TYPE_PUNNING
|
|
for(unsigned int k=0;k<16;++k)
|
|
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
|
|
#else
|
|
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
|
|
o += 8;
|
|
i += 8;
|
|
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
|
|
o += 8;
|
|
i += 8;
|
|
#endif
|
|
len -= 16;
|
|
}
|
|
|
|
if (len) {
|
|
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
|
|
for(unsigned int k=0;k<len;++k)
|
|
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform AES-GMAC-SIV encryption
|
|
*
|
|
* This is basically AES-CMAC-SIV but with GMAC in place of CMAC after
|
|
* GMAC is run through AES as a keyed hash to make it behave like a
|
|
* proper PRF.
|
|
*
|
|
* See: https://github.com/miscreant/meta/wiki/AES-SIV
|
|
*
|
|
* The advantage is that this can be described in terms of FIPS and NSA
|
|
* ceritifable primitives that are present in FIPS-compliant crypto
|
|
* modules.
|
|
*
|
|
* The extra AES-ECB (keyed hash) encryption of the AES-CTR IV prior
|
|
* to use makes the IV itself a secret. This is not strictly necessary
|
|
* but comes at little cost.
|
|
*
|
|
* This code is ZeroTier-specific in a few ways, like the way the IV
|
|
* is specified, but would not be hard to generalize.
|
|
*
|
|
* @param k1 GMAC key
|
|
* @param k2 GMAC auth tag keyed hash key
|
|
* @param k3 CTR IV keyed hash key
|
|
* @param k4 AES-CTR key
|
|
* @param iv 64-bit packet IV
|
|
* @param pc Packet characteristics byte
|
|
* @param in Message plaintext
|
|
* @param len Length of plaintext
|
|
* @param out Output buffer to receive ciphertext
|
|
* @param tag Output buffer to receive 64-bit authentication tag
|
|
*/
|
|
static ZT_ALWAYS_INLINE void gmacSivEncrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,uint8_t tag[8])
|
|
{
|
|
#ifdef __GNUC__
|
|
uint8_t __attribute__ ((aligned (16))) miv[12];
|
|
uint8_t __attribute__ ((aligned (16))) ctrIv[16];
|
|
#else
|
|
uint8_t miv[12];
|
|
uint8_t ctrIv[16];
|
|
#endif
|
|
|
|
// GMAC IV is 64-bit packet IV followed by other packet attributes to extend to 96 bits
|
|
#ifndef __GNUC__
|
|
for(unsigned int i=0;i<8;++i) miv[i] = iv[i];
|
|
#else
|
|
*((uint64_t *)miv) = *((const uint64_t *)iv);
|
|
#endif
|
|
miv[8] = pc;
|
|
miv[9] = (uint8_t)(len >> 16);
|
|
miv[10] = (uint8_t)(len >> 8);
|
|
miv[11] = (uint8_t)len;
|
|
|
|
// Compute auth tag: AES-ECB[k2](GMAC[k1](miv,plaintext))[0:8]
|
|
k1.gmac(miv,in,len,ctrIv);
|
|
k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF
|
|
#ifdef ZT_NO_TYPE_PUNNING
|
|
for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
|
|
#else
|
|
*((uint64_t *)tag) = *((uint64_t *)ctrIv);
|
|
#endif
|
|
|
|
// Create synthetic CTR IV: AES-ECB[k3](TAG | MIV[0:4] | (MIV[4:8] XOR MIV[8:12]))
|
|
#ifndef __GNUC__
|
|
for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];
|
|
for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];
|
|
#else
|
|
((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];
|
|
((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];
|
|
#endif
|
|
k3.encrypt(ctrIv,ctrIv);
|
|
|
|
// Encrypt with AES[k4]-CTR
|
|
k4.ctr(ctrIv,in,len,out);
|
|
}
|
|
|
|
/**
|
|
* Decrypt a message encrypted with AES-GMAC-SIV and check its authenticity
|
|
*
|
|
* @param k1 GMAC key
|
|
* @param k2 GMAC auth tag keyed hash key
|
|
* @param k3 CTR IV keyed hash key
|
|
* @param k4 AES-CTR key
|
|
* @param iv 64-bit message IV
|
|
* @param pc Packet characteristics byte
|
|
* @param in Message ciphertext
|
|
* @param len Length of ciphertext
|
|
* @param out Output buffer to receive plaintext
|
|
* @param tag Authentication tag supplied with message
|
|
* @return True if authentication tags match and message appears authentic
|
|
*/
|
|
static ZT_ALWAYS_INLINE bool gmacSivDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,const uint8_t tag[8])
|
|
{
|
|
#ifdef __GNUC__
|
|
uint8_t __attribute__ ((aligned (16))) miv[12];
|
|
uint8_t __attribute__ ((aligned (16))) ctrIv[16];
|
|
uint8_t __attribute__ ((aligned (16))) gmacOut[16];
|
|
#else
|
|
uint8_t miv[12];
|
|
uint8_t ctrIv[16];
|
|
uint8_t gmacOut[16];
|
|
#endif
|
|
|
|
// Extend packet IV to 96-bit message IV using direction byte and message length
|
|
#ifdef ZT_NO_TYPE_PUNNING
|
|
for(unsigned int i=0;i<8;++i) miv[i] = iv[i];
|
|
#else
|
|
*((uint64_t *)miv) = *((const uint64_t *)iv);
|
|
#endif
|
|
miv[8] = pc;
|
|
miv[9] = (uint8_t)(len >> 16);
|
|
miv[10] = (uint8_t)(len >> 8);
|
|
miv[11] = (uint8_t)len;
|
|
|
|
// Recover synthetic and secret CTR IV from auth tag and packet IV
|
|
#ifndef __GNUC__
|
|
for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
|
|
for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];
|
|
for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];
|
|
#else
|
|
*((uint64_t *)ctrIv) = *((const uint64_t *)tag);
|
|
((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];
|
|
((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];
|
|
#endif
|
|
k3.encrypt(ctrIv,ctrIv);
|
|
|
|
// Decrypt with AES[k4]-CTR
|
|
k4.ctr(ctrIv,in,len,out);
|
|
|
|
// Compute AES[k2](GMAC[k1](iv,plaintext))
|
|
k1.gmac(miv,out,len,gmacOut);
|
|
k2.encrypt(gmacOut,gmacOut);
|
|
|
|
// Check that packet's auth tag matches first 64 bits of AES(GMAC)
|
|
#ifdef ZT_NO_TYPE_PUNNING
|
|
return Utils::secureEq(gmacOut,tag,8);
|
|
#else
|
|
return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-SIV from a single master key
|
|
*
|
|
* See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
|
|
*
|
|
* @param masterKey Master 256-bit key
|
|
* @param k1 GMAC key
|
|
* @param k2 GMAC auth tag keyed hash key
|
|
* @param k3 CTR IV keyed hash key
|
|
* @param k4 AES-CTR key
|
|
*/
|
|
static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4)
|
|
{
|
|
uint8_t k[32];
|
|
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K1,0,0,k);
|
|
k1.init(k);
|
|
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K2,0,0,k);
|
|
k2.init(k);
|
|
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K3,0,0,k);
|
|
k3.init(k);
|
|
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K4,0,0,k);
|
|
k4.init(k);
|
|
}
|
|
|
|
private:
|
|
static const uint32_t Te0[256];
|
|
static const uint32_t Te1[256];
|
|
static const uint32_t Te2[256];
|
|
static const uint32_t Te3[256];
|
|
static const uint32_t rcon[10];
|
|
|
|
void _initSW(const uint8_t key[32]);
|
|
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
|
|
void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
|
|
|
|
/**************************************************************************/
|
|
union {
|
|
#ifdef ZT_AES_ARMNEON
|
|
struct {
|
|
uint32x4_t k[15];
|
|
} neon;
|
|
#endif
|
|
#ifdef ZT_AES_AESNI
|
|
struct {
|
|
__m128i k[15];
|
|
__m128i h,hh,hhh,hhhh;
|
|
} ni;
|
|
#endif
|
|
struct {
|
|
uint64_t h[2];
|
|
uint32_t ek[60];
|
|
} sw;
|
|
} _k;
|
|
/**************************************************************************/
|
|
|
|
#ifdef ZT_AES_ARMNEON /******************************************************/
|
|
static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
|
|
{
|
|
uint32_t round1[4], round2[4], prv1[4], prv2[4];
|
|
vst1q_u32(prv1, prev1);
|
|
vst1q_u32(prv2, prev2);
|
|
round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
|
|
round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
|
|
round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
|
|
round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
|
|
round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
|
|
round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
|
|
round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
|
|
round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
|
|
*e1 = vld1q_u3(round1);
|
|
*e2 = vld1q_u3(round2);
|
|
//uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
|
|
//return expansion;
|
|
}
|
|
inline void _init_armneon(uint8x16_t encKey)
|
|
{
|
|
uint32x4_t *schedule = _k.neon.k;
|
|
uint32x4_t e1,e2;
|
|
(*schedule)[0] = vld1q_u32(encKey);
|
|
(*schedule)[1] = vld1q_u32(encKey + 16);
|
|
_aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
|
|
(*schedule)[2] = e1; (*schedule)[3] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
|
|
(*schedule)[4] = e1; (*schedule)[5] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
|
|
(*schedule)[6] = e1; (*schedule)[7] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
|
|
(*schedule)[8] = e1; (*schedule)[9] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
|
|
(*schedule)[10] = e1; (*schedule)[11] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
|
|
(*schedule)[12] = e1; (*schedule)[13] = e2;
|
|
_aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
|
|
(*schedule)[14] = e1;
|
|
/*
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
|
|
(*schedule)[2] = doubleRound[0];
|
|
(*schedule)[3] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
|
|
(*schedule)[4] = doubleRound[0];
|
|
(*schedule)[5] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
|
|
(*schedule)[6] = doubleRound[0];
|
|
(*schedule)[7] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
|
|
(*schedule)[8] = doubleRound[0];
|
|
(*schedule)[9] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
|
|
(*schedule)[10] = doubleRound[0];
|
|
(*schedule)[11] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
|
|
(*schedule)[12] = doubleRound[0];
|
|
(*schedule)[13] = doubleRound[1];
|
|
doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
|
|
(*schedule)[14] = doubleRound[0];
|
|
*/
|
|
}
|
|
|
|
inline void _encrypt_armneon(uint8x16_t *data) const
|
|
{
|
|
*data = veorq_u8(*data, _k.neon.k[0]);
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
|
|
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
|
|
*data = vaeseq_u8(*data, _k.neon.k[14]);
|
|
}
|
|
#endif /*********************************************************************/
|
|
|
|
#ifdef ZT_AES_AESNI /********************************************************/
|
|
static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
|
|
{
|
|
__m128i x,y;
|
|
b = _mm_shuffle_epi32(b,0xff);
|
|
y = _mm_slli_si128(a,0x04);
|
|
x = _mm_xor_si128(a,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
x = _mm_xor_si128(x,b);
|
|
return x;
|
|
}
|
|
static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
|
|
{
|
|
__m128i x,y,z;
|
|
y = _mm_aeskeygenassist_si128(a,0x00);
|
|
z = _mm_shuffle_epi32(y,0xaa);
|
|
y = _mm_slli_si128(b,0x04);
|
|
x = _mm_xor_si128(b,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
y = _mm_slli_si128(y,0x04);
|
|
x = _mm_xor_si128(x,y);
|
|
x = _mm_xor_si128(x,z);
|
|
return x;
|
|
}
|
|
ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
|
|
{
|
|
__m128i t1,t2;
|
|
_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
|
|
_k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
|
|
_k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
|
|
_k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
|
|
_k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
|
|
_k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
|
|
_k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
|
|
_k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
|
|
_k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
|
|
_k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
|
|
|
|
__m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[1]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[2]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[3]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[4]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[5]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[6]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[7]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[8]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[9]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[10]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[11]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[12]);
|
|
h = _mm_aesenc_si128(h,_k.ni.k[13]);
|
|
h = _mm_aesenclast_si128(h,_k.ni.k[14]);
|
|
|
|
const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
|
|
__m128i hswap = _mm_shuffle_epi8(h,shuf);
|
|
__m128i hh = _mult_block_aesni(shuf,hswap,h);
|
|
__m128i hhh = _mult_block_aesni(shuf,hswap,hh);
|
|
__m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
|
|
_k.ni.h = hswap;
|
|
_k.ni.hh = _mm_shuffle_epi8(hh,shuf);
|
|
_k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
|
|
_k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
|
|
}
|
|
|
|
ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
|
|
{
|
|
__m128i tmp;
|
|
tmp = _mm_loadu_si128((const __m128i *)in);
|
|
tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
|
|
tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
|
|
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
|
|
}
|
|
|
|
static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
|
|
{
|
|
y = _mm_shuffle_epi8(y,shuf);
|
|
__m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
|
|
__m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
|
|
__m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
|
|
__m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
|
|
t2 = _mm_xor_si128(t2,t3);
|
|
t3 = _mm_slli_si128(t2,8);
|
|
t2 = _mm_srli_si128(t2,8);
|
|
t1 = _mm_xor_si128(t1,t3);
|
|
t4 = _mm_xor_si128(t4,t2);
|
|
__m128i t5 = _mm_srli_epi32(t1,31);
|
|
t1 = _mm_slli_epi32(t1,1);
|
|
__m128i t6 = _mm_srli_epi32(t4,31);
|
|
t4 = _mm_slli_epi32(t4,1);
|
|
t3 = _mm_srli_si128(t5,12);
|
|
t6 = _mm_slli_si128(t6,4);
|
|
t5 = _mm_slli_si128(t5,4);
|
|
t1 = _mm_or_si128(t1,t5);
|
|
t4 = _mm_or_si128(t4,t6);
|
|
t4 = _mm_or_si128(t4,t3);
|
|
t5 = _mm_slli_epi32(t1,31);
|
|
t6 = _mm_slli_epi32(t1,30);
|
|
t3 = _mm_slli_epi32(t1,25);
|
|
t5 = _mm_xor_si128(t5,t6);
|
|
t5 = _mm_xor_si128(t5,t3);
|
|
t6 = _mm_srli_si128(t5,4);
|
|
t4 = _mm_xor_si128(t4,t6);
|
|
t5 = _mm_slli_si128(t5,12);
|
|
t1 = _mm_xor_si128(t1,t5);
|
|
t4 = _mm_xor_si128(t4,t1);
|
|
t5 = _mm_srli_epi32(t1,1);
|
|
t2 = _mm_srli_epi32(t1,2);
|
|
t3 = _mm_srli_epi32(t1,7);
|
|
t4 = _mm_xor_si128(t4,t2);
|
|
t4 = _mm_xor_si128(t4,t3);
|
|
t4 = _mm_xor_si128(t4,t5);
|
|
return _mm_shuffle_epi8(t4,shuf);
|
|
}
|
|
static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
|
|
|
|
ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
|
|
{
|
|
const __m128i *const ab = (const __m128i *)in;
|
|
const unsigned int blocks = len / 16;
|
|
const unsigned int pblocks = blocks - (blocks % 4);
|
|
const unsigned int rem = len % 16;
|
|
|
|
const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
|
|
__m128i y = _mm_setzero_si128();
|
|
unsigned int i = 0;
|
|
for (;i<pblocks;i+=4) {
|
|
__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
|
|
__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
|
|
__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
|
|
__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
|
|
_mm_prefetch(ab + i + 4,_MM_HINT_T0);
|
|
__m128i t0 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x00);
|
|
__m128i t1 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x00);
|
|
__m128i t2 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x00);
|
|
__m128i t3 = _mm_clmulepi64_si128(_k.ni.h,d4,0x00);
|
|
__m128i t8 = _mm_xor_si128(t0,t1);
|
|
t8 = _mm_xor_si128(t8,t2);
|
|
t8 = _mm_xor_si128(t8,t3);
|
|
__m128i t4 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x11);
|
|
__m128i t5 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x11);
|
|
__m128i t6 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x11);
|
|
__m128i t7 = _mm_clmulepi64_si128(_k.ni.h,d4,0x11);
|
|
__m128i t9 = _mm_xor_si128(t4,t5);
|
|
t9 = _mm_xor_si128(t9,t6);
|
|
t9 = _mm_xor_si128(t9,t7);
|
|
t0 = _mm_shuffle_epi32(_k.ni.hhhh,78);
|
|
t4 = _mm_shuffle_epi32(d1,78);
|
|
t0 = _mm_xor_si128(t0,_k.ni.hhhh);
|
|
t4 = _mm_xor_si128(t4,d1);
|
|
t1 = _mm_shuffle_epi32(_k.ni.hhh,78);
|
|
t5 = _mm_shuffle_epi32(d2,78);
|
|
t1 = _mm_xor_si128(t1,_k.ni.hhh);
|
|
t5 = _mm_xor_si128(t5,d2);
|
|
t2 = _mm_shuffle_epi32(_k.ni.hh,78);
|
|
t6 = _mm_shuffle_epi32(d3,78);
|
|
t2 = _mm_xor_si128(t2,_k.ni.hh);
|
|
t6 = _mm_xor_si128(t6,d3);
|
|
t3 = _mm_shuffle_epi32(_k.ni.h,78);
|
|
t7 = _mm_shuffle_epi32(d4,78);
|
|
t3 = _mm_xor_si128(t3,_k.ni.h);
|
|
t7 = _mm_xor_si128(t7,d4);
|
|
t0 = _mm_clmulepi64_si128(t0,t4,0x00);
|
|
t1 = _mm_clmulepi64_si128(t1,t5,0x00);
|
|
t2 = _mm_clmulepi64_si128(t2,t6,0x00);
|
|
t3 = _mm_clmulepi64_si128(t3,t7,0x00);
|
|
t0 = _mm_xor_si128(t0,t8);
|
|
t0 = _mm_xor_si128(t0,t9);
|
|
t0 = _mm_xor_si128(t1,t0);
|
|
t0 = _mm_xor_si128(t2,t0);
|
|
t0 = _mm_xor_si128(t3,t0);
|
|
t4 = _mm_slli_si128(t0,8);
|
|
t0 = _mm_srli_si128(t0,8);
|
|
t3 = _mm_xor_si128(t4,t8);
|
|
t6 = _mm_xor_si128(t0,t9);
|
|
t7 = _mm_srli_epi32(t3,31);
|
|
t8 = _mm_srli_epi32(t6,31);
|
|
t3 = _mm_slli_epi32(t3,1);
|
|
t6 = _mm_slli_epi32(t6,1);
|
|
t9 = _mm_srli_si128(t7,12);
|
|
t8 = _mm_slli_si128(t8,4);
|
|
t7 = _mm_slli_si128(t7,4);
|
|
t3 = _mm_or_si128(t3,t7);
|
|
t6 = _mm_or_si128(t6,t8);
|
|
t6 = _mm_or_si128(t6,t9);
|
|
t7 = _mm_slli_epi32(t3,31);
|
|
t8 = _mm_slli_epi32(t3,30);
|
|
t9 = _mm_slli_epi32(t3,25);
|
|
t7 = _mm_xor_si128(t7,t8);
|
|
t7 = _mm_xor_si128(t7,t9);
|
|
t8 = _mm_srli_si128(t7,4);
|
|
t7 = _mm_slli_si128(t7,12);
|
|
t3 = _mm_xor_si128(t3,t7);
|
|
t2 = _mm_srli_epi32(t3,1);
|
|
t4 = _mm_srli_epi32(t3,2);
|
|
t5 = _mm_srli_epi32(t3,7);
|
|
t2 = _mm_xor_si128(t2,t4);
|
|
t2 = _mm_xor_si128(t2,t5);
|
|
t2 = _mm_xor_si128(t2,t8);
|
|
t3 = _mm_xor_si128(t3,t2);
|
|
t6 = _mm_xor_si128(t6,t3);
|
|
y = _mm_shuffle_epi8(t6,shuf);
|
|
}
|
|
|
|
for (;i<blocks;++i)
|
|
y = _ghash_aesni(shuf,_k.ni.h,y,_mm_loadu_si128(ab + i));
|
|
|
|
if (rem) {
|
|
__m128i last = _mm_setzero_si128();
|
|
memcpy(&last,ab + blocks,rem);
|
|
y = _ghash_aesni(shuf,_k.ni.h,y,last);
|
|
}
|
|
|
|
y = _ghash_aesni(shuf,_k.ni.h,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
|
|
|
|
__m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[1]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[2]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[3]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[4]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[5]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[6]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[7]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[8]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[9]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[10]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[11]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[12]);
|
|
t = _mm_aesenc_si128(t,_k.ni.k[13]);
|
|
t = _mm_aesenclast_si128(t,_k.ni.k[14]);
|
|
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
|
|
}
|
|
#endif /* ZT_AES_AESNI ******************************************************/
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|