mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-17 10:19:49 +00:00
320 lines
10 KiB
C++
320 lines
10 KiB
C++
/*
|
|
* Copyright (c)2019 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2023-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#ifndef ZT_N_SWITCH_HPP
|
|
#define ZT_N_SWITCH_HPP
|
|
|
|
#include <map>
|
|
#include <set>
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
#include "Constants.hpp"
|
|
#include "Mutex.hpp"
|
|
#include "MAC.hpp"
|
|
#include "Packet.hpp"
|
|
#include "Utils.hpp"
|
|
#include "InetAddress.hpp"
|
|
#include "Topology.hpp"
|
|
#include "Network.hpp"
|
|
#include "SharedPtr.hpp"
|
|
#include "IncomingPacket.hpp"
|
|
#include "Hashtable.hpp"
|
|
|
|
/* Ethernet frame types that might be relevant to us */
|
|
#define ZT_ETHERTYPE_IPV4 0x0800
|
|
#define ZT_ETHERTYPE_ARP 0x0806
|
|
#define ZT_ETHERTYPE_RARP 0x8035
|
|
#define ZT_ETHERTYPE_ATALK 0x809b
|
|
#define ZT_ETHERTYPE_AARP 0x80f3
|
|
#define ZT_ETHERTYPE_IPX_A 0x8137
|
|
#define ZT_ETHERTYPE_IPX_B 0x8138
|
|
#define ZT_ETHERTYPE_IPV6 0x86dd
|
|
|
|
namespace ZeroTier {
|
|
|
|
class RuntimeEnvironment;
|
|
class Peer;
|
|
|
|
/**
|
|
* Core of the distributed Ethernet switch and protocol implementation
|
|
*
|
|
* This class is perhaps a bit misnamed, but it's basically where everything
|
|
* meets. Transport-layer ZT packets come in here, as do virtual network
|
|
* packets from tap devices, and this sends them where they need to go and
|
|
* wraps/unwraps accordingly. It also handles queues and timeouts and such.
|
|
*/
|
|
class Switch
|
|
{
|
|
struct ManagedQueue;
|
|
struct TXQueueEntry;
|
|
|
|
typedef struct {
|
|
TXQueueEntry *p;
|
|
bool ok_to_drop;
|
|
} dqr;
|
|
|
|
public:
|
|
Switch(const RuntimeEnvironment *renv);
|
|
|
|
/**
|
|
* Called when a packet is received from the real network
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param localSocket Local I/O socket as supplied by external code
|
|
* @param fromAddr Internet IP address of origin
|
|
* @param data Packet data
|
|
* @param len Packet length
|
|
*/
|
|
void onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len);
|
|
|
|
/**
|
|
* Called when a packet comes from a local Ethernet tap
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param network Which network's TAP did this packet come from?
|
|
* @param from Originating MAC address
|
|
* @param to Destination MAC address
|
|
* @param etherType Ethernet packet type
|
|
* @param vlanId VLAN ID or 0 if none
|
|
* @param data Ethernet payload
|
|
* @param len Frame length
|
|
*/
|
|
void onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
|
|
|
|
/**
|
|
* Determines the next drop schedule for packets in the TX queue
|
|
*
|
|
* @param t Current time
|
|
* @param count Number of packets dropped this round
|
|
*/
|
|
uint64_t control_law(uint64_t t, int count);
|
|
|
|
/**
|
|
* Selects a packet eligible for transmission from a TX queue. According to the control law, multiple packets
|
|
* may be intentionally dropped before a packet is returned to the AQM scheduler.
|
|
*
|
|
* @param q The TX queue that is being dequeued from
|
|
* @param now Current time
|
|
*/
|
|
dqr dodequeue(ManagedQueue *q, uint64_t now);
|
|
|
|
/**
|
|
* Presents a packet to the AQM scheduler.
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param network Network that the packet shall be sent over
|
|
* @param packet Packet to be sent
|
|
* @param encrypt Encrypt packet payload? (always true except for HELLO)
|
|
* @param qosBucket Which bucket the rule-system determined this packet should fall into
|
|
*/
|
|
void aqm_enqueue(void *tPtr, const SharedPtr<Network> &network, Packet &packet,bool encrypt,int qosBucket);
|
|
|
|
/**
|
|
* Performs a single AQM cycle and dequeues and transmits all eligible packets on all networks
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
*/
|
|
void aqm_dequeue(void *tPtr);
|
|
|
|
/**
|
|
* Calls the dequeue mechanism and adjust queue state variables
|
|
*
|
|
* @param q The TX queue that is being dequeued from
|
|
* @param isNew Whether or not this queue is in the NEW list
|
|
* @param now Current time
|
|
*/
|
|
Switch::TXQueueEntry * CoDelDequeue(ManagedQueue *q, bool isNew, uint64_t now);
|
|
|
|
/**
|
|
* Removes QoS Queues and flow state variables for a specific network. These queues are created
|
|
* automatically upon the transmission of the first packet from this peer to another peer on the
|
|
* given network.
|
|
*
|
|
* The reason for existence of queues and flow state variables specific to each network is so that
|
|
* each network's QoS rules function independently.
|
|
*
|
|
* @param nwid Network ID
|
|
*/
|
|
void removeNetworkQoSControlBlock(uint64_t nwid);
|
|
|
|
/**
|
|
* Send a packet to a ZeroTier address (destination in packet)
|
|
*
|
|
* The packet must be fully composed with source and destination but not
|
|
* yet encrypted. If the destination peer is known the packet
|
|
* is sent immediately. Otherwise it is queued and a WHOIS is dispatched.
|
|
*
|
|
* The packet may be compressed. Compression isn't done here.
|
|
*
|
|
* Needless to say, the packet's source must be this node. Otherwise it
|
|
* won't be encrypted right. (This is not used for relaying.)
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param packet Packet to send (buffer may be modified)
|
|
* @param encrypt Encrypt packet payload? (always true except for HELLO)
|
|
*/
|
|
void send(void *tPtr,Packet &packet,bool encrypt);
|
|
|
|
/**
|
|
* Request WHOIS on a given address
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param now Current time
|
|
* @param addr Address to look up
|
|
*/
|
|
void requestWhois(void *tPtr,const int64_t now,const Address &addr);
|
|
|
|
/**
|
|
* Run any processes that are waiting for this peer's identity
|
|
*
|
|
* Called when we learn of a peer's identity from HELLO, OK(WHOIS), etc.
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param peer New peer
|
|
*/
|
|
void doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer);
|
|
|
|
/**
|
|
* Perform retries and other periodic timer tasks
|
|
*
|
|
* This can return a very long delay if there are no pending timer
|
|
* tasks. The caller should cap this comparatively vs. other values.
|
|
*
|
|
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
|
* @param now Current time
|
|
* @return Number of milliseconds until doTimerTasks() should be run again
|
|
*/
|
|
unsigned long doTimerTasks(void *tPtr,int64_t now);
|
|
|
|
private:
|
|
bool _shouldUnite(const int64_t now,const Address &source,const Address &destination);
|
|
bool _trySend(void *tPtr,Packet &packet,bool encrypt); // packet is modified if return is true
|
|
|
|
const RuntimeEnvironment *const RR;
|
|
volatile int64_t _lastCheckedQueues;
|
|
|
|
// Time we last sent a WHOIS request for each address
|
|
Hashtable< Address,int64_t > _lastSentWhoisRequest;
|
|
Mutex _lastSentWhoisRequest_m;
|
|
|
|
// Packets waiting for WHOIS replies or other decode info or missing fragments
|
|
struct RXQueueEntry
|
|
{
|
|
RXQueueEntry() : timestamp(0) {}
|
|
volatile int64_t timestamp; // 0 if entry is not in use
|
|
volatile uint64_t packetId;
|
|
IncomingPacket frag0; // head of packet
|
|
Packet::Fragment frags[ZT_MAX_PACKET_FRAGMENTS - 1]; // later fragments (if any)
|
|
unsigned int totalFragments; // 0 if only frag0 received, waiting for frags
|
|
uint32_t haveFragments; // bit mask, LSB to MSB
|
|
volatile bool complete; // if true, packet is complete
|
|
Mutex lock;
|
|
};
|
|
RXQueueEntry _rxQueue[ZT_RX_QUEUE_SIZE];
|
|
AtomicCounter _rxQueuePtr;
|
|
|
|
// Returns matching or next available RX queue entry
|
|
ZT_ALWAYS_INLINE RXQueueEntry *_findRXQueueEntry(uint64_t packetId)
|
|
{
|
|
const unsigned int current = static_cast<unsigned int>(_rxQueuePtr.load());
|
|
for(unsigned int k=1;k<=ZT_RX_QUEUE_SIZE;++k) {
|
|
RXQueueEntry *rq = &(_rxQueue[(current - k) % ZT_RX_QUEUE_SIZE]);
|
|
if ((rq->packetId == packetId)&&(rq->timestamp))
|
|
return rq;
|
|
}
|
|
++_rxQueuePtr;
|
|
return &(_rxQueue[static_cast<unsigned int>(current) % ZT_RX_QUEUE_SIZE]);
|
|
}
|
|
|
|
// Returns current entry in rx queue ring buffer and increments ring pointer
|
|
ZT_ALWAYS_INLINE RXQueueEntry *_nextRXQueueEntry()
|
|
{
|
|
return &(_rxQueue[static_cast<unsigned int>((++_rxQueuePtr) - 1) % ZT_RX_QUEUE_SIZE]);
|
|
}
|
|
|
|
// ZeroTier-layer TX queue entry
|
|
struct TXQueueEntry
|
|
{
|
|
TXQueueEntry() {}
|
|
TXQueueEntry(Address d,uint64_t ct,const Packet &p,bool enc) :
|
|
dest(d),
|
|
creationTime(ct),
|
|
packet(p),
|
|
encrypt(enc) {}
|
|
|
|
Address dest;
|
|
uint64_t creationTime;
|
|
Packet packet; // unencrypted/unMAC'd packet -- this is done at send time
|
|
bool encrypt;
|
|
};
|
|
std::list< TXQueueEntry > _txQueue;
|
|
Mutex _txQueue_m;
|
|
Mutex _aqm_m;
|
|
|
|
// Tracks sending of VERB_RENDEZVOUS to relaying peers
|
|
struct _LastUniteKey
|
|
{
|
|
_LastUniteKey() : x(0),y(0) {}
|
|
_LastUniteKey(const Address &a1,const Address &a2)
|
|
{
|
|
if (a1 > a2) {
|
|
x = a2.toInt();
|
|
y = a1.toInt();
|
|
} else {
|
|
x = a1.toInt();
|
|
y = a2.toInt();
|
|
}
|
|
}
|
|
ZT_ALWAYS_INLINE unsigned long hashCode() const { return ((unsigned long)x ^ (unsigned long)y); }
|
|
ZT_ALWAYS_INLINE bool operator==(const _LastUniteKey &k) const { return ((x == k.x)&&(y == k.y)); }
|
|
ZT_ALWAYS_INLINE bool operator!=(const _LastUniteKey &k) const { return ((x != k.x)||(y != k.y)); }
|
|
uint64_t x,y;
|
|
};
|
|
Hashtable< _LastUniteKey,uint64_t > _lastUniteAttempt; // key is always sorted in ascending order, for set-like behavior
|
|
Mutex _lastUniteAttempt_m;
|
|
|
|
// Queue with additional flow state variables
|
|
struct ManagedQueue
|
|
{
|
|
ManagedQueue(int id) :
|
|
id(id),
|
|
byteCredit(ZT_QOS_QUANTUM),
|
|
byteLength(0),
|
|
dropping(false)
|
|
{}
|
|
int id;
|
|
int byteCredit;
|
|
int byteLength;
|
|
uint64_t first_above_time;
|
|
uint32_t count;
|
|
uint64_t drop_next;
|
|
bool dropping;
|
|
uint64_t drop_next_time;
|
|
std::list< TXQueueEntry *> q;
|
|
};
|
|
// To implement fq_codel we need to maintain a queue of queues
|
|
struct NetworkQoSControlBlock
|
|
{
|
|
int _currEnqueuedPackets;
|
|
std::vector<ManagedQueue *> newQueues;
|
|
std::vector<ManagedQueue *> oldQueues;
|
|
std::vector<ManagedQueue *> inactiveQueues;
|
|
};
|
|
std::map<uint64_t,NetworkQoSControlBlock*> _netQueueControlBlock;
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|