Adam Ierymenko 536bc59abb
.
2019-09-22 22:25:55 -07:00

976 lines
29 KiB
Go

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
package zerotier
//#cgo CFLAGS: -O3
//#cgo LDFLAGS: ${SRCDIR}/../../../build/node/libzt_core.a ${SRCDIR}/../../../build/osdep/libzt_osdep.a ${SRCDIR}/../../../build/go/native/libzt_go_native.a -lc++ -lpthread
//#define ZT_CGO 1
//#include "../../native/GoGlue.h"
import "C"
import (
"encoding/binary"
"errors"
"fmt"
"io/ioutil"
rand "math/rand"
"net"
"os"
"path"
"sync"
"sync/atomic"
"time"
"unsafe"
acl "github.com/hectane/go-acl"
)
// Network status states
const (
NetworkStatusRequestConfiguration int = C.ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION
NetworkStatusOK int = C.ZT_NETWORK_STATUS_OK
NetworkStatusAccessDenied int = C.ZT_NETWORK_STATUS_ACCESS_DENIED
NetworkStatusNotFound int = C.ZT_NETWORK_STATUS_NOT_FOUND
NetworkTypePrivate int = C.ZT_NETWORK_TYPE_PRIVATE
NetworkTypePublic int = C.ZT_NETWORK_TYPE_PUBLIC
// CoreVersionMajor is the major version of the ZeroTier core
CoreVersionMajor int = C.ZEROTIER_ONE_VERSION_MAJOR
// CoreVersionMinor is the minor version of the ZeroTier core
CoreVersionMinor int = C.ZEROTIER_ONE_VERSION_MINOR
// CoreVersionRevision is the revision of the ZeroTier core
CoreVersionRevision int = C.ZEROTIER_ONE_VERSION_REVISION
// CoreVersionBuild is the build version of the ZeroTier core
CoreVersionBuild int = C.ZEROTIER_ONE_VERSION_BUILD
// PlatformDefaultHomePath is the default location of ZeroTier's working path on this system
PlatformDefaultHomePath string = C.GoString(C.ZT_PLATFORM_DEFAULT_HOMEPATH)
afInet = C.AF_INET
afInet6 = C.AF_INET6
)
var (
nodesByUserPtr map[uintptr]*Node
nodesByUserPtrLock sync.RWMutex
)
func sockaddrStorageToIPNet(ss *C.struct_sockaddr_storage) *net.IPNet {
var a net.IPNet
switch ss.ss_family {
case afInet:
sa4 := (*C.struct_sockaddr_in)(unsafe.Pointer(ss))
var ip4 [4]byte
copy(ip4[:], (*[4]byte)(unsafe.Pointer(&sa4.sin_addr))[:])
a.IP = net.IP(ip4[:])
a.Mask = net.CIDRMask(int(binary.BigEndian.Uint16(((*[2]byte)(unsafe.Pointer(&sa4.sin_port)))[:])), 32)
return &a
case afInet6:
sa6 := (*C.struct_sockaddr_in6)(unsafe.Pointer(ss))
var ip6 [16]byte
copy(ip6[:], (*[16]byte)(unsafe.Pointer(&sa6.sin6_addr))[:])
a.IP = net.IP(ip6[:])
a.Mask = net.CIDRMask(int(binary.BigEndian.Uint16(((*[2]byte)(unsafe.Pointer(&sa6.sin6_port)))[:])), 128)
return &a
}
return nil
}
func sockaddrStorageToUDPAddr(ss *C.struct_sockaddr_storage) *net.UDPAddr {
var a net.UDPAddr
switch ss.ss_family {
case afInet:
sa4 := (*C.struct_sockaddr_in)(unsafe.Pointer(ss))
var ip4 [4]byte
copy(ip4[:], (*[4]byte)(unsafe.Pointer(&sa4.sin_addr))[:])
a.IP = net.IP(ip4[:])
a.Port = int(binary.BigEndian.Uint16(((*[2]byte)(unsafe.Pointer(&sa4.sin_port)))[:]))
return &a
case afInet6:
sa6 := (*C.struct_sockaddr_in6)(unsafe.Pointer(ss))
var ip6 [16]byte
copy(ip6[:], (*[16]byte)(unsafe.Pointer(&sa6.sin6_addr))[:])
a.IP = net.IP(ip6[:])
a.Port = int(binary.BigEndian.Uint16(((*[2]byte)(unsafe.Pointer(&sa6.sin6_port)))[:]))
return &a
}
return nil
}
func makeSockaddrStorage(ip net.IP, port int, ss *C.struct_sockaddr_storage) bool {
C.memset(unsafe.Pointer(ss), 0, C.sizeof_struct_sockaddr_storage)
if len(ip) == 4 {
sa4 := (*C.struct_sockaddr_in)(unsafe.Pointer(ss))
sa4.sin_family = afInet
copy(((*[4]byte)(unsafe.Pointer(&sa4.sin_addr)))[:], ip)
binary.BigEndian.PutUint16(((*[2]byte)(unsafe.Pointer(&sa4.sin_port)))[:], uint16(port))
return true
}
if len(ip) == 16 {
sa6 := (*C.struct_sockaddr_in6)(unsafe.Pointer(ss))
sa6.sin6_family = afInet6
copy(((*[16]byte)(unsafe.Pointer(&sa6.sin6_addr)))[:], ip)
binary.BigEndian.PutUint16(((*[2]byte)(unsafe.Pointer(&sa6.sin6_port)))[:], uint16(port))
return true
}
return false
}
//////////////////////////////////////////////////////////////////////////////
// Node is an instance of the ZeroTier core node and related C++ I/O code
type Node struct {
basePath string
localConfig LocalConfig
networks map[NetworkID]*Network
networksByMAC map[MAC]*Network // locked by networksLock
externalAddresses map[string]*net.IPNet
localConfigLock sync.RWMutex
networksLock sync.RWMutex
externalAddressesLock sync.Mutex
gn *C.ZT_GoNode
zn *C.ZT_Node
id *Identity
online uint32
running uint32
runLock sync.Mutex
}
// NewNode creates and initializes a new instance of the ZeroTier node service
func NewNode(basePath string) (*Node, error) {
var err error
os.MkdirAll(basePath, 0755)
if _, err := os.Stat(basePath); err != nil {
return nil, err
}
n := new(Node)
n.basePath = basePath
n.networks = make(map[NetworkID]*Network)
n.networksByMAC = make(map[MAC]*Network)
n.externalAddresses = make(map[string]*net.IPNet)
cpath := C.CString(basePath)
n.gn = C.ZT_GoNode_new(cpath)
C.free(unsafe.Pointer(cpath))
if n.gn == nil {
return nil, ErrNodeInitFailed
}
n.zn = (*C.ZT_Node)(C.ZT_GoNode_getNode(n.gn))
var ns C.ZT_NodeStatus
C.ZT_Node_status(unsafe.Pointer(n.zn), &ns)
n.id, err = NewIdentityFromString(C.GoString(ns.secretIdentity))
if err != nil {
C.ZT_GoNode_delete(n.gn)
return nil, err
}
gnRawAddr := uintptr(unsafe.Pointer(n.gn))
nodesByUserPtrLock.Lock()
nodesByUserPtr[gnRawAddr] = n
nodesByUserPtrLock.Unlock()
n.online = 0
n.running = 1
n.runLock.Lock()
go func() {
lastScannedInterfaces := int64(0)
for atomic.LoadUint32(&n.running) != 0 {
time.Sleep(1 * time.Second)
now := TimeMs()
if (now - lastScannedInterfaces) >= 30000 {
lastScannedInterfaces = now
externalAddresses := make(map[string]*net.IPNet)
ifs, _ := net.Interfaces()
if len(ifs) > 0 {
n.networksLock.RLock()
for _, i := range ifs {
m, _ := NewMACFromBytes(i.HardwareAddr)
if _, isZeroTier := n.networksByMAC[m]; !isZeroTier {
addrs, _ := i.Addrs()
if len(addrs) > 0 {
for _, a := range addrs {
ipn, _ := a.(*net.IPNet)
if ipn != nil {
externalAddresses[ipn.String()] = ipn
}
}
}
}
}
n.networksLock.RUnlock()
}
n.localConfigLock.RLock()
n.externalAddressesLock.Lock()
for astr, ipn := range externalAddresses {
if _, alreadyKnown := n.externalAddresses[astr]; !alreadyKnown {
ipCstr := C.CString(ipn.IP.String())
if n.localConfig.Settings.PrimaryPort > 0 && n.localConfig.Settings.PrimaryPort < 65536 {
C.ZT_GoNode_phyStartListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.PrimaryPort))
}
if n.localConfig.Settings.SecondaryPort > 0 && n.localConfig.Settings.SecondaryPort < 65536 {
C.ZT_GoNode_phyStartListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.SecondaryPort))
}
if n.localConfig.Settings.TertiaryPort > 0 && n.localConfig.Settings.TertiaryPort < 65536 {
C.ZT_GoNode_phyStartListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.TertiaryPort))
}
C.free(unsafe.Pointer(ipCstr))
}
}
for astr, ipn := range n.externalAddresses {
if _, stillPresent := externalAddresses[astr]; !stillPresent {
ipCstr := C.CString(ipn.IP.String())
if n.localConfig.Settings.PrimaryPort > 0 && n.localConfig.Settings.PrimaryPort < 65536 {
C.ZT_GoNode_phyStopListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.PrimaryPort))
}
if n.localConfig.Settings.SecondaryPort > 0 && n.localConfig.Settings.SecondaryPort < 65536 {
C.ZT_GoNode_phyStopListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.SecondaryPort))
}
if n.localConfig.Settings.TertiaryPort > 0 && n.localConfig.Settings.TertiaryPort < 65536 {
C.ZT_GoNode_phyStopListen(n.gn, nil, ipCstr, C.int(n.localConfig.Settings.TertiaryPort))
}
C.free(unsafe.Pointer(ipCstr))
}
}
n.externalAddresses = externalAddresses
n.externalAddressesLock.Unlock()
n.localConfigLock.RUnlock()
}
}
n.runLock.Unlock()
}()
return n, nil
}
// Close closes this Node and frees its underlying C++ Node structures
func (n *Node) Close() {
if atomic.SwapUint32(&n.running, 0) != 0 {
C.ZT_GoNode_delete(n.gn)
nodesByUserPtrLock.Lock()
delete(nodesByUserPtr, uintptr(unsafe.Pointer(n.gn)))
nodesByUserPtrLock.Unlock()
n.runLock.Lock() // wait for gorountine to die
n.runLock.Unlock()
}
}
// Address returns this node's address
func (n *Node) Address() Address { return n.id.address }
// Identity returns this node's identity (including secret portion)
func (n *Node) Identity() *Identity { return n.id }
// LocalConfig gets this node's local configuration
func (n *Node) LocalConfig() LocalConfig {
n.localConfigLock.RLock()
defer n.localConfigLock.RUnlock()
return n.localConfig
}
// Join joins a network
// If tap is nil, the default system tap for this OS/platform is used (if available).
func (n *Node) Join(nwid uint64, tap Tap) (*Network, error) {
n.networksLock.RLock()
if nw, have := n.networks[NetworkID(nwid)]; have {
return nw, nil
}
n.networksLock.RUnlock()
if tap != nil {
return nil, errors.New("non-native taps not implemented yet")
}
ntap := C.ZT_GoNode_join(n.gn, C.uint64_t(nwid))
if ntap == nil {
return nil, ErrTapInitFailed
}
nw, err := newNetwork(n, NetworkID(nwid), &nativeTap{tap: unsafe.Pointer(ntap), enabled: 1})
if err != nil {
C.ZT_GoNode_leave(n.gn, C.uint64_t(nwid))
return nil, err
}
n.networksLock.Lock()
n.networks[NetworkID(nwid)] = nw
n.networksLock.Unlock()
return nw, nil
}
// Leave leaves a network
func (n *Node) Leave(nwid uint64) error {
C.ZT_GoNode_leave(n.gn, C.uint64_t(nwid))
n.networksLock.Lock()
delete(n.networks, NetworkID(nwid))
n.networksLock.Unlock()
return nil
}
// Networks returns a list of networks that this node has joined
func (n *Node) Networks() []*Network {
var nws []*Network
n.networksLock.RLock()
for _, nw := range n.networks {
nws = append(nws, nw)
}
n.networksLock.RUnlock()
return nws
}
// AddStaticRoot adds a statically defined root server to this node.
// If a static root with the given identity already exists this will update its IP and port information.
func (n *Node) AddStaticRoot(id *Identity, addrs []net.Addr) {
var saddrs []C.struct_sockaddr_storage
for _, a := range addrs {
aa, _ := a.(*net.UDPAddr)
if aa != nil {
ss := new(C.struct_sockaddr_storage)
if makeSockaddrStorage(aa.IP, aa.Port, ss) {
saddrs = append(saddrs, *ss)
}
}
}
if len(saddrs) > 0 {
ids := C.CString(id.String())
C.ZT_Node_setStaticRoot(unsafe.Pointer(n.zn), ids, &saddrs[0], C.uint(len(saddrs)))
C.free(unsafe.Pointer(ids))
}
}
// RemoveStaticRoot removes a statically defined root server from this node.
func (n *Node) RemoveStaticRoot(id *Identity) {
ids := C.CString(id.String())
C.ZT_Node_removeStaticRoot(unsafe.Pointer(n.zn), ids)
C.free(unsafe.Pointer(ids))
}
// AddDynamicRoot adds a dynamic root to this node.
// If the locator parameter is non-empty it can contain a binary serialized locator
// to use if (or until) one can be fetched via DNS.
func (n *Node) AddDynamicRoot(dnsName string, locator []byte) {
dn := C.CString(dnsName)
if len(locator) > 0 {
C.ZT_Node_setDynamicRoot(unsafe.Pointer(n.zn), dn, unsafe.Pointer(&locator[0]), C.uint(len(locator)))
} else {
C.ZT_Node_setDynamicRoot(unsafe.Pointer(n.zn), dn, nil, 0)
}
C.free(unsafe.Pointer(dn))
}
// RemoveDynamicRoot removes a dynamic root from this node.
func (n *Node) RemoveDynamicRoot(dnsName string) {
dn := C.CString(dnsName)
C.ZT_Node_removeDynamicRoot(unsafe.Pointer(n.zn), dn)
C.free(unsafe.Pointer(dn))
}
// Roots retrieves a list of root servers on this node and their preferred and online status.
func (n *Node) Roots() []*Root {
var roots []*Root
rl := C.ZT_Node_listRoots(unsafe.Pointer(n.zn), C.int64_t(TimeMs()))
if rl != nil {
for i := 0; i < int(rl.count); i++ {
root := (*C.ZT_Root)(unsafe.Pointer(uintptr(unsafe.Pointer(rl)) + C.sizeof_ZT_RootList))
id, err := NewIdentityFromString(C.GoString(root.identity))
if err == nil {
var addrs []net.Addr
for j := uintptr(0); j < uintptr(root.addressCount); j++ {
a := sockaddrStorageToUDPAddr((*C.struct_sockaddr_storage)(unsafe.Pointer(uintptr(unsafe.Pointer(root.addresses)) + (j * C.sizeof_struct_sockaddr_storage))))
if a != nil {
addrs = append(addrs, a)
}
}
roots = append(roots, &Root{
DNSName: C.GoString(root.dnsName),
Identity: id,
Addresses: addrs,
Preferred: (root.preferred != 0),
Online: (root.online != 0),
})
}
}
C.ZT_Node_freeQueryResult(unsafe.Pointer(n.zn), unsafe.Pointer(rl))
}
return roots
}
// Peers retrieves a list of current peers
func (n *Node) Peers() []*Peer {
var peers []*Peer
pl := C.ZT_Node_peers(unsafe.Pointer(n.zn))
if pl != nil {
for i := uintptr(0); i < uintptr(pl.peerCount); i++ {
p := (*C.ZT_Peer)(unsafe.Pointer(uintptr(unsafe.Pointer(pl.peers)) + (i * C.sizeof_ZT_Peer)))
p2 := new(Peer)
p2.Address = Address(p.address)
p2.Version = [3]int{int(p.versionMajor), int(p.versionMinor), int(p.versionRev)}
p2.Latency = int(p.latency)
p2.Role = int(p.role)
p2.Paths = make([]Path, 0, int(p.pathCount))
for j := uintptr(0); j < uintptr(p.pathCount); j++ {
pt := &p.paths[j]
a := sockaddrStorageToUDPAddr(&pt.address)
if a != nil {
p2.Paths = append(p2.Paths, Path{
IP: a.IP,
Port: a.Port,
LastSend: int64(pt.lastSend),
LastReceive: int64(pt.lastReceive),
TrustedPathID: uint64(pt.trustedPathId),
Latency: float32(pt.latency),
PacketDelayVariance: float32(pt.packetDelayVariance),
ThroughputDisturbCoeff: float32(pt.throughputDisturbCoeff),
PacketErrorRatio: float32(pt.packetErrorRatio),
PacketLossRatio: float32(pt.packetLossRatio),
Stability: float32(pt.stability),
Throughput: uint64(pt.throughput),
MaxThroughput: uint64(pt.maxThroughput),
Allocation: float32(pt.allocation),
})
}
}
peers = append(peers, p2)
}
C.ZT_Node_freeQueryResult(unsafe.Pointer(n.zn), unsafe.Pointer(pl))
}
return peers
}
//////////////////////////////////////////////////////////////////////////////
func (n *Node) multicastSubscribe(nwid uint64, mg *MulticastGroup) {
C.ZT_Node_multicastSubscribe(unsafe.Pointer(n.zn), nil, C.uint64_t(nwid), C.uint64_t(mg.MAC), C.ulong(mg.ADI))
}
func (n *Node) multicastUnsubscribe(nwid uint64, mg *MulticastGroup) {
C.ZT_Node_multicastUnsubscribe(unsafe.Pointer(n.zn), C.uint64_t(nwid), C.uint64_t(mg.MAC), C.ulong(mg.ADI))
}
func (n *Node) pathCheck(ztAddress Address, af int, ip net.IP, port int) bool {
n.localConfigLock.RLock()
defer n.localConfigLock.RUnlock()
for cidr, phy := range n.localConfig.Physical {
if phy.Blacklist {
_, ipn, _ := net.ParseCIDR(cidr)
if ipn != nil && ipn.Contains(ip) {
return false
}
}
}
return true
}
func (n *Node) pathLookup(ztAddress Address) (net.IP, int) {
n.localConfigLock.RLock()
defer n.localConfigLock.RUnlock()
virt := n.localConfig.Virtual[ztAddress]
if virt != nil && len(virt.Try) > 0 {
udpA, _ := virt.Try[rand.Int()%len(virt.Try)].(*net.UDPAddr)
if udpA != nil {
return udpA.IP, udpA.Port
}
}
return nil, 0
}
func (n *Node) makeStateObjectPath(objType int, id [2]uint64) (string, bool) {
var fp string
secret := false
switch objType {
case C.ZT_STATE_OBJECT_IDENTITY_PUBLIC:
fp = path.Join(n.basePath, "identity.public")
case C.ZT_STATE_OBJECT_IDENTITY_SECRET:
fp = path.Join(n.basePath, "identity.secret")
secret = true
case C.ZT_STATE_OBJECT_PEER:
fp = path.Join(n.basePath, "peers.d")
os.Mkdir(fp, 0700)
fp = path.Join(fp, fmt.Sprintf("%.10x.peer", id[0]))
secret = true
case C.ZT_STATE_OBJECT_NETWORK_CONFIG:
fp = path.Join(n.basePath, "networks.d")
os.Mkdir(fp, 0755)
fp = path.Join(fp, fmt.Sprintf("%.16x.conf", id[0]))
case C.ZT_STATE_OBJECT_ROOT_LIST:
fp = path.Join(n.basePath, "roots")
}
return fp, secret
}
func (n *Node) stateObjectPut(objType int, id [2]uint64, data []byte) {
go func() {
fp, secret := n.makeStateObjectPath(objType, id)
if len(fp) > 0 {
fileMode := os.FileMode(0644)
if secret {
fileMode = os.FileMode(0600)
}
ioutil.WriteFile(fp, data, fileMode)
if secret {
acl.Chmod(fp, 0600) // this emulates Unix chmod on Windows and uses os.Chmod on Unix-type systems
}
}
}()
}
func (n *Node) stateObjectDelete(objType int, id [2]uint64) {
go func() {
fp, _ := n.makeStateObjectPath(objType, id)
if len(fp) > 0 {
os.Remove(fp)
}
}()
}
func (n *Node) stateObjectGet(objType int, id [2]uint64) ([]byte, bool) {
fp, _ := n.makeStateObjectPath(objType, id)
if len(fp) > 0 {
fd, err := ioutil.ReadFile(fp)
if err != nil {
return nil, false
}
return fd, true
}
return nil, false
}
func (n *Node) handleTrace(traceMessage string) {
}
func (n *Node) handleUserMessage(originAddress, messageTypeID uint64, data []byte) {
}
func (n *Node) handleRemoteTrace(originAddress uint64, dictData []byte) {
}
//////////////////////////////////////////////////////////////////////////////
//export goPathCheckFunc
func goPathCheckFunc(gn unsafe.Pointer, ztAddress C.uint64_t, af C.int, ip unsafe.Pointer, port C.int) C.int {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node != nil && node.pathCheck(Address(ztAddress), int(af), nil, int(port)) {
return 1
}
return 0
}
//export goPathLookupFunc
func goPathLookupFunc(gn unsafe.Pointer, ztAddress C.uint64_t, desiredAddressFamily int, familyP, ipP, portP unsafe.Pointer) C.int {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return 0
}
ip, port := node.pathLookup(Address(ztAddress))
if len(ip) > 0 && port > 0 && port <= 65535 {
ip4 := ip.To4()
if len(ip4) == 4 {
*((*C.int)(familyP)) = C.int(afInet)
copy((*[4]byte)(ipP)[:], ip4)
*((*C.int)(portP)) = C.int(port)
return 1
} else if len(ip) == 16 {
*((*C.int)(familyP)) = C.int(afInet6)
copy((*[16]byte)(ipP)[:], ip)
*((*C.int)(portP)) = C.int(port)
return 1
}
}
return 0
}
//export goStateObjectPutFunc
func goStateObjectPutFunc(gn unsafe.Pointer, objType C.int, id, data unsafe.Pointer, len C.int) {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return
}
if len < 0 {
node.stateObjectDelete(int(objType), *((*[2]uint64)(id)))
} else {
node.stateObjectPut(int(objType), *((*[2]uint64)(id)), C.GoBytes(data, len))
}
}
//export goStateObjectGetFunc
func goStateObjectGetFunc(gn unsafe.Pointer, objType C.int, id, data unsafe.Pointer, bufSize C.uint) C.int {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return -1
}
tmp, found := node.stateObjectGet(int(objType), *((*[2]uint64)(id)))
if found && len(tmp) < int(bufSize) {
if len(tmp) > 0 {
C.memcpy(data, unsafe.Pointer(&(tmp[0])), C.ulong(len(tmp)))
}
return C.int(len(tmp))
}
return -1
}
//export goDNSResolverFunc
func goDNSResolverFunc(gn unsafe.Pointer, dnsRecordTypes unsafe.Pointer, numDNSRecordTypes C.int, name unsafe.Pointer, requestID C.uintptr_t) {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return
}
recordTypes := C.GoBytes(dnsRecordTypes, numDNSRecordTypes)
recordName := C.GoString((*C.char)(name))
go func() {
recordNameCStrCopy := C.CString(recordName)
for _, rt := range recordTypes {
switch rt {
case C.ZT_DNS_RECORD_TXT:
recs, _ := net.LookupTXT(recordName)
for _, rec := range recs {
if len(rec) > 0 {
rnCS := C.CString(rec)
C.ZT_Node_processDNSResult(unsafe.Pointer(node.zn), nil, requestID, recordNameCStrCopy, C.ZT_DNS_RECORD_TXT, unsafe.Pointer(rnCS), C.uint(len(rec)), 0)
C.free(unsafe.Pointer(rnCS))
}
}
}
}
C.ZT_Node_processDNSResult(unsafe.Pointer(node.zn), nil, requestID, recordNameCStrCopy, C.ZT_DNS_RECORD__END_OF_RESULTS, nil, 0, 0)
C.free(unsafe.Pointer(recordNameCStrCopy))
}()
}
//export goVirtualNetworkConfigFunc
func goVirtualNetworkConfigFunc(gn, tapP unsafe.Pointer, nwid C.uint64_t, op C.int, conf unsafe.Pointer) {
go func() {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return
}
node.networksLock.RLock()
network := node.networks[uint64(nwid)]
node.networksLock.RUnlock()
if network != nil {
ncc := (*C.ZT_VirtualNetworkConfig)(conf)
if network.networkConfigRevision() > uint64(ncc.netconfRevision) {
return
}
var nc NetworkConfig
nc.ID = NetworkID(ncc.nwid)
nc.MAC = MAC(ncc.mac)
nc.Name = C.GoString(&ncc.name[0])
nc.Status = int(ncc.status)
nc.Type = int(ncc._type)
nc.MTU = int(ncc.mtu)
nc.Bridge = (ncc.bridge != 0)
nc.BroadcastEnabled = (ncc.broadcastEnabled != 0)
nc.NetconfRevision = uint64(ncc.netconfRevision)
for i := 0; i < int(ncc.assignedAddressCount); i++ {
a := sockaddrStorageToIPNet(&ncc.assignedAddresses[i])
if a != nil {
nc.AssignedAddresses = append(nc.AssignedAddresses, *a)
}
}
for i := 0; i < int(ncc.routeCount); i++ {
tgt := sockaddrStorageToIPNet(&ncc.routes[i].target)
viaN := sockaddrStorageToIPNet(&ncc.routes[i].via)
var via net.IP
if viaN != nil {
via = viaN.IP
}
if tgt != nil {
nc.Routes = append(nc.Routes, Route{
Target: *tgt,
Via: via,
Flags: uint16(ncc.routes[i].flags),
Metric: uint16(ncc.routes[i].metric),
})
}
}
network.updateConfig(&nc, nil)
}
}()
}
//export goZtEvent
func goZtEvent(gn unsafe.Pointer, eventType C.int, data unsafe.Pointer) {
go func() {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return
}
switch eventType {
case C.ZT_EVENT_OFFLINE:
atomic.StoreUint32(&node.online, 0)
case C.ZT_EVENT_ONLINE:
atomic.StoreUint32(&node.online, 1)
case C.ZT_EVENT_TRACE:
node.handleTrace(C.GoString((*C.char)(data)))
case C.ZT_EVENT_USER_MESSAGE:
um := (*C.ZT_UserMessage)(data)
node.handleUserMessage(uint64(um.origin), uint64(um.typeId), C.GoBytes(um.data, C.int(um.length)))
case C.ZT_EVENT_REMOTE_TRACE:
rt := (*C.ZT_RemoteTrace)(data)
node.handleRemoteTrace(uint64(rt.origin), C.GoBytes(unsafe.Pointer(rt.data), C.int(rt.len)))
}
}()
}
//////////////////////////////////////////////////////////////////////////////
// nativeTap is a Tap implementation that wraps a native C++ interface to a system tun/tap device
type nativeTap struct {
tap unsafe.Pointer
networkStatus uint32
enabled uint32
multicastGroupHandlers []func(bool, *MulticastGroup)
multicastGroupHandlersLock sync.Mutex
}
// Type returns a human-readable description of this tap implementation
func (t *nativeTap) Type() string {
return "native"
}
// Error gets this tap device's error status
func (t *nativeTap) Error() (int, string) {
return 0, ""
}
// SetEnabled sets this tap's enabled state
func (t *nativeTap) SetEnabled(enabled bool) {
if enabled && atomic.SwapUint32(&t.enabled, 1) == 0 {
C.ZT_GoTap_setEnabled(t.tap, 1)
} else if !enabled && atomic.SwapUint32(&t.enabled, 0) == 1 {
C.ZT_GoTap_setEnabled(t.tap, 0)
}
}
// Enabled returns true if this tap is currently processing packets
func (t *nativeTap) Enabled() bool {
return atomic.LoadUint32(&t.enabled) != 0
}
// AddIP adds an IP address (with netmask) to this tap
func (t *nativeTap) AddIP(ip *net.IPNet) error {
bits, _ := ip.Mask.Size()
if len(ip.IP) == 16 {
if bits > 128 || bits < 0 {
return ErrInvalidParameter
}
C.ZT_GoTap_addIp(t.tap, C.int(afInet6), unsafe.Pointer(&ip.IP[0]), C.int(bits))
} else if len(ip.IP) == 4 {
if bits > 32 || bits < 0 {
return ErrInvalidParameter
}
C.ZT_GoTap_addIp(t.tap, C.int(afInet), unsafe.Pointer(&ip.IP[0]), C.int(bits))
}
return ErrInvalidParameter
}
// RemoveIP removes this IP address (with netmask) from this tap
func (t *nativeTap) RemoveIP(ip *net.IPNet) error {
bits, _ := ip.Mask.Size()
if len(ip.IP) == 16 {
if bits > 128 || bits < 0 {
return ErrInvalidParameter
}
C.ZT_GoTap_removeIp(t.tap, C.int(afInet6), unsafe.Pointer(&ip.IP[0]), C.int(bits))
return nil
}
if len(ip.IP) == 4 {
if bits > 32 || bits < 0 {
return ErrInvalidParameter
}
C.ZT_GoTap_removeIp(t.tap, C.int(afInet), unsafe.Pointer(&ip.IP[0]), C.int(bits))
return nil
}
return ErrInvalidParameter
}
// IPs returns IPs currently assigned to this tap (including externally or system-assigned IPs)
func (t *nativeTap) IPs() (ips []net.IPNet, err error) {
defer func() {
e := recover()
if e != nil {
err = fmt.Errorf("%v", e)
}
}()
var ipbuf [16384]byte
count := int(C.ZT_GoTap_ips(t.tap, unsafe.Pointer(&ipbuf[0]), 16384))
ipptr := 0
for i := 0; i < count; i++ {
af := int(ipbuf[ipptr])
ipptr++
switch af {
case afInet:
var ip [4]byte
for j := 0; j < 4; j++ {
ip[j] = ipbuf[ipptr]
ipptr++
}
bits := ipbuf[ipptr]
ipptr++
ips = append(ips, net.IPNet{IP: net.IP(ip[:]), Mask: net.CIDRMask(int(bits), 32)})
case afInet6:
var ip [16]byte
for j := 0; j < 16; j++ {
ip[j] = ipbuf[ipptr]
ipptr++
}
bits := ipbuf[ipptr]
ipptr++
ips = append(ips, net.IPNet{IP: net.IP(ip[:]), Mask: net.CIDRMask(int(bits), 128)})
}
}
return
}
// DeviceName gets this tap's OS-specific device name
func (t *nativeTap) DeviceName() string {
var dn [256]byte
C.ZT_GoTap_deviceName(t.tap, (*C.char)(unsafe.Pointer(&dn[0])))
for i, b := range dn {
if b == 0 {
return string(dn[0:i])
}
}
return ""
}
// AddMulticastGroupChangeHandler adds a function to be called when the tap subscribes or unsubscribes to a multicast group.
func (t *nativeTap) AddMulticastGroupChangeHandler(handler func(bool, *MulticastGroup)) {
t.multicastGroupHandlersLock.Lock()
t.multicastGroupHandlers = append(t.multicastGroupHandlers, handler)
t.multicastGroupHandlersLock.Unlock()
}
// AddRoute adds or updates a managed route on this tap's interface
func (t *nativeTap) AddRoute(r *Route) error {
rc := 0
if r != nil {
if len(r.Target.IP) == 4 {
mask, _ := r.Target.Mask.Size()
if len(r.Via) == 4 {
rc = int(C.ZT_GoTap_addRoute(t.tap, afInet, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), afInet, unsafe.Pointer(&r.Via[0]), C.uint(r.Metric)))
} else {
rc = int(C.ZT_GoTap_addRoute(t.tap, afInet, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), 0, nil, C.uint(r.Metric)))
}
} else if len(r.Target.IP) == 16 {
mask, _ := r.Target.Mask.Size()
if len(r.Via) == 4 {
rc = int(C.ZT_GoTap_addRoute(t.tap, afInet6, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), afInet6, unsafe.Pointer(&r.Via[0]), C.uint(r.Metric)))
} else {
rc = int(C.ZT_GoTap_addRoute(t.tap, afInet6, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), 0, nil, C.uint(r.Metric)))
}
}
}
if rc != 0 {
return fmt.Errorf("tap device error adding route: %d", rc)
}
return nil
}
// RemoveRoute removes a managed route on this tap's interface
func (t *nativeTap) RemoveRoute(r *Route) error {
rc := 0
if r != nil {
if len(r.Target.IP) == 4 {
mask, _ := r.Target.Mask.Size()
if len(r.Via) == 4 {
rc = int(C.ZT_GoTap_removeRoute(t.tap, afInet, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), afInet, unsafe.Pointer(&r.Via[0]), C.uint(r.Metric)))
} else {
rc = int(C.ZT_GoTap_removeRoute(t.tap, afInet, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), 0, nil, C.uint(r.Metric)))
}
} else if len(r.Target.IP) == 16 {
mask, _ := r.Target.Mask.Size()
if len(r.Via) == 4 {
rc = int(C.ZT_GoTap_removeRoute(t.tap, afInet6, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), afInet6, unsafe.Pointer(&r.Via[0]), C.uint(r.Metric)))
} else {
rc = int(C.ZT_GoTap_removeRoute(t.tap, afInet6, unsafe.Pointer(&r.Target.IP[0]), C.int(mask), 0, nil, C.uint(r.Metric)))
}
}
}
if rc != 0 {
return fmt.Errorf("tap device error removing route: %d", rc)
}
return nil
}
// SyncRoutes synchronizes managed routes
func (t *nativeTap) SyncRoutes() error {
C.ZT_GoTap_syncRoutes(t.tap)
return nil
}
//////////////////////////////////////////////////////////////////////////////
func handleTapMulticastGroupChange(gn unsafe.Pointer, nwid, mac C.uint64_t, adi C.uint32_t, added bool) {
go func() {
nodesByUserPtrLock.RLock()
node := nodesByUserPtr[uintptr(gn)]
nodesByUserPtrLock.RUnlock()
if node == nil {
return
}
node.networksLock.RLock()
network := node.networks[uint64(nwid)]
node.networksLock.RUnlock()
if network != nil {
tap, _ := network.tap.(*nativeTap)
if tap != nil {
mg := &MulticastGroup{MAC: MAC(mac), ADI: uint32(adi)}
tap.multicastGroupHandlersLock.Lock()
defer tap.multicastGroupHandlersLock.Unlock()
for _, h := range tap.multicastGroupHandlers {
h(added, mg)
}
}
}
}()
}
//export goHandleTapAddedMulticastGroup
func goHandleTapAddedMulticastGroup(gn, tapP unsafe.Pointer, nwid, mac C.uint64_t, adi C.uint32_t) {
handleTapMulticastGroupChange(gn, nwid, mac, adi, true)
}
//export goHandleTapRemovedMulticastGroup
func goHandleTapRemovedMulticastGroup(gn, tapP unsafe.Pointer, nwid, mac C.uint64_t, adi C.uint32_t) {
handleTapMulticastGroupChange(gn, nwid, mac, adi, false)
}