ZeroTierOne/zeroidc/vendor/ring/pregenerated/vpaes-armv7-ios32.S

770 lines
23 KiB
ArmAsm

// This file is generated from a similarly-named Perl script in the BoringSSL
// source tree. Do not edit by hand.
#if !defined(__has_feature)
#define __has_feature(x) 0
#endif
#if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM)
#define OPENSSL_NO_ASM
#endif
#if !defined(OPENSSL_NO_ASM)
.syntax unified
#if defined(__thumb2__)
.thumb
#else
.code 32
#endif
.text
.align 7 @ totally strategic alignment
_vpaes_consts:
Lk_mc_forward:@ mc_forward
.quad 0x0407060500030201, 0x0C0F0E0D080B0A09
.quad 0x080B0A0904070605, 0x000302010C0F0E0D
.quad 0x0C0F0E0D080B0A09, 0x0407060500030201
.quad 0x000302010C0F0E0D, 0x080B0A0904070605
Lk_mc_backward:@ mc_backward
.quad 0x0605040702010003, 0x0E0D0C0F0A09080B
.quad 0x020100030E0D0C0F, 0x0A09080B06050407
.quad 0x0E0D0C0F0A09080B, 0x0605040702010003
.quad 0x0A09080B06050407, 0x020100030E0D0C0F
Lk_sr:@ sr
.quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
.quad 0x030E09040F0A0500, 0x0B06010C07020D08
.quad 0x0F060D040B020900, 0x070E050C030A0108
.quad 0x0B0E0104070A0D00, 0x0306090C0F020508
@
@ "Hot" constants
@
Lk_inv:@ inv, inva
.quad 0x0E05060F0D080180, 0x040703090A0B0C02
.quad 0x01040A060F0B0780, 0x030D0E0C02050809
Lk_ipt:@ input transform (lo, hi)
.quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
.quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
Lk_sbo:@ sbou, sbot
.quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
.quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
Lk_sb1:@ sb1u, sb1t
.quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
.quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
Lk_sb2:@ sb2u, sb2t
.quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
.quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD
.byte 86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,55,32,78,69,79,78,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0
.align 2
.align 6
@@
@@ _aes_preheat
@@
@@ Fills q9-q15 as specified below.
@@
#ifdef __thumb2__
.thumb_func _vpaes_preheat
#endif
.align 4
_vpaes_preheat:
adr r10, Lk_inv
vmov.i8 q9, #0x0f @ Lk_s0F
vld1.64 {q10,q11}, [r10]! @ Lk_inv
add r10, r10, #64 @ Skip Lk_ipt, Lk_sbo
vld1.64 {q12,q13}, [r10]! @ Lk_sb1
vld1.64 {q14,q15}, [r10] @ Lk_sb2
bx lr
@@
@@ _aes_encrypt_core
@@
@@ AES-encrypt q0.
@@
@@ Inputs:
@@ q0 = input
@@ q9-q15 as in _vpaes_preheat
@@ [r2] = scheduled keys
@@
@@ Output in q0
@@ Clobbers q1-q5, r8-r11
@@ Preserves q6-q8 so you get some local vectors
@@
@@
#ifdef __thumb2__
.thumb_func _vpaes_encrypt_core
#endif
.align 4
_vpaes_encrypt_core:
mov r9, r2
ldr r8, [r2,#240] @ pull rounds
adr r11, Lk_ipt
@ vmovdqa .Lk_ipt(%rip), %xmm2 # iptlo
@ vmovdqa .Lk_ipt+16(%rip), %xmm3 # ipthi
vld1.64 {q2, q3}, [r11]
adr r11, Lk_mc_forward+16
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5 # round0 key
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0
vtbl.8 d2, {q2}, d2 @ vpshufb %xmm1, %xmm2, %xmm1
vtbl.8 d3, {q2}, d3
vtbl.8 d4, {q3}, d0 @ vpshufb %xmm0, %xmm3, %xmm2
vtbl.8 d5, {q3}, d1
veor q0, q1, q5 @ vpxor %xmm5, %xmm1, %xmm0
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
@ .Lenc_entry ends with a bnz instruction which is normally paired with
@ subs in .Lenc_loop.
tst r8, r8
b Lenc_entry
.align 4
Lenc_loop:
@ middle of middle round
add r10, r11, #0x40
vtbl.8 d8, {q13}, d4 @ vpshufb %xmm2, %xmm13, %xmm4 # 4 = sb1u
vtbl.8 d9, {q13}, d5
vld1.64 {q1}, [r11]! @ vmovdqa -0x40(%r11,%r10), %xmm1 # Lk_mc_forward[]
vtbl.8 d0, {q12}, d6 @ vpshufb %xmm3, %xmm12, %xmm0 # 0 = sb1t
vtbl.8 d1, {q12}, d7
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
vtbl.8 d10, {q15}, d4 @ vpshufb %xmm2, %xmm15, %xmm5 # 4 = sb2u
vtbl.8 d11, {q15}, d5
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
vtbl.8 d4, {q14}, d6 @ vpshufb %xmm3, %xmm14, %xmm2 # 2 = sb2t
vtbl.8 d5, {q14}, d7
vld1.64 {q4}, [r10] @ vmovdqa (%r11,%r10), %xmm4 # Lk_mc_backward[]
vtbl.8 d6, {q0}, d2 @ vpshufb %xmm1, %xmm0, %xmm3 # 0 = B
vtbl.8 d7, {q0}, d3
veor q2, q2, q5 @ vpxor %xmm5, %xmm2, %xmm2 # 2 = 2A
@ Write to q5 instead of q0, so the table and destination registers do
@ not overlap.
vtbl.8 d10, {q0}, d8 @ vpshufb %xmm4, %xmm0, %xmm0 # 3 = D
vtbl.8 d11, {q0}, d9
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 0 = 2A+B
vtbl.8 d8, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm4 # 0 = 2B+C
vtbl.8 d9, {q3}, d3
@ Here we restore the original q0/q5 usage.
veor q0, q5, q3 @ vpxor %xmm3, %xmm0, %xmm0 # 3 = 2A+B+D
and r11, r11, #~(1<<6) @ and $0x30, %r11 # ... mod 4
veor q0, q0, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = 2A+3B+C+D
subs r8, r8, #1 @ nr--
Lenc_entry:
@ top of round
vand q1, q0, q9 @ vpand %xmm0, %xmm9, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i
vtbl.8 d10, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm5 # 2 = a/k
vtbl.8 d11, {q11}, d3
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 d7, {q10}, d1
vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 d9, {q10}, d3
veor q3, q3, q5 @ vpxor %xmm5, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 d4, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm2 # 2 = 1/iak
vtbl.8 d5, {q10}, d7
vtbl.8 d6, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm3 # 3 = 1/jak
vtbl.8 d7, {q10}, d9
veor q2, q2, q1 @ vpxor %xmm1, %xmm2, %xmm2 # 2 = io
veor q3, q3, q0 @ vpxor %xmm0, %xmm3, %xmm3 # 3 = jo
vld1.64 {q5}, [r9]! @ vmovdqu (%r9), %xmm5
bne Lenc_loop
@ middle of last round
add r10, r11, #0x80
adr r11, Lk_sbo
@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
@ overlap table and destination registers.
vld1.64 {q1}, [r11]! @ vmovdqa -0x60(%r10), %xmm4 # 3 : sbou
vld1.64 {q0}, [r11] @ vmovdqa -0x50(%r10), %xmm0 # 0 : sbot Lk_sbo+16
vtbl.8 d8, {q1}, d4 @ vpshufb %xmm2, %xmm4, %xmm4 # 4 = sbou
vtbl.8 d9, {q1}, d5
vld1.64 {q1}, [r10] @ vmovdqa 0x40(%r11,%r10), %xmm1 # Lk_sr[]
@ Write to q2 instead of q0 below, to avoid overlapping table and
@ destination registers.
vtbl.8 d4, {q0}, d6 @ vpshufb %xmm3, %xmm0, %xmm0 # 0 = sb1t
vtbl.8 d5, {q0}, d7
veor q4, q4, q5 @ vpxor %xmm5, %xmm4, %xmm4 # 4 = sb1u + k
veor q2, q2, q4 @ vpxor %xmm4, %xmm0, %xmm0 # 0 = A
@ Here we restore the original q0/q2 usage.
vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0
vtbl.8 d1, {q2}, d3
bx lr
.globl _GFp_vpaes_encrypt
.private_extern _GFp_vpaes_encrypt
#ifdef __thumb2__
.thumb_func _GFp_vpaes_encrypt
#endif
.align 4
_GFp_vpaes_encrypt:
@ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
@ alignment.
stmdb sp!, {r7,r8,r9,r10,r11,lr}
@ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
vstmdb sp!, {d8,d9,d10,d11}
vld1.64 {q0}, [r0]
bl _vpaes_preheat
bl _vpaes_encrypt_core
vst1.64 {q0}, [r1]
vldmia sp!, {d8,d9,d10,d11}
ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@ @@
@@ AES key schedule @@
@@ @@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ This function diverges from both x86_64 and armv7 in which constants are
@ pinned. x86_64 has a common preheat function for all operations. aarch64
@ separates them because it has enough registers to pin nearly all constants.
@ armv7 does not have enough registers, but needing explicit loads and stores
@ also complicates using x86_64's register allocation directly.
@
@ We pin some constants for convenience and leave q14 and q15 free to load
@ others on demand.
@
@ Key schedule constants
@
.align 4
_vpaes_key_consts:
Lk_rcon:@ rcon
.quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
Lk_opt:@ output transform
.quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
.quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
Lk_deskew:@ deskew tables: inverts the sbox's "skew"
.quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
.quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
#ifdef __thumb2__
.thumb_func _vpaes_key_preheat
#endif
.align 4
_vpaes_key_preheat:
adr r11, Lk_rcon
vmov.i8 q12, #0x5b @ Lk_s63
adr r10, Lk_inv @ Must be aligned to 8 mod 16.
vmov.i8 q9, #0x0f @ Lk_s0F
vld1.64 {q10,q11}, [r10] @ Lk_inv
vld1.64 {q8}, [r11] @ Lk_rcon
bx lr
#ifdef __thumb2__
.thumb_func _vpaes_schedule_core
#endif
.align 4
_vpaes_schedule_core:
@ We only need to save lr, but ARM requires an 8-byte stack alignment,
@ so save an extra register.
stmdb sp!, {r3,lr}
bl _vpaes_key_preheat @ load the tables
adr r11, Lk_ipt @ Must be aligned to 8 mod 16.
vld1.64 {q0}, [r0]! @ vmovdqu (%rdi), %xmm0 # load key (unaligned)
@ input transform
@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
@ overlap table and destination.
vmov q4, q0 @ vmovdqa %xmm0, %xmm3
bl _vpaes_schedule_transform
adr r10, Lk_sr @ Must be aligned to 8 mod 16.
vmov q7, q0 @ vmovdqa %xmm0, %xmm7
add r8, r8, r10
@ encrypting, output zeroth round key after transform
vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx)
@ *ring*: Decryption removed.
Lschedule_go:
cmp r1, #192 @ cmp $192, %esi
bhi Lschedule_256
@ 128: fall though
@@
@@ .schedule_128
@@
@@ 128-bit specific part of key schedule.
@@
@@ This schedule is really simple, because all its parts
@@ are accomplished by the subroutines.
@@
Lschedule_128:
mov r0, #10 @ mov $10, %esi
Loop_schedule_128:
bl _vpaes_schedule_round
subs r0, r0, #1 @ dec %esi
beq Lschedule_mangle_last
bl _vpaes_schedule_mangle @ write output
b Loop_schedule_128
@@
@@ .aes_schedule_256
@@
@@ 256-bit specific part of key schedule.
@@
@@ The structure here is very similar to the 128-bit
@@ schedule, but with an additional "low side" in
@@ q6. The low side's rounds are the same as the
@@ high side's, except no rcon and no rotation.
@@
.align 4
Lschedule_256:
vld1.64 {q0}, [r0] @ vmovdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
bl _vpaes_schedule_transform @ input transform
mov r0, #7 @ mov $7, %esi
Loop_schedule_256:
bl _vpaes_schedule_mangle @ output low result
vmov q6, q0 @ vmovdqa %xmm0, %xmm6 # save cur_lo in xmm6
@ high round
bl _vpaes_schedule_round
subs r0, r0, #1 @ dec %esi
beq Lschedule_mangle_last
bl _vpaes_schedule_mangle
@ low round. swap xmm7 and xmm6
vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0
vmov.i8 q4, #0
vmov q5, q7 @ vmovdqa %xmm7, %xmm5
vmov q7, q6 @ vmovdqa %xmm6, %xmm7
bl _vpaes_schedule_low_round
vmov q7, q5 @ vmovdqa %xmm5, %xmm7
b Loop_schedule_256
@@
@@ .aes_schedule_mangle_last
@@
@@ Mangler for last round of key schedule
@@ Mangles q0
@@ when encrypting, outputs out(q0) ^ 63
@@ when decrypting, outputs unskew(q0)
@@
@@ Always called right before return... jumps to cleanup and exits
@@
.align 4
Lschedule_mangle_last:
@ schedule last round key from xmm0
adr r11, Lk_deskew @ lea Lk_deskew(%rip),%r11 # prepare to deskew
@ encrypting
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10),%xmm1
adr r11, Lk_opt @ lea Lk_opt(%rip), %r11 # prepare to output transform
add r2, r2, #32 @ add $32, %rdx
vmov q2, q0
vtbl.8 d0, {q2}, d2 @ vpshufb %xmm1, %xmm0, %xmm0 # output permute
vtbl.8 d1, {q2}, d3
Lschedule_mangle_last_dec:
sub r2, r2, #16 @ add $-16, %rdx
veor q0, q0, q12 @ vpxor Lk_s63(%rip), %xmm0, %xmm0
bl _vpaes_schedule_transform @ output transform
vst1.64 {q0}, [r2] @ vmovdqu %xmm0, (%rdx) # save last key
@ cleanup
veor q0, q0, q0 @ vpxor %xmm0, %xmm0, %xmm0
veor q1, q1, q1 @ vpxor %xmm1, %xmm1, %xmm1
veor q2, q2, q2 @ vpxor %xmm2, %xmm2, %xmm2
veor q3, q3, q3 @ vpxor %xmm3, %xmm3, %xmm3
veor q4, q4, q4 @ vpxor %xmm4, %xmm4, %xmm4
veor q5, q5, q5 @ vpxor %xmm5, %xmm5, %xmm5
veor q6, q6, q6 @ vpxor %xmm6, %xmm6, %xmm6
veor q7, q7, q7 @ vpxor %xmm7, %xmm7, %xmm7
ldmia sp!, {r3,pc} @ return
@@
@@ .aes_schedule_round
@@
@@ Runs one main round of the key schedule on q0, q7
@@
@@ Specifically, runs subbytes on the high dword of q0
@@ then rotates it by one byte and xors into the low dword of
@@ q7.
@@
@@ Adds rcon from low byte of q8, then rotates q8 for
@@ next rcon.
@@
@@ Smears the dwords of q7 by xoring the low into the
@@ second low, result into third, result into highest.
@@
@@ Returns results in q7 = q0.
@@ Clobbers q1-q4, r11.
@@
#ifdef __thumb2__
.thumb_func _vpaes_schedule_round
#endif
.align 4
_vpaes_schedule_round:
@ extract rcon from xmm8
vmov.i8 q4, #0 @ vpxor %xmm4, %xmm4, %xmm4
vext.8 q1, q8, q4, #15 @ vpalignr $15, %xmm8, %xmm4, %xmm1
vext.8 q8, q8, q8, #15 @ vpalignr $15, %xmm8, %xmm8, %xmm8
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
@ rotate
vdup.32 q0, d1[1] @ vpshufd $0xFF, %xmm0, %xmm0
vext.8 q0, q0, q0, #1 @ vpalignr $1, %xmm0, %xmm0, %xmm0
@ fall through...
@ low round: same as high round, but no rotation and no rcon.
_vpaes_schedule_low_round:
@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
@ We pin other values in _vpaes_key_preheat, so load them now.
adr r11, Lk_sb1
vld1.64 {q14,q15}, [r11]
@ smear xmm7
vext.8 q1, q4, q7, #12 @ vpslldq $4, %xmm7, %xmm1
veor q7, q7, q1 @ vpxor %xmm1, %xmm7, %xmm7
vext.8 q4, q4, q7, #8 @ vpslldq $8, %xmm7, %xmm4
@ subbytes
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1 # 0 = k
vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0 # 1 = i
veor q7, q7, q4 @ vpxor %xmm4, %xmm7, %xmm7
vtbl.8 d4, {q11}, d2 @ vpshufb %xmm1, %xmm11, %xmm2 # 2 = a/k
vtbl.8 d5, {q11}, d3
veor q1, q1, q0 @ vpxor %xmm0, %xmm1, %xmm1 # 0 = j
vtbl.8 d6, {q10}, d0 @ vpshufb %xmm0, %xmm10, %xmm3 # 3 = 1/i
vtbl.8 d7, {q10}, d1
veor q3, q3, q2 @ vpxor %xmm2, %xmm3, %xmm3 # 3 = iak = 1/i + a/k
vtbl.8 d8, {q10}, d2 @ vpshufb %xmm1, %xmm10, %xmm4 # 4 = 1/j
vtbl.8 d9, {q10}, d3
veor q7, q7, q12 @ vpxor Lk_s63(%rip), %xmm7, %xmm7
vtbl.8 d6, {q10}, d6 @ vpshufb %xmm3, %xmm10, %xmm3 # 2 = 1/iak
vtbl.8 d7, {q10}, d7
veor q4, q4, q2 @ vpxor %xmm2, %xmm4, %xmm4 # 4 = jak = 1/j + a/k
vtbl.8 d4, {q10}, d8 @ vpshufb %xmm4, %xmm10, %xmm2 # 3 = 1/jak
vtbl.8 d5, {q10}, d9
veor q3, q3, q1 @ vpxor %xmm1, %xmm3, %xmm3 # 2 = io
veor q2, q2, q0 @ vpxor %xmm0, %xmm2, %xmm2 # 3 = jo
vtbl.8 d8, {q15}, d6 @ vpshufb %xmm3, %xmm13, %xmm4 # 4 = sbou
vtbl.8 d9, {q15}, d7
vtbl.8 d2, {q14}, d4 @ vpshufb %xmm2, %xmm12, %xmm1 # 0 = sb1t
vtbl.8 d3, {q14}, d5
veor q1, q1, q4 @ vpxor %xmm4, %xmm1, %xmm1 # 0 = sbox output
@ add in smeared stuff
veor q0, q1, q7 @ vpxor %xmm7, %xmm1, %xmm0
veor q7, q1, q7 @ vmovdqa %xmm0, %xmm7
bx lr
@@
@@ .aes_schedule_transform
@@
@@ Linear-transform q0 according to tables at [r11]
@@
@@ Requires that q9 = 0x0F0F... as in preheat
@@ Output in q0
@@ Clobbers q1, q2, q14, q15
@@
#ifdef __thumb2__
.thumb_func _vpaes_schedule_transform
#endif
.align 4
_vpaes_schedule_transform:
vld1.64 {q14,q15}, [r11] @ vmovdqa (%r11), %xmm2 # lo
@ vmovdqa 16(%r11), %xmm1 # hi
vand q1, q0, q9 @ vpand %xmm9, %xmm0, %xmm1
vshr.u8 q0, q0, #4 @ vpsrlb $4, %xmm0, %xmm0
vtbl.8 d4, {q14}, d2 @ vpshufb %xmm1, %xmm2, %xmm2
vtbl.8 d5, {q14}, d3
vtbl.8 d0, {q15}, d0 @ vpshufb %xmm0, %xmm1, %xmm0
vtbl.8 d1, {q15}, d1
veor q0, q0, q2 @ vpxor %xmm2, %xmm0, %xmm0
bx lr
@@
@@ .aes_schedule_mangle
@@
@@ Mangles q0 from (basis-transformed) standard version
@@ to our version.
@@
@@ On encrypt,
@@ xor with 0x63
@@ multiply by circulant 0,1,1,1
@@ apply shiftrows transform
@@
@@ On decrypt,
@@ xor with 0x63
@@ multiply by "inverse mixcolumns" circulant E,B,D,9
@@ deskew
@@ apply shiftrows transform
@@
@@
@@ Writes out to [r2], and increments or decrements it
@@ Keeps track of round number mod 4 in r8
@@ Preserves q0
@@ Clobbers q1-q5
@@
#ifdef __thumb2__
.thumb_func _vpaes_schedule_mangle
#endif
.align 4
_vpaes_schedule_mangle:
tst r3, r3
vmov q4, q0 @ vmovdqa %xmm0, %xmm4 # save xmm0 for later
adr r11, Lk_mc_forward @ Must be aligned to 8 mod 16.
vld1.64 {q5}, [r11] @ vmovdqa Lk_mc_forward(%rip),%xmm5
@ encrypting
@ Write to q2 so we do not overlap table and destination below.
veor q2, q0, q12 @ vpxor Lk_s63(%rip), %xmm0, %xmm4
add r2, r2, #16 @ add $16, %rdx
vtbl.8 d8, {q2}, d10 @ vpshufb %xmm5, %xmm4, %xmm4
vtbl.8 d9, {q2}, d11
vtbl.8 d2, {q4}, d10 @ vpshufb %xmm5, %xmm4, %xmm1
vtbl.8 d3, {q4}, d11
vtbl.8 d6, {q1}, d10 @ vpshufb %xmm5, %xmm1, %xmm3
vtbl.8 d7, {q1}, d11
veor q4, q4, q1 @ vpxor %xmm1, %xmm4, %xmm4
vld1.64 {q1}, [r8] @ vmovdqa (%r8,%r10), %xmm1
veor q3, q3, q4 @ vpxor %xmm4, %xmm3, %xmm3
Lschedule_mangle_both:
@ Write to q2 so table and destination do not overlap.
vtbl.8 d4, {q3}, d2 @ vpshufb %xmm1, %xmm3, %xmm3
vtbl.8 d5, {q3}, d3
add r8, r8, #64-16 @ add $-16, %r8
and r8, r8, #~(1<<6) @ and $0x30, %r8
vst1.64 {q2}, [r2] @ vmovdqu %xmm3, (%rdx)
bx lr
.globl _GFp_vpaes_set_encrypt_key
.private_extern _GFp_vpaes_set_encrypt_key
#ifdef __thumb2__
.thumb_func _GFp_vpaes_set_encrypt_key
#endif
.align 4
_GFp_vpaes_set_encrypt_key:
stmdb sp!, {r7,r8,r9,r10,r11, lr}
vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
lsr r9, r1, #5 @ shr $5,%eax
add r9, r9, #5 @ $5,%eax
str r9, [r2,#240] @ mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
mov r3, #0 @ mov $0,%ecx
mov r8, #0x30 @ mov $0x30,%r8d
bl _vpaes_schedule_core
eor r0, r0, r0
vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
@ Additional constants for converting to bsaes.
.align 4
_vpaes_convert_consts:
@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
@ transform in the AES S-box. 0x63 is incorporated into the low half of the
@ table. This was computed with the following script:
@
@ def u64s_to_u128(x, y):
@ return x | (y << 64)
@ def u128_to_u64s(w):
@ return w & ((1<<64)-1), w >> 64
@ def get_byte(w, i):
@ return (w >> (i*8)) & 0xff
@ def apply_table(table, b):
@ lo = b & 0xf
@ hi = b >> 4
@ return get_byte(table[0], lo) ^ get_byte(table[1], hi)
@ def opt(b):
@ table = [
@ u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
@ u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
@ ]
@ return apply_table(table, b)
@ def rot_byte(b, n):
@ return 0xff & ((b << n) | (b >> (8-n)))
@ def skew(x):
@ return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
@ rot_byte(x, 4))
@ table = [0, 0]
@ for i in range(16):
@ table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
@ table[1] |= skew(opt(i<<4)) << (i*8)
@ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[0]))
@ print(" .quad 0x%016x, 0x%016x" % u128_to_u64s(table[1]))
Lk_opt_then_skew:
.quad 0x9cb8436798bc4763, 0x6440bb9f6044bf9b
.quad 0x1f30062936192f00, 0xb49bad829db284ab
@ void GFp_vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
.globl _GFp_vpaes_encrypt_key_to_bsaes
.private_extern _GFp_vpaes_encrypt_key_to_bsaes
#ifdef __thumb2__
.thumb_func _GFp_vpaes_encrypt_key_to_bsaes
#endif
.align 4
_GFp_vpaes_encrypt_key_to_bsaes:
stmdb sp!, {r11, lr}
@ See _vpaes_schedule_core for the key schedule logic. In particular,
@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
@ contain the transformations not in the bsaes representation. This
@ function inverts those transforms.
@
@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
@ representation, which does not match the other aes_nohw_*
@ implementations. The ARM aes_nohw_* stores each 32-bit word
@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
@ cost of extra REV and VREV32 operations in little-endian ARM.
vmov.i8 q9, #0x0f @ Required by _vpaes_schedule_transform
adr r2, Lk_mc_forward @ Must be aligned to 8 mod 16.
add r3, r2, 0x90 @ Lk_sr+0x10-Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
vld1.64 {q12}, [r2]
vmov.i8 q10, #0x5b @ Lk_s63 from vpaes-x86_64
adr r11, Lk_opt @ Must be aligned to 8 mod 16.
vmov.i8 q11, #0x63 @ LK_s63 without Lk_ipt applied
@ vpaes stores one fewer round count than bsaes, but the number of keys
@ is the same.
ldr r2, [r1,#240]
add r2, r2, #1
str r2, [r0,#240]
@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
@ Invert this with .Lk_opt.
vld1.64 {q0}, [r1]!
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [r0]!
@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
Loop_enc_key_to_bsaes:
vld1.64 {q0}, [r1]!
@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
@ We use r3 rather than r8 to avoid a callee-saved register.
vld1.64 {q1}, [r3]
vtbl.8 d4, {q0}, d2
vtbl.8 d5, {q0}, d3
add r3, r3, #16
and r3, r3, #~(1<<6)
vmov q0, q2
@ Handle the last key differently.
subs r2, r2, #1
beq Loop_enc_key_to_bsaes_last
@ Multiply by the circulant. This is its own inverse.
vtbl.8 d2, {q0}, d24
vtbl.8 d3, {q0}, d25
vmov q0, q1
vtbl.8 d4, {q1}, d24
vtbl.8 d5, {q1}, d25
veor q0, q0, q2
vtbl.8 d2, {q2}, d24
vtbl.8 d3, {q2}, d25
veor q0, q0, q1
@ XOR and finish.
veor q0, q0, q10
bl _vpaes_schedule_transform
vrev32.8 q0, q0
vst1.64 {q0}, [r0]!
b Loop_enc_key_to_bsaes
Loop_enc_key_to_bsaes_last:
@ The final key does not have a basis transform (note
@ .Lschedule_mangle_last inverts the original transform). It only XORs
@ 0x63 and applies ShiftRows. The latter was already inverted in the
@ loop. Note that, because we act on the original representation, we use
@ q11, not q10.
veor q0, q0, q11
vrev32.8 q0, q0
vst1.64 {q0}, [r0]
@ Wipe registers which contained key material.
veor q0, q0, q0
veor q1, q1, q1
veor q2, q2, q2
ldmia sp!, {r11, pc} @ return
.globl _GFp_vpaes_ctr32_encrypt_blocks
.private_extern _GFp_vpaes_ctr32_encrypt_blocks
#ifdef __thumb2__
.thumb_func _GFp_vpaes_ctr32_encrypt_blocks
#endif
.align 4
_GFp_vpaes_ctr32_encrypt_blocks:
mov ip, sp
stmdb sp!, {r7,r8,r9,r10,r11, lr}
@ This function uses q4-q7 (d8-d15), which are callee-saved.
vstmdb sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
cmp r2, #0
@ r8 is passed on the stack.
ldr r8, [ip]
beq Lctr32_done
@ _vpaes_encrypt_core expects the key in r2, so swap r2 and r3.
mov r9, r3
mov r3, r2
mov r2, r9
@ Load the IV and counter portion.
ldr r7, [r8, #12]
vld1.8 {q7}, [r8]
bl _vpaes_preheat
rev r7, r7 @ The counter is big-endian.
Lctr32_loop:
vmov q0, q7
vld1.8 {q6}, [r0]! @ Load input ahead of time
bl _vpaes_encrypt_core
veor q0, q0, q6 @ XOR input and result
vst1.8 {q0}, [r1]!
subs r3, r3, #1
@ Update the counter.
add r7, r7, #1
rev r9, r7
vmov.32 d15[1], r9
bne Lctr32_loop
Lctr32_done:
vldmia sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
ldmia sp!, {r7,r8,r9,r10,r11, pc} @ return
#endif // !OPENSSL_NO_ASM