mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-04 12:14:09 +00:00
315 lines
12 KiB
Rust
315 lines
12 KiB
Rust
// Copyright 2015-2016 Brian Smith.
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice appear in all copies.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
|
|
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
|
|
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
use ring::{
|
|
rand,
|
|
signature::{self, KeyPair},
|
|
test, test_file,
|
|
};
|
|
|
|
// ECDSA *signing* tests are in src/ec/ecdsa/signing.rs.
|
|
|
|
#[test]
|
|
fn ecdsa_from_pkcs8_test() {
|
|
test::run(
|
|
test_file!("ecdsa_from_pkcs8_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let curve_name = test_case.consume_string("Curve");
|
|
let ((this_fixed, this_asn1), (other_fixed, other_asn1)) = match curve_name.as_str() {
|
|
"P-256" => (
|
|
(
|
|
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
|
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
|
|
),
|
|
(
|
|
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
|
|
),
|
|
),
|
|
"P-384" => (
|
|
(
|
|
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
|
|
),
|
|
(
|
|
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
|
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
|
|
),
|
|
),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let input = test_case.consume_bytes("Input");
|
|
|
|
let error = test_case.consume_optional_string("Error");
|
|
|
|
match (
|
|
signature::EcdsaKeyPair::from_pkcs8(this_fixed, &input),
|
|
error.clone(),
|
|
) {
|
|
(Ok(_), None) => (),
|
|
(Err(e), None) => panic!("Failed with error \"{}\", but expected to succeed", e),
|
|
(Ok(_), Some(e)) => panic!("Succeeded, but expected error \"{}\"", e),
|
|
(Err(actual), Some(expected)) => assert_eq!(format!("{}", actual), expected),
|
|
};
|
|
|
|
match (
|
|
signature::EcdsaKeyPair::from_pkcs8(this_asn1, &input),
|
|
error,
|
|
) {
|
|
(Ok(_), None) => (),
|
|
(Err(e), None) => panic!("Failed with error \"{}\", but expected to succeed", e),
|
|
(Ok(_), Some(e)) => panic!("Succeeded, but expected error \"{}\"", e),
|
|
(Err(actual), Some(expected)) => assert_eq!(format!("{}", actual), expected),
|
|
};
|
|
|
|
assert!(signature::EcdsaKeyPair::from_pkcs8(other_fixed, &input).is_err());
|
|
assert!(signature::EcdsaKeyPair::from_pkcs8(other_asn1, &input).is_err());
|
|
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|
|
|
|
// Verify that, at least, we generate PKCS#8 documents that we can read.
|
|
#[test]
|
|
fn ecdsa_generate_pkcs8_test() {
|
|
let rng = rand::SystemRandom::new();
|
|
|
|
for alg in &[
|
|
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
|
|
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
|
|
] {
|
|
let pkcs8 = signature::EcdsaKeyPair::generate_pkcs8(alg, &rng).unwrap();
|
|
println!();
|
|
for b in pkcs8.as_ref() {
|
|
print!("{:02x}", *b);
|
|
}
|
|
println!();
|
|
println!();
|
|
|
|
#[cfg(feature = "alloc")]
|
|
let _ = signature::EcdsaKeyPair::from_pkcs8(*alg, pkcs8.as_ref()).unwrap();
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn signature_ecdsa_verify_asn1_test() {
|
|
test::run(
|
|
test_file!("ecdsa_verify_asn1_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let curve_name = test_case.consume_string("Curve");
|
|
let digest_name = test_case.consume_string("Digest");
|
|
let msg = test_case.consume_bytes("Msg");
|
|
let public_key = test_case.consume_bytes("Q");
|
|
let sig = test_case.consume_bytes("Sig");
|
|
let is_valid = test_case.consume_string("Result") == "P (0 )";
|
|
|
|
let alg = match (curve_name.as_str(), digest_name.as_str()) {
|
|
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1,
|
|
("P-256", "SHA384") => &signature::ECDSA_P256_SHA384_ASN1,
|
|
("P-384", "SHA256") => &signature::ECDSA_P384_SHA256_ASN1,
|
|
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1,
|
|
_ => {
|
|
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
|
|
}
|
|
};
|
|
|
|
let actual_result =
|
|
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
|
|
assert_eq!(actual_result.is_ok(), is_valid);
|
|
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn signature_ecdsa_verify_fixed_test() {
|
|
test::run(
|
|
test_file!("ecdsa_verify_fixed_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let curve_name = test_case.consume_string("Curve");
|
|
let digest_name = test_case.consume_string("Digest");
|
|
|
|
let msg = test_case.consume_bytes("Msg");
|
|
let public_key = test_case.consume_bytes("Q");
|
|
let sig = test_case.consume_bytes("Sig");
|
|
let expected_result = test_case.consume_string("Result");
|
|
|
|
let alg = match (curve_name.as_str(), digest_name.as_str()) {
|
|
("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED,
|
|
("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED,
|
|
_ => {
|
|
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
|
|
}
|
|
};
|
|
|
|
let is_valid = expected_result == "P (0 )";
|
|
|
|
let actual_result =
|
|
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
|
|
assert_eq!(actual_result.is_ok(), is_valid);
|
|
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn ecdsa_test_public_key_coverage() {
|
|
const PRIVATE_KEY: &[u8] = include_bytes!("ecdsa_test_private_key_p256.p8");
|
|
const PUBLIC_KEY: &[u8] = include_bytes!("ecdsa_test_public_key_p256.der");
|
|
const PUBLIC_KEY_DEBUG: &str = include_str!("ecdsa_test_public_key_p256_debug.txt");
|
|
|
|
let key_pair = signature::EcdsaKeyPair::from_pkcs8(
|
|
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
|
PRIVATE_KEY,
|
|
)
|
|
.unwrap();
|
|
|
|
// Test `AsRef<[u8]>`
|
|
assert_eq!(key_pair.public_key().as_ref(), PUBLIC_KEY);
|
|
|
|
// Test `Clone`.
|
|
#[allow(clippy::clone_on_copy, clippy::redundant_clone)]
|
|
let _: <signature::EcdsaKeyPair as KeyPair>::PublicKey = key_pair.public_key().clone();
|
|
|
|
// Test `Copy`.
|
|
let _: <signature::EcdsaKeyPair as KeyPair>::PublicKey = *key_pair.public_key();
|
|
|
|
// Test `Debug`.
|
|
assert_eq!(PUBLIC_KEY_DEBUG, format!("{:?}", key_pair.public_key()));
|
|
assert_eq!(
|
|
format!("EcdsaKeyPair {{ public_key: {:?} }}", key_pair.public_key()),
|
|
format!("{:?}", key_pair)
|
|
);
|
|
}
|
|
|
|
// This test is not a known-answer test, though it re-uses the known-answer
|
|
// test vectors. Because the nonce is randomized, the signature will be
|
|
// different each time. Because of that, here we simply verify that the
|
|
// signature verifies correctly. The known-answer tests themselves are in
|
|
// ecsda/signing.rs.
|
|
#[test]
|
|
fn signature_ecdsa_sign_fixed_sign_and_verify_test() {
|
|
let rng = rand::SystemRandom::new();
|
|
|
|
test::run(
|
|
test_file!("../src/ec/suite_b/ecdsa/ecdsa_sign_fixed_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let curve_name = test_case.consume_string("Curve");
|
|
let digest_name = test_case.consume_string("Digest");
|
|
|
|
let msg = test_case.consume_bytes("Msg");
|
|
let d = test_case.consume_bytes("d");
|
|
let q = test_case.consume_bytes("Q");
|
|
|
|
// Ignored since the actual signature will use a randomized nonce.
|
|
let _k = test_case.consume_bytes("k");
|
|
let _expected_result = test_case.consume_bytes("Sig");
|
|
|
|
let (signing_alg, verification_alg) = match (curve_name.as_str(), digest_name.as_str())
|
|
{
|
|
("P-256", "SHA256") => (
|
|
&signature::ECDSA_P256_SHA256_FIXED_SIGNING,
|
|
&signature::ECDSA_P256_SHA256_FIXED,
|
|
),
|
|
("P-384", "SHA384") => (
|
|
&signature::ECDSA_P384_SHA384_FIXED_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_FIXED,
|
|
),
|
|
_ => {
|
|
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
|
|
}
|
|
};
|
|
|
|
let private_key =
|
|
signature::EcdsaKeyPair::from_private_key_and_public_key(signing_alg, &d, &q)
|
|
.unwrap();
|
|
|
|
let signature = private_key.sign(&rng, &msg).unwrap();
|
|
|
|
let public_key = signature::UnparsedPublicKey::new(verification_alg, q);
|
|
assert_eq!(public_key.verify(&msg, signature.as_ref()), Ok(()));
|
|
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|
|
|
|
// This test is not a known-answer test, though it re-uses the known-answer
|
|
// test vectors. Because the nonce is randomized, the signature will be
|
|
// different each time. Because of that, here we simply verify that the
|
|
// signature verifies correctly. The known-answer tests themselves are in
|
|
// ecsda/signing.rs.
|
|
#[test]
|
|
fn signature_ecdsa_sign_asn1_test() {
|
|
let rng = rand::SystemRandom::new();
|
|
|
|
test::run(
|
|
test_file!("../src/ec/suite_b/ecdsa/ecdsa_sign_asn1_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let curve_name = test_case.consume_string("Curve");
|
|
let digest_name = test_case.consume_string("Digest");
|
|
|
|
let msg = test_case.consume_bytes("Msg");
|
|
let d = test_case.consume_bytes("d");
|
|
let q = test_case.consume_bytes("Q");
|
|
|
|
// Ignored since the actual signature will use a randomized nonce.
|
|
let _k = test_case.consume_bytes("k");
|
|
let _expected_result = test_case.consume_bytes("Sig");
|
|
|
|
let (signing_alg, verification_alg) = match (curve_name.as_str(), digest_name.as_str())
|
|
{
|
|
("P-256", "SHA256") => (
|
|
&signature::ECDSA_P256_SHA256_ASN1_SIGNING,
|
|
&signature::ECDSA_P256_SHA256_ASN1,
|
|
),
|
|
("P-384", "SHA384") => (
|
|
&signature::ECDSA_P384_SHA384_ASN1_SIGNING,
|
|
&signature::ECDSA_P384_SHA384_ASN1,
|
|
),
|
|
_ => {
|
|
panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name);
|
|
}
|
|
};
|
|
|
|
let private_key =
|
|
signature::EcdsaKeyPair::from_private_key_and_public_key(signing_alg, &d, &q)
|
|
.unwrap();
|
|
|
|
let signature = private_key.sign(&rng, &msg).unwrap();
|
|
|
|
let public_key = signature::UnparsedPublicKey::new(verification_alg, q);
|
|
assert_eq!(public_key.verify(&msg, signature.as_ref()), Ok(()));
|
|
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|