ZeroTierOne/zeroidc/vendor/tokio/tests/sync_mutex_owned.rs

137 lines
3.5 KiB
Rust

#![warn(rust_2018_idioms)]
#![cfg(feature = "sync")]
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as maybe_tokio_test;
#[cfg(not(target_arch = "wasm32"))]
use tokio::test as maybe_tokio_test;
use tokio::sync::Mutex;
use tokio_test::task::spawn;
use tokio_test::{assert_pending, assert_ready};
use std::sync::Arc;
#[test]
fn straight_execution() {
let l = Arc::new(Mutex::new(100));
{
let mut t = spawn(l.clone().lock_owned());
let mut g = assert_ready!(t.poll());
assert_eq!(&*g, &100);
*g = 99;
}
{
let mut t = spawn(l.clone().lock_owned());
let mut g = assert_ready!(t.poll());
assert_eq!(&*g, &99);
*g = 98;
}
{
let mut t = spawn(l.lock_owned());
let g = assert_ready!(t.poll());
assert_eq!(&*g, &98);
}
}
#[test]
fn readiness() {
let l = Arc::new(Mutex::new(100));
let mut t1 = spawn(l.clone().lock_owned());
let mut t2 = spawn(l.lock_owned());
let g = assert_ready!(t1.poll());
// We can't now acquire the lease since it's already held in g
assert_pending!(t2.poll());
// But once g unlocks, we can acquire it
drop(g);
assert!(t2.is_woken());
assert_ready!(t2.poll());
}
/// Ensure a mutex is unlocked if a future holding the lock
/// is aborted prematurely.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_1() {
use std::time::Duration;
use tokio::time::{interval, timeout};
let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
{
let m2 = m1.clone();
// Try to lock mutex in a future that is aborted prematurely
timeout(Duration::from_millis(1u64), async move {
let iv = interval(Duration::from_millis(1000));
tokio::pin!(iv);
m2.lock_owned().await;
iv.as_mut().tick().await;
iv.as_mut().tick().await;
})
.await
.unwrap_err();
}
// This should succeed as there is no lock left for the mutex.
timeout(Duration::from_millis(1u64), async move {
m1.lock_owned().await;
})
.await
.expect("Mutex is locked");
}
/// This test is similar to `aborted_future_1` but this time the
/// aborted future is waiting for the lock.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_2() {
use std::time::Duration;
use tokio::time::timeout;
let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
{
// Lock mutex
let _lock = m1.clone().lock_owned().await;
{
let m2 = m1.clone();
// Try to lock mutex in a future that is aborted prematurely
timeout(Duration::from_millis(1u64), async move {
m2.lock_owned().await;
})
.await
.unwrap_err();
}
}
// This should succeed as there is no lock left for the mutex.
timeout(Duration::from_millis(1u64), async move {
m1.lock_owned().await;
})
.await
.expect("Mutex is locked");
}
#[test]
fn try_lock_owned() {
let m: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
{
let g1 = m.clone().try_lock_owned();
assert!(g1.is_ok());
let g2 = m.clone().try_lock_owned();
assert!(g2.is_err());
}
let g3 = m.try_lock_owned();
assert!(g3.is_ok());
}
#[maybe_tokio_test]
async fn debug_format() {
let s = "debug";
let m = Arc::new(Mutex::new(s.to_string()));
assert_eq!(format!("{:?}", s), format!("{:?}", m.lock_owned().await));
}