ZeroTierOne/node/AES.hpp
Adam Ierymenko 44dd52d08f
KBKDF
2019-09-05 11:39:16 -07:00

761 lines
26 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_AES_HPP
#define ZT_AES_HPP
#include "Constants.hpp"
#include "Utils.hpp"
#include "SHA512.hpp"
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#include <wmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
#define ZT_AES_AESNI 1
#endif
#define ZT_AES_KEY_SIZE 32
#define ZT_AES_BLOCK_SIZE 16
namespace ZeroTier {
/**
* AES-256 and AES-GCM AEAD
*/
class AES
{
public:
/**
* This will be true if your platform's type of AES acceleration is supported on this machine
*/
static const bool HW_ACCEL;
ZT_ALWAYS_INLINE AES() {}
ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
/**
* Set (or re-set) this AES256 cipher's key
*/
ZT_ALWAYS_INLINE void init(const uint8_t key[32])
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_init_aesni(key);
return;
}
#endif
_initSW(key);
}
/**
* Encrypt a single AES block (ECB mode)
*
* @param in Input block
* @param out Output block (can be same as input)
*/
ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_encrypt_aesni(in,out);
return;
}
#endif
_encryptSW(in,out);
}
/**
* Compute GMAC-AES256 (GCM without ciphertext)
*
* @param iv 96-bit IV
* @param in Input data
* @param len Length of input
* @param out 128-bit authorization tag from GMAC
*/
ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_gmac_aesni(iv,(const uint8_t *)in,len,out);
return;
}
#endif
_gmacSW(iv,(const uint8_t *)in,len,out);
}
/**
* Encrypt or decrypt (they're the same) using AES256-CTR
*
* The counter here is a 128-bit big-endian that starts at the IV. The code only
* increments the least significant 64 bits, making it only safe to use for a
* maximum of 2^64-1 bytes (much larger than we ever do).
*
* @param iv 128-bit CTR IV
* @param in Input plaintext or ciphertext
* @param len Length of input
* @param out Output plaintext or ciphertext
*/
ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
{
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
_crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
return;
}
#endif
uint64_t ctr[2],cenc[2];
memcpy(ctr,iv,16);
uint64_t bctr = Utils::ntoh(ctr[1]);
const uint8_t *i = (const uint8_t *)in;
uint8_t *o = (uint8_t *)out;
while (len >= 16) {
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
ctr[1] = Utils::hton(++bctr);
#ifdef ZT_NO_TYPE_PUNNING
for(unsigned int k=0;k<16;++k)
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
#else
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
o += 8;
i += 8;
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
o += 8;
i += 8;
#endif
len -= 16;
}
if (len) {
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
for(unsigned int k=0;k<len;++k)
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
}
}
/**
* Perform AES-GMAC-CTR encryption
*
* This is an AES mode built from GMAC and AES-CTR that is similar to the
* various SIV (synthetic IV) modes for AES and is resistant to nonce
* re-use. It's specifically tweaked for ZeroTier's packet structure with
* a 64-bit IV (extended to 96 bits by including packet size and other info)
* and a 64-bit auth tag.
*
* The use of separate keys for MAC and encrypt is precautionary. It
* ensures that the CTR IV (and CTR output) are always secrets regardless
* of what an attacker might do with accumulated IVs and auth tags.
*
* @param k1 GMAC key
* @param k2 GMAC auth tag masking (ECB encryption) key
* @param k3 CTR IV masking (ECB encryption) key
* @param k4 AES-CTR key
* @param iv 96-bit message IV
* @param in Message plaintext
* @param len Length of plaintext
* @param out Output buffer to receive ciphertext
* @param tag Output buffer to receive 64-bit authentication tag
*/
static ZT_ALWAYS_INLINE void ztGmacCtrEncrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[12],const void *in,const unsigned int len,void *out,uint8_t tag[8])
{
uint8_t ctrIv[16];
// Compute AES[k2](GMAC[k1](iv,plaintext))
k1.gmac(iv,in,len,ctrIv);
k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF
// Auth tag for packet is first 64 bits of AES(GMAC) (rest is discarded)
#ifdef ZT_NO_TYPE_PUNNING
for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
#else
*((uint64_t *)tag) = *((uint64_t *)ctrIv);
#endif
// Create synthetic CTR IV
#ifdef ZT_NO_TYPE_PUNNING
for(unsigned int i=0;i<4;++i) ctrIv[i+8] = iv[i];
for(unsigned int i=4;i<8;++i) ctrIv[i+8] = iv[i] ^ iv[i+4];
#else
((uint32_t *)ctrIv)[2] = ((const uint32_t *)iv)[0];
((uint32_t *)ctrIv)[3] = ((const uint32_t *)iv)[1] ^ ((const uint32_t *)iv)[2];
#endif
k3.encrypt(ctrIv,ctrIv);
// Encrypt with AES[k4]-CTR
k4.ctr(ctrIv,in,len,out);
}
/**
* Decrypt a message encrypted with AES-GMAC-CTR and check its authenticity
*
* @param k1 GMAC key
* @param k2 GMAC auth tag masking (ECB encryption) key
* @param k3 CTR IV masking (ECB encryption) key
* @param k4 AES-CTR key
* @param iv 96-bit message IV
* @param in Message ciphertext
* @param len Length of ciphertext
* @param out Output buffer to receive plaintext
* @param tag Authentication tag supplied with message
* @return True if authentication tags match and message appears authentic
*/
static ZT_ALWAYS_INLINE bool ztGmacCtrDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[12],const void *in,const unsigned int len,void *out,const uint8_t tag[8])
{
uint8_t ctrIv[16],gmacOut[16];
// Recover synthetic and secret CTR IV from auth tag and packet IV
#ifdef ZT_NO_TYPE_PUNNING
for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
for(unsigned int i=0;i<4;++i) ctrIv[i+8] = iv[i];
for(unsigned int i=4;i<8;++i) ctrIv[i+8] = iv[i] ^ iv[i+4];
#else
*((uint64_t *)ctrIv) = *((const uint64_t *)tag);
((uint32_t *)ctrIv)[2] = ((const uint32_t *)iv)[0];
((uint32_t *)ctrIv)[3] = ((const uint32_t *)iv)[1] ^ ((const uint32_t *)iv)[2];
#endif
k3.encrypt(ctrIv,ctrIv);
// Decrypt with AES[k4]-CTR
k4.ctr(ctrIv,in,len,out);
// Compute AES[k2](GMAC[k1](iv,plaintext))
k1.gmac(iv,out,len,gmacOut);
k2.encrypt(gmacOut,gmacOut);
// Check that packet's auth tag matches first 64 bits of AES(GMAC)
#ifdef ZT_NO_TYPE_PUNNING
return Utils::secureEq(gmacOut,tag,8);
#else
return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
#endif
}
/**
* Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-CTR from a single master key
*
* See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
*
* @param masterKey Master 256-bit key
* @param k1 GMAC key
* @param k2 GMAC auth tag masking (ECB encryption) key
* @param k3 CTR IV masking (ECB encryption) key
* @param k4 AES-CTR key
*/
static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4)
{
uint8_t k[32];
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K1,0,0,k);
k1.init(k);
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K2,0,0,k);
k2.init(k);
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K3,0,0,k);
k3.init(k);
KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K4,0,0,k);
k4.init(k);
}
private:
static const uint32_t Te0[256];
static const uint32_t Te1[256];
static const uint32_t Te2[256];
static const uint32_t Te3[256];
static const uint32_t rcon[10];
void _initSW(const uint8_t key[32]);
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
/**************************************************************************/
union {
#ifdef ZT_AES_ARMNEON
struct {
uint32x4_t k[15];
} neon;
#endif
#ifdef ZT_AES_AESNI
struct {
__m128i k[15];
__m128i h,hh,hhh,hhhh;
} ni;
#endif
struct {
uint64_t h[2];
uint32_t ek[60];
} sw;
} _k;
/**************************************************************************/
#ifdef ZT_AES_ARMNEON /******************************************************/
static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
{
uint32_t round1[4], round2[4], prv1[4], prv2[4];
vst1q_u32(prv1, prev1);
vst1q_u32(prv2, prev2);
round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
*e1 = vld1q_u3(round1);
*e2 = vld1q_u3(round2);
//uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
//return expansion;
}
inline void _init_armneon(uint8x16_t encKey)
{
uint32x4_t *schedule = _k.neon.k;
uint32x4_t e1,e2;
(*schedule)[0] = vld1q_u32(encKey);
(*schedule)[1] = vld1q_u32(encKey + 16);
_aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
(*schedule)[2] = e1; (*schedule)[3] = e2;
_aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
(*schedule)[4] = e1; (*schedule)[5] = e2;
_aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
(*schedule)[6] = e1; (*schedule)[7] = e2;
_aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
(*schedule)[8] = e1; (*schedule)[9] = e2;
_aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
(*schedule)[10] = e1; (*schedule)[11] = e2;
_aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
(*schedule)[12] = e1; (*schedule)[13] = e2;
_aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
(*schedule)[14] = e1;
/*
doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
(*schedule)[2] = doubleRound[0];
(*schedule)[3] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
(*schedule)[4] = doubleRound[0];
(*schedule)[5] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
(*schedule)[6] = doubleRound[0];
(*schedule)[7] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
(*schedule)[8] = doubleRound[0];
(*schedule)[9] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
(*schedule)[10] = doubleRound[0];
(*schedule)[11] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
(*schedule)[12] = doubleRound[0];
(*schedule)[13] = doubleRound[1];
doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
(*schedule)[14] = doubleRound[0];
*/
}
inline void _encrypt_armneon(uint8x16_t *data) const
{
*data = veorq_u8(*data, _k.neon.k[0]);
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
*data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
*data = vaeseq_u8(*data, _k.neon.k[14]);
}
#endif /*********************************************************************/
#ifdef ZT_AES_AESNI /********************************************************/
static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
{
__m128i x,y;
b = _mm_shuffle_epi32(b,0xff);
y = _mm_slli_si128(a,0x04);
x = _mm_xor_si128(a,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
x = _mm_xor_si128(x,b);
return x;
}
static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
{
__m128i x,y,z;
y = _mm_aeskeygenassist_si128(a,0x00);
z = _mm_shuffle_epi32(y,0xaa);
y = _mm_slli_si128(b,0x04);
x = _mm_xor_si128(b,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
y = _mm_slli_si128(y,0x04);
x = _mm_xor_si128(x,y);
x = _mm_xor_si128(x,z);
return x;
}
ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
{
__m128i t1,t2;
_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
_k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
_k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
_k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
_k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
_k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
_k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
_k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
_k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
_k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
__m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
h = _mm_aesenc_si128(h,_k.ni.k[1]);
h = _mm_aesenc_si128(h,_k.ni.k[2]);
h = _mm_aesenc_si128(h,_k.ni.k[3]);
h = _mm_aesenc_si128(h,_k.ni.k[4]);
h = _mm_aesenc_si128(h,_k.ni.k[5]);
h = _mm_aesenc_si128(h,_k.ni.k[6]);
h = _mm_aesenc_si128(h,_k.ni.k[7]);
h = _mm_aesenc_si128(h,_k.ni.k[8]);
h = _mm_aesenc_si128(h,_k.ni.k[9]);
h = _mm_aesenc_si128(h,_k.ni.k[10]);
h = _mm_aesenc_si128(h,_k.ni.k[11]);
h = _mm_aesenc_si128(h,_k.ni.k[12]);
h = _mm_aesenc_si128(h,_k.ni.k[13]);
h = _mm_aesenclast_si128(h,_k.ni.k[14]);
const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
__m128i hswap = _mm_shuffle_epi8(h,shuf);
__m128i hh = _mult_block_aesni(shuf,hswap,h);
__m128i hhh = _mult_block_aesni(shuf,hswap,hh);
__m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
_k.ni.h = hswap;
_k.ni.hh = _mm_shuffle_epi8(hh,shuf);
_k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
_k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
}
ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
{
__m128i tmp;
tmp = _mm_loadu_si128((const __m128i *)in);
tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
}
ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
{
const __m64 iv0 = (__m64)(*((const uint64_t *)iv));
uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8)));
const __m128i k0 = _k.ni.k[0];
const __m128i k1 = _k.ni.k[1];
const __m128i k2 = _k.ni.k[2];
const __m128i k3 = _k.ni.k[3];
const __m128i k4 = _k.ni.k[4];
const __m128i k5 = _k.ni.k[5];
const __m128i k6 = _k.ni.k[6];
const __m128i k7 = _k.ni.k[7];
const __m128i k8 = _k.ni.k[8];
const __m128i k9 = _k.ni.k[9];
const __m128i k10 = _k.ni.k[10];
const __m128i k11 = _k.ni.k[11];
const __m128i k12 = _k.ni.k[12];
const __m128i k13 = _k.ni.k[13];
const __m128i k14 = _k.ni.k[14];
#define ZT_AES_CTR_AESNI_ROUND(k) \
c0 = _mm_aesenc_si128(c0,k); \
c1 = _mm_aesenc_si128(c1,k); \
c2 = _mm_aesenc_si128(c2,k); \
c3 = _mm_aesenc_si128(c3,k); \
c4 = _mm_aesenc_si128(c4,k); \
c5 = _mm_aesenc_si128(c5,k); \
c6 = _mm_aesenc_si128(c6,k); \
c7 = _mm_aesenc_si128(c7,k)
while (len >= 128) {
__m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),k0);
__m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),k0);
__m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),k0);
__m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),k0);
__m128i c4 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+4ULL)),iv0),k0);
__m128i c5 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+5ULL)),iv0),k0);
__m128i c6 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+6ULL)),iv0),k0);
__m128i c7 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+7ULL)),iv0),k0);
ctr += 8;
ZT_AES_CTR_AESNI_ROUND(k1);
ZT_AES_CTR_AESNI_ROUND(k2);
ZT_AES_CTR_AESNI_ROUND(k3);
ZT_AES_CTR_AESNI_ROUND(k4);
ZT_AES_CTR_AESNI_ROUND(k5);
ZT_AES_CTR_AESNI_ROUND(k6);
ZT_AES_CTR_AESNI_ROUND(k7);
ZT_AES_CTR_AESNI_ROUND(k8);
ZT_AES_CTR_AESNI_ROUND(k9);
ZT_AES_CTR_AESNI_ROUND(k10);
ZT_AES_CTR_AESNI_ROUND(k11);
ZT_AES_CTR_AESNI_ROUND(k12);
ZT_AES_CTR_AESNI_ROUND(k13);
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
_mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,k14)));
_mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,k14)));
_mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,k14)));
_mm_storeu_si128((__m128i *)(out + 64),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 64)),_mm_aesenclast_si128(c4,k14)));
_mm_storeu_si128((__m128i *)(out + 80),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 80)),_mm_aesenclast_si128(c5,k14)));
_mm_storeu_si128((__m128i *)(out + 96),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 96)),_mm_aesenclast_si128(c6,k14)));
_mm_storeu_si128((__m128i *)(out + 112),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 112)),_mm_aesenclast_si128(c7,k14)));
in += 128;
out += 128;
len -= 128;
}
#undef ZT_AES_CTR_AESNI_ROUND
while (len >= 16) {
__m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenc_si128(c0,k2);
c0 = _mm_aesenc_si128(c0,k3);
c0 = _mm_aesenc_si128(c0,k4);
c0 = _mm_aesenc_si128(c0,k5);
c0 = _mm_aesenc_si128(c0,k6);
c0 = _mm_aesenc_si128(c0,k7);
c0 = _mm_aesenc_si128(c0,k8);
c0 = _mm_aesenc_si128(c0,k9);
c0 = _mm_aesenc_si128(c0,k10);
c0 = _mm_aesenc_si128(c0,k11);
c0 = _mm_aesenc_si128(c0,k12);
c0 = _mm_aesenc_si128(c0,k13);
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
in += 16;
out += 16;
len -= 16;
}
if (len) {
__m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenc_si128(c0,k2);
c0 = _mm_aesenc_si128(c0,k3);
c0 = _mm_aesenc_si128(c0,k4);
c0 = _mm_aesenc_si128(c0,k5);
c0 = _mm_aesenc_si128(c0,k6);
c0 = _mm_aesenc_si128(c0,k7);
c0 = _mm_aesenc_si128(c0,k8);
c0 = _mm_aesenc_si128(c0,k9);
c0 = _mm_aesenc_si128(c0,k10);
c0 = _mm_aesenc_si128(c0,k11);
c0 = _mm_aesenc_si128(c0,k12);
c0 = _mm_aesenc_si128(c0,k13);
c0 = _mm_aesenclast_si128(c0,k14);
for(unsigned int i=0;i<len;++i)
out[i] = in[i] ^ ((const uint8_t *)&c0)[i];
}
}
static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
{
y = _mm_shuffle_epi8(y,shuf);
__m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
__m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
__m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
__m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
t2 = _mm_xor_si128(t2,t3);
t3 = _mm_slli_si128(t2,8);
t2 = _mm_srli_si128(t2,8);
t1 = _mm_xor_si128(t1,t3);
t4 = _mm_xor_si128(t4,t2);
__m128i t5 = _mm_srli_epi32(t1,31);
t1 = _mm_slli_epi32(t1,1);
__m128i t6 = _mm_srli_epi32(t4,31);
t4 = _mm_slli_epi32(t4,1);
t3 = _mm_srli_si128(t5,12);
t6 = _mm_slli_si128(t6,4);
t5 = _mm_slli_si128(t5,4);
t1 = _mm_or_si128(t1,t5);
t4 = _mm_or_si128(t4,t6);
t4 = _mm_or_si128(t4,t3);
t5 = _mm_slli_epi32(t1,31);
t6 = _mm_slli_epi32(t1,30);
t3 = _mm_slli_epi32(t1,25);
t5 = _mm_xor_si128(t5,t6);
t5 = _mm_xor_si128(t5,t3);
t6 = _mm_srli_si128(t5,4);
t4 = _mm_xor_si128(t4,t6);
t5 = _mm_slli_si128(t5,12);
t1 = _mm_xor_si128(t1,t5);
t4 = _mm_xor_si128(t4,t1);
t5 = _mm_srli_epi32(t1,1);
t2 = _mm_srli_epi32(t1,2);
t3 = _mm_srli_epi32(t1,7);
t4 = _mm_xor_si128(t4,t2);
t4 = _mm_xor_si128(t4,t3);
t4 = _mm_xor_si128(t4,t5);
return _mm_shuffle_epi8(t4,shuf);
}
static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
{
const __m128i *ab = (const __m128i *)in;
unsigned int blocks = len / 16;
unsigned int pblocks = blocks - (blocks % 4);
unsigned int rem = len % 16;
const __m128i h1 = _k.ni.hhhh;
const __m128i h2 = _k.ni.hhh;
const __m128i h3 = _k.ni.hh;
const __m128i h4 = _k.ni.h;
const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
__m128i y = _mm_setzero_si128();
unsigned int i = 0;
for (;i<pblocks;i+=4) {
__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
__m128i t0 = _mm_clmulepi64_si128(h1,d1,0x00);
__m128i t1 = _mm_clmulepi64_si128(h2,d2,0x00);
__m128i t2 = _mm_clmulepi64_si128(h3,d3,0x00);
__m128i t3 = _mm_clmulepi64_si128(h4,d4,0x00);
__m128i t8 = _mm_xor_si128(t0,t1);
t8 = _mm_xor_si128(t8,t2);
t8 = _mm_xor_si128(t8,t3);
__m128i t4 = _mm_clmulepi64_si128(h1,d1,0x11);
__m128i t5 = _mm_clmulepi64_si128(h2,d2,0x11);
__m128i t6 = _mm_clmulepi64_si128(h3,d3,0x11);
__m128i t7 = _mm_clmulepi64_si128(h4,d4,0x11);
__m128i t9 = _mm_xor_si128(t4,t5);
t9 = _mm_xor_si128(t9,t6);
t9 = _mm_xor_si128(t9,t7);
t0 = _mm_shuffle_epi32(h1,78);
t4 = _mm_shuffle_epi32(d1,78);
t0 = _mm_xor_si128(t0,h1);
t4 = _mm_xor_si128(t4,d1);
t1 = _mm_shuffle_epi32(h2,78);
t5 = _mm_shuffle_epi32(d2,78);
t1 = _mm_xor_si128(t1,h2);
t5 = _mm_xor_si128(t5,d2);
t2 = _mm_shuffle_epi32(h3,78);
t6 = _mm_shuffle_epi32(d3,78);
t2 = _mm_xor_si128(t2,h3);
t6 = _mm_xor_si128(t6,d3);
t3 = _mm_shuffle_epi32(h4,78);
t7 = _mm_shuffle_epi32(d4,78);
t3 = _mm_xor_si128(t3,h4);
t7 = _mm_xor_si128(t7,d4);
t0 = _mm_clmulepi64_si128(t0,t4,0x00);
t1 = _mm_clmulepi64_si128(t1,t5,0x00);
t2 = _mm_clmulepi64_si128(t2,t6,0x00);
t3 = _mm_clmulepi64_si128(t3,t7,0x00);
t0 = _mm_xor_si128(t0,t8);
t0 = _mm_xor_si128(t0,t9);
t0 = _mm_xor_si128(t1,t0);
t0 = _mm_xor_si128(t2,t0);
t0 = _mm_xor_si128(t3,t0);
t4 = _mm_slli_si128(t0,8);
t0 = _mm_srli_si128(t0,8);
t3 = _mm_xor_si128(t4,t8);
t6 = _mm_xor_si128(t0,t9);
t7 = _mm_srli_epi32(t3,31);
t8 = _mm_srli_epi32(t6,31);
t3 = _mm_slli_epi32(t3,1);
t6 = _mm_slli_epi32(t6,1);
t9 = _mm_srli_si128(t7,12);
t8 = _mm_slli_si128(t8,4);
t7 = _mm_slli_si128(t7,4);
t3 = _mm_or_si128(t3,t7);
t6 = _mm_or_si128(t6,t8);
t6 = _mm_or_si128(t6,t9);
t7 = _mm_slli_epi32(t3,31);
t8 = _mm_slli_epi32(t3,30);
t9 = _mm_slli_epi32(t3,25);
t7 = _mm_xor_si128(t7,t8);
t7 = _mm_xor_si128(t7,t9);
t8 = _mm_srli_si128(t7,4);
t7 = _mm_slli_si128(t7,12);
t3 = _mm_xor_si128(t3,t7);
t2 = _mm_srli_epi32(t3,1);
t4 = _mm_srli_epi32(t3,2);
t5 = _mm_srli_epi32(t3,7);
t2 = _mm_xor_si128(t2,t4);
t2 = _mm_xor_si128(t2,t5);
t2 = _mm_xor_si128(t2,t8);
t3 = _mm_xor_si128(t3,t2);
t6 = _mm_xor_si128(t6,t3);
y = _mm_shuffle_epi8(t6,shuf);
}
for (;i<blocks;++i)
y = _ghash_aesni(shuf,h4,y,_mm_loadu_si128(ab + i));
if (rem) {
__m128i last = _mm_setzero_si128();
memcpy(&last,ab + blocks,rem);
y = _ghash_aesni(shuf,h4,y,last);
}
y = _ghash_aesni(shuf,h4,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
__m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
t = _mm_aesenc_si128(t,_k.ni.k[1]);
t = _mm_aesenc_si128(t,_k.ni.k[2]);
t = _mm_aesenc_si128(t,_k.ni.k[3]);
t = _mm_aesenc_si128(t,_k.ni.k[4]);
t = _mm_aesenc_si128(t,_k.ni.k[5]);
t = _mm_aesenc_si128(t,_k.ni.k[6]);
t = _mm_aesenc_si128(t,_k.ni.k[7]);
t = _mm_aesenc_si128(t,_k.ni.k[8]);
t = _mm_aesenc_si128(t,_k.ni.k[9]);
t = _mm_aesenc_si128(t,_k.ni.k[10]);
t = _mm_aesenc_si128(t,_k.ni.k[11]);
t = _mm_aesenc_si128(t,_k.ni.k[12]);
t = _mm_aesenc_si128(t,_k.ni.k[13]);
t = _mm_aesenclast_si128(t,_k.ni.k[14]);
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
}
#endif /* ZT_AES_AESNI ******************************************************/
};
} // namespace ZeroTier
#endif