ZeroTierOne/node/Locator.hpp
Adam Ierymenko 4303c43db7
.
2019-09-27 14:55:46 -07:00

389 lines
13 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_LOCATOR_HPP
#define ZT_LOCATOR_HPP
#include "Constants.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "SHA512.hpp"
#include "Str.hpp"
#include "ScopedPtr.hpp"
#include <algorithm>
#include <vector>
// These are absolute maximums -- real locators are never this big
#define ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES 255
#define ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES 255
namespace ZeroTier {
/**
* Signed information about a node's location on the network
*
* A locator is a signed record that contains information about where a node
* may be found. It can contain static physical addresses or virtual ZeroTier
* addresses of nodes that can forward to the target node. Locator records
* can be stored in signed DNS TXT record sets, in LF by roots, in caches,
* etc.
*/
class Locator
{
public:
ZT_ALWAYS_INLINE Locator() : _ts(0),_signatureLength(0) {}
ZT_ALWAYS_INLINE int64_t timestamp() const { return _ts; }
ZT_ALWAYS_INLINE const Identity &id() const { return _id; }
ZT_ALWAYS_INLINE const std::vector<InetAddress> &phy() const { return _physical; }
ZT_ALWAYS_INLINE const std::vector<Identity> &virt() const { return _virtual; }
/**
* Add a physical address to this locator (call before finish() to build a new Locator)
*/
ZT_ALWAYS_INLINE void add(const InetAddress &ip)
{
if (_physical.size() < ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES)
_physical.push_back(ip);
}
/**
* Add a forwarding ZeroTier node to this locator (call before finish() to build a new Locator)
*/
ZT_ALWAYS_INLINE void add(const Identity &zt)
{
if (_virtual.size() < ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES)
_virtual.push_back(zt);
}
/**
* Method to be called after add() is called for each address or forwarding node
*
* @param id Identity that this locator describes (must contain private key)
* @param ts Current time
* @return True if completion and signature were successful
*/
ZT_ALWAYS_INLINE bool finish(const Identity &id,const int64_t ts)
{
_ts = ts;
_id = id;
std::sort(_physical.begin(),_physical.end());
_physical.erase(std::unique(_physical.begin(),_physical.end()),_physical.end());
std::sort(_virtual.begin(),_virtual.end());
_virtual.erase(std::unique(_virtual.begin(),_virtual.end()),_virtual.end());
try {
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
serialize(*tmp,true);
_signatureLength = id.sign(tmp->data(),tmp->size(),_signature,ZT_SIGNATURE_BUFFER_SIZE);
return (_signatureLength > 0);
} catch ( ... ) {
return false;
}
}
/**
* Verify this locator's signature against its embedded signing identity
*/
ZT_ALWAYS_INLINE bool verify() const
{
if ((_signatureLength == 0)||(_signatureLength > sizeof(_signature)))
return false;
try {
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
serialize(*tmp,true);
return _id.verify(tmp->data(),tmp->size(),_signature,_signatureLength);
} catch ( ... ) {
return false;
}
}
/**
* Make a DNS name contiaining a public key that can sign DNS entries
*
* This generates the initial fields of a DNS name that contains an
* encoded public key. Users may append any domain suffix to this name.
*
* @return First field(s) of DNS name
*/
static inline Str makeSecureDnsName(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE])
{
uint8_t tmp[ZT_ECC384_PUBLIC_KEY_SIZE+2];
memcpy(tmp,p384SigningKeyPublic,ZT_ECC384_PUBLIC_KEY_SIZE);
const uint16_t crc = Utils::crc16(tmp,ZT_ECC384_PUBLIC_KEY_SIZE);
tmp[ZT_ECC384_PUBLIC_KEY_SIZE-2] = (uint8_t)(crc >> 8);
tmp[ZT_ECC384_PUBLIC_KEY_SIZE-1] = (uint8_t)(crc);
Str name;
char b32[128];
Utils::b32e(tmp,35,b32,sizeof(b32));
name << "ztl-";
name << b32;
Utils::b32e(tmp + 35,(ZT_ECC384_PUBLIC_KEY_SIZE+2) - 35,b32,sizeof(b32));
name << ".ztl-";
name << b32;
return name;
}
/**
* This searches for an extracts a public key from a DNS name, if one is present.
*
* @return True if a key was found and successfully decoded
*/
static inline bool decodeSecureDnsName(const char *name,uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE])
{
uint8_t b32[128];
unsigned int b32ptr = 0;
char tmp[1024];
Utils::scopy(tmp,sizeof(tmp),name);
bool ok = false;
for(char *saveptr=(char *)0,*p=Utils::stok(tmp,".",&saveptr);p;p=Utils::stok((char *)0,".",&saveptr)) {
if (b32ptr >= sizeof(b32))
break;
if ((strlen(p) <= 4)||(memcmp(p,"ztl-",4) != 0))
continue;
int s = Utils::b32d(p + 4,b32 + b32ptr,sizeof(b32) - b32ptr);
if (s > 0) {
b32ptr += (unsigned int)s;
if (b32ptr > 2) {
const uint16_t crc = Utils::crc16(b32,b32ptr);
if ((b32[b32ptr-2] == (uint8_t)(crc >> 8))&&(b32[b32ptr-1] == (uint8_t)(crc & 0xff))) {
ok = true;
break;
}
}
} else break;
}
if (ok) {
if (b32ptr == (ZT_ECC384_PUBLIC_KEY_SIZE + 2)) {
memcpy(p384SigningKeyPublic,b32,ZT_ECC384_PUBLIC_KEY_SIZE);
return true;
}
}
return false;
}
/**
* Make DNS TXT records for this locator
*
* DNS TXT records are signed by an entirely separate key that is added along
* with DNS names to nodes to allow them to verify DNS results. It's separate
* from the locator's signature so that a single DNS record can point to more
* than one locator or be served by things like geo-aware DNS.
*
* Right now only NIST P-384 is supported for signing DNS records. NIST EDDSA
* is used here so that FIPS-only nodes can always use DNS to locate roots as
* FIPS-only nodes may be required to disable non-FIPS algorithms.
*/
inline std::vector<Str> makeTxtRecords(const uint8_t p384SigningKeyPrivate[ZT_ECC384_PUBLIC_KEY_SIZE])
{
uint8_t s384[48];
char enc[256];
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
serialize(*tmp,false);
SHA384(s384,tmp->data(),tmp->size());
const unsigned int sigLocation = tmp->size();
tmp->addSize(ZT_ECC384_SIGNATURE_SIZE);
ECC384ECDSASign(p384SigningKeyPrivate,s384,((uint8_t *)tmp->unsafeData()) + sigLocation);
// Blob must be broken into multiple TXT records that must remain sortable so they are prefixed by a hex value.
// 186-byte chunks yield 248-byte base64 chunks which leaves some margin below the limit of 255.
std::vector<Str> txtRecords;
unsigned int txtRecNo = 0;
for(unsigned int p=0;p<tmp->size();) {
unsigned int chunkSize = tmp->size() - p;
if (chunkSize > 186) chunkSize = 186;
Utils::b64e(((const uint8_t *)tmp->data()) + p,chunkSize,enc,sizeof(enc));
p += chunkSize;
txtRecords.push_back(Str());
txtRecords.back() << Utils::HEXCHARS[(txtRecNo >> 4) & 0xf] << Utils::HEXCHARS[txtRecNo & 0xf] << enc;
++txtRecNo;
}
return txtRecords;
}
/**
* Decode TXT records
*
* TXT records can be provided as an iterator over std::string, Str, or char *
* values, and TXT records can be provided in any order. Any oversize or empty
* entries will be ignored.
*
* This method checks the decoded locator's signature using the supplied DNS TXT
* record signing public key. False is returned if the TXT records are invalid,
* incomplete, or fail signature check. If true is returned this Locator object
* now contains the contents of the supplied TXT records.
*
* @return True if new Locator is valid
*/
template<typename I>
inline bool decodeTxtRecords(const Str &dnsName,I start,I end)
{
uint8_t dec[256],s384[48];
try {
std::vector<Str> txtRecords;
while (start != end) {
try {
if (start->length() > 2)
txtRecords.push_back(*start);
} catch ( ... ) {} // skip any records that trigger out of bounds exceptions
++start;
}
if (txtRecords.empty())
return false;
std::sort(txtRecords.begin(),txtRecords.end());
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
for(std::vector<Str>::const_iterator i(txtRecords.begin());i!=txtRecords.end();++i)
tmp->append(dec,Utils::b64d(i->c_str() + 2,dec,sizeof(dec)));
uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE];
if (decodeSecureDnsName(dnsName.c_str(),p384SigningKeyPublic)) {
if (tmp->size() <= ZT_ECC384_SIGNATURE_SIZE)
return false;
SHA384(s384,tmp->data(),tmp->size() - ZT_ECC384_SIGNATURE_SIZE);
if (!ECC384ECDSAVerify(p384SigningKeyPublic,s384,((const uint8_t *)tmp->data()) + (tmp->size() - ZT_ECC384_SIGNATURE_SIZE)))
return false;
}
deserialize(*tmp,0);
return verify();
} catch ( ... ) {
return false;
}
}
inline bool deserialize(const void *data,unsigned int len)
{
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
tmp->append(data,len);
try {
deserialize(*tmp,0);
return true;
} catch ( ... ) {
return false;
}
}
template<unsigned int C>
inline void serialize(Buffer<C> &b,const bool forSign = false) const
{
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
b.append((uint8_t)0); // version/flags, currently 0
b.append((uint64_t)_ts);
_id.serialize(b,false);
b.append((uint8_t)_physical.size());
for(std::vector<InetAddress>::const_iterator i(_physical.begin());i!=_physical.end();++i)
i->serialize(b);
b.append((uint8_t)_virtual.size());
for(std::vector<Identity>::const_iterator i(_virtual.begin());i!=_virtual.end();++i)
i->serialize(b,false);
if (!forSign) {
b.append((uint16_t)_signatureLength);
b.append(_signature,_signatureLength);
}
b.append((uint16_t)0); // length of additional fields, currently 0
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
unsigned int p = startAt;
if (b[p++] != 0)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
_ts = (int64_t)b.template at<uint64_t>(p); p += 8;
p += _id.deserialize(b,p);
const unsigned int signerCount = b[p++];
if (signerCount > 1) /* only one third party signer is currently supported */
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
if (signerCount == 1) {
p += _signedBy.deserialize(b,p);
} else {
_signedBy.zero();
}
const unsigned int physicalCount = b[p++];
_physical.resize(physicalCount);
for(unsigned int i=0;i<physicalCount;++i)
p += _physical[i].deserialize(b,p);
const unsigned int virtualCount = b[p++];
_virtual.resize(virtualCount);
for(unsigned int i=0;i<virtualCount;++i)
p += _virtual[i].deserialize(b,p);
_signatureLength = b.template at<uint16_t>(p); p += 2;
if (_signatureLength > ZT_SIGNATURE_BUFFER_SIZE)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
memcpy(_signature,b.field(p,_signatureLength),_signatureLength);
p += _signatureLength;
p += b.template at<uint16_t>(p); p += 2;
if (p > b.size())
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
return (p - startAt);
}
ZT_ALWAYS_INLINE operator bool() const { return (_id); }
ZT_ALWAYS_INLINE bool addressesEqual(const Locator &l) const { return ((_physical == l._physical)&&(_virtual == l._virtual)); }
ZT_ALWAYS_INLINE bool operator==(const Locator &l) const
{
return (
(_ts == l._ts)&&
(_id == l._id)&&
(_physical == l._physical)&&
(_virtual == l._virtual)&&
(_signatureLength == l._signatureLength)&&
(memcmp(_signature,l._signature,_signatureLength) == 0));
}
ZT_ALWAYS_INLINE bool operator!=(const Locator &l) const { return (!(*this == l)); }
ZT_ALWAYS_INLINE bool operator<(const Locator &l) const
{
if (_ts < l._ts) return true; else if (_ts > l._ts) return false;
if (_id < l._id) return true; else if (_id > l._id) return false;
if (_physical < l._physical) return true; else if (_physical > l._physical) return false;
if (_virtual < l._virtual) return true; else if (_virtual > l._virtual) return false;
if (_signatureLength < l._signatureLength) return true;
return (_signatureLength == l._signatureLength) ? (memcmp(_signature,l._signature,_signatureLength) < 0) : false;
}
ZT_ALWAYS_INLINE bool operator>(const Locator &l) const { return (l < *this); }
ZT_ALWAYS_INLINE bool operator<=(const Locator &l) const { return (!(l < *this)); }
ZT_ALWAYS_INLINE bool operator>=(const Locator &l) const { return (!(*this < l)); }
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)(_id.address().toInt() ^ (uint64_t)_ts); }
private:
int64_t _ts;
Identity _id;
std::vector<InetAddress> _physical;
std::vector<Identity> _virtual;
unsigned int _signatureLength;
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
};
} // namespace ZeroTier
#endif