ZeroTierOne/zeroidc/vendor/tokio/tests/sync_once_cell.rs

275 lines
6.2 KiB
Rust

#![warn(rust_2018_idioms)]
#![cfg(feature = "full")]
use std::mem;
use std::ops::Drop;
use std::sync::atomic::{AtomicU32, Ordering};
use std::time::Duration;
use tokio::runtime;
use tokio::sync::{OnceCell, SetError};
use tokio::time;
async fn func1() -> u32 {
5
}
async fn func2() -> u32 {
time::sleep(Duration::from_millis(1)).await;
10
}
async fn func_err() -> Result<u32, ()> {
Err(())
}
async fn func_ok() -> Result<u32, ()> {
Ok(10)
}
async fn func_panic() -> u32 {
time::sleep(Duration::from_millis(1)).await;
panic!();
}
async fn sleep_and_set() -> u32 {
// Simulate sleep by pausing time and waiting for another thread to
// resume clock when calling `set`, then finding the cell being initialized
// by this call
time::sleep(Duration::from_millis(2)).await;
5
}
async fn advance_time_and_set(cell: &'static OnceCell<u32>, v: u32) -> Result<(), SetError<u32>> {
time::advance(Duration::from_millis(1)).await;
cell.set(v)
}
#[test]
fn get_or_init() {
let rt = runtime::Builder::new_current_thread()
.enable_time()
.start_paused(true)
.build()
.unwrap();
static ONCE: OnceCell<u32> = OnceCell::const_new();
rt.block_on(async {
let handle1 = rt.spawn(async { ONCE.get_or_init(func1).await });
let handle2 = rt.spawn(async { ONCE.get_or_init(func2).await });
time::advance(Duration::from_millis(1)).await;
time::resume();
let result1 = handle1.await.unwrap();
let result2 = handle2.await.unwrap();
assert_eq!(*result1, 5);
assert_eq!(*result2, 5);
});
}
#[test]
fn get_or_init_panic() {
let rt = runtime::Builder::new_current_thread()
.enable_time()
.build()
.unwrap();
static ONCE: OnceCell<u32> = OnceCell::const_new();
rt.block_on(async {
time::pause();
let handle1 = rt.spawn(async { ONCE.get_or_init(func1).await });
let handle2 = rt.spawn(async { ONCE.get_or_init(func_panic).await });
time::advance(Duration::from_millis(1)).await;
let result1 = handle1.await.unwrap();
let result2 = handle2.await.unwrap();
assert_eq!(*result1, 5);
assert_eq!(*result2, 5);
});
}
#[test]
fn set_and_get() {
let rt = runtime::Builder::new_current_thread()
.enable_time()
.build()
.unwrap();
static ONCE: OnceCell<u32> = OnceCell::const_new();
rt.block_on(async {
let _ = rt.spawn(async { ONCE.set(5) }).await;
let value = ONCE.get().unwrap();
assert_eq!(*value, 5);
});
}
#[test]
fn get_uninit() {
static ONCE: OnceCell<u32> = OnceCell::const_new();
let uninit = ONCE.get();
assert!(uninit.is_none());
}
#[test]
fn set_twice() {
static ONCE: OnceCell<u32> = OnceCell::const_new();
let first = ONCE.set(5);
assert_eq!(first, Ok(()));
let second = ONCE.set(6);
assert!(second.err().unwrap().is_already_init_err());
}
#[test]
fn set_while_initializing() {
let rt = runtime::Builder::new_current_thread()
.enable_time()
.build()
.unwrap();
static ONCE: OnceCell<u32> = OnceCell::const_new();
rt.block_on(async {
time::pause();
let handle1 = rt.spawn(async { ONCE.get_or_init(sleep_and_set).await });
let handle2 = rt.spawn(async { advance_time_and_set(&ONCE, 10).await });
time::advance(Duration::from_millis(2)).await;
let result1 = handle1.await.unwrap();
let result2 = handle2.await.unwrap();
assert_eq!(*result1, 5);
assert!(result2.err().unwrap().is_initializing_err());
});
}
#[test]
fn get_or_try_init() {
let rt = runtime::Builder::new_current_thread()
.enable_time()
.start_paused(true)
.build()
.unwrap();
static ONCE: OnceCell<u32> = OnceCell::const_new();
rt.block_on(async {
let handle1 = rt.spawn(async { ONCE.get_or_try_init(func_err).await });
let handle2 = rt.spawn(async { ONCE.get_or_try_init(func_ok).await });
time::advance(Duration::from_millis(1)).await;
time::resume();
let result1 = handle1.await.unwrap();
assert!(result1.is_err());
let result2 = handle2.await.unwrap();
assert_eq!(*result2.unwrap(), 10);
});
}
#[test]
fn drop_cell() {
static NUM_DROPS: AtomicU32 = AtomicU32::new(0);
struct Foo {}
let fooer = Foo {};
impl Drop for Foo {
fn drop(&mut self) {
NUM_DROPS.fetch_add(1, Ordering::Release);
}
}
{
let once_cell = OnceCell::new();
let prev = once_cell.set(fooer);
assert!(prev.is_ok())
}
assert!(NUM_DROPS.load(Ordering::Acquire) == 1);
}
#[test]
fn drop_cell_new_with() {
static NUM_DROPS: AtomicU32 = AtomicU32::new(0);
struct Foo {}
let fooer = Foo {};
impl Drop for Foo {
fn drop(&mut self) {
NUM_DROPS.fetch_add(1, Ordering::Release);
}
}
{
let once_cell = OnceCell::new_with(Some(fooer));
assert!(once_cell.initialized());
}
assert!(NUM_DROPS.load(Ordering::Acquire) == 1);
}
#[test]
fn drop_into_inner() {
static NUM_DROPS: AtomicU32 = AtomicU32::new(0);
struct Foo {}
let fooer = Foo {};
impl Drop for Foo {
fn drop(&mut self) {
NUM_DROPS.fetch_add(1, Ordering::Release);
}
}
let once_cell = OnceCell::new();
assert!(once_cell.set(fooer).is_ok());
let fooer = once_cell.into_inner();
let count = NUM_DROPS.load(Ordering::Acquire);
assert!(count == 0);
drop(fooer);
let count = NUM_DROPS.load(Ordering::Acquire);
assert!(count == 1);
}
#[test]
fn drop_into_inner_new_with() {
static NUM_DROPS: AtomicU32 = AtomicU32::new(0);
struct Foo {}
let fooer = Foo {};
impl Drop for Foo {
fn drop(&mut self) {
NUM_DROPS.fetch_add(1, Ordering::Release);
}
}
let once_cell = OnceCell::new_with(Some(fooer));
let fooer = once_cell.into_inner();
let count = NUM_DROPS.load(Ordering::Acquire);
assert!(count == 0);
mem::drop(fooer);
let count = NUM_DROPS.load(Ordering::Acquire);
assert!(count == 1);
}
#[test]
fn from() {
let cell = OnceCell::from(2);
assert_eq!(*cell.get().unwrap(), 2);
}