mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-04 12:14:09 +00:00
914 lines
32 KiB
C++
914 lines
32 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2015 ZeroTier, Inc.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#ifdef ZT_ENABLE_CLUSTER
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <list>
|
|
#include <stdexcept>
|
|
|
|
#include "../version.h"
|
|
|
|
#include "Cluster.hpp"
|
|
#include "RuntimeEnvironment.hpp"
|
|
#include "MulticastGroup.hpp"
|
|
#include "CertificateOfMembership.hpp"
|
|
#include "Salsa20.hpp"
|
|
#include "Poly1305.hpp"
|
|
#include "Identity.hpp"
|
|
#include "Topology.hpp"
|
|
#include "Packet.hpp"
|
|
#include "Switch.hpp"
|
|
#include "Node.hpp"
|
|
#include "Array.hpp"
|
|
|
|
namespace ZeroTier {
|
|
|
|
static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
|
|
throw()
|
|
{
|
|
double dx = ((double)x2 - (double)x1);
|
|
double dy = ((double)y2 - (double)y1);
|
|
double dz = ((double)z2 - (double)z1);
|
|
return sqrt((dx * dx) + (dy * dy) + (dz * dz));
|
|
}
|
|
|
|
// An entry in _ClusterSendQueue
|
|
struct _ClusterSendQueueEntry
|
|
{
|
|
uint64_t timestamp;
|
|
Address fromPeerAddress;
|
|
Address toPeerAddress;
|
|
// if we ever support larger transport MTUs this must be increased
|
|
unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
|
|
unsigned int len;
|
|
bool unite;
|
|
};
|
|
|
|
// A multi-index map with entry memory pooling -- this allows our queue to
|
|
// be O(log(N)) and is complex enough that it makes the code a lot cleaner
|
|
// to break it out from Cluster.
|
|
class _ClusterSendQueue
|
|
{
|
|
public:
|
|
_ClusterSendQueue() :
|
|
_poolCount(0) {}
|
|
~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
|
|
|
|
inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
|
|
{
|
|
if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
|
|
return;
|
|
|
|
Mutex::Lock _l(_lock);
|
|
|
|
// Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
|
|
{
|
|
std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
|
|
std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
|
|
unsigned long countForSender = 0;
|
|
while ((qi != _bySrc.end())&&(qi->first == from)) {
|
|
if (qi->second->timestamp < oldest->second->timestamp)
|
|
oldest = qi;
|
|
++countForSender;
|
|
++qi;
|
|
}
|
|
if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
|
|
_byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
|
|
_pool[_poolCount++] = oldest->second;
|
|
_bySrc.erase(oldest);
|
|
}
|
|
}
|
|
|
|
_ClusterSendQueueEntry *e;
|
|
if (_poolCount > 0) {
|
|
e = _pool[--_poolCount];
|
|
} else {
|
|
if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
|
|
return; // queue is totally full!
|
|
_chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
|
|
e = &(_chunks.back().data[0]);
|
|
for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
|
|
_pool[_poolCount++] = &(_chunks.back().data[i]);
|
|
}
|
|
|
|
e->timestamp = now;
|
|
e->fromPeerAddress = from;
|
|
e->toPeerAddress = to;
|
|
memcpy(e->data,data,len);
|
|
e->len = len;
|
|
e->unite = unite;
|
|
|
|
_bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
|
|
_byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
|
|
}
|
|
|
|
inline void expire(uint64_t now)
|
|
{
|
|
Mutex::Lock _l(_lock);
|
|
for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
|
|
if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
|
|
_byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
|
|
_pool[_poolCount++] = qi->second;
|
|
_bySrc.erase(qi++);
|
|
} else ++qi;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get and dequeue entries for a given destination address
|
|
*
|
|
* After use these entries must be returned with returnToPool()!
|
|
*
|
|
* @param dest Destination address
|
|
* @param results Array to fill with results
|
|
* @param maxResults Size of results[] in pointers
|
|
* @return Number of actual results returned
|
|
*/
|
|
inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
|
|
{
|
|
unsigned int count = 0;
|
|
Mutex::Lock _l(_lock);
|
|
std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
|
|
while ((qi != _byDest.end())&&(qi->first == dest)) {
|
|
_bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
|
|
results[count++] = qi->second;
|
|
if (count == maxResults)
|
|
break;
|
|
_byDest.erase(qi++);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* Return entries to pool after use
|
|
*
|
|
* @param entries Array of entries
|
|
* @param count Number of entries
|
|
*/
|
|
inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
|
|
{
|
|
Mutex::Lock _l(_lock);
|
|
for(unsigned int i=0;i<count;++i)
|
|
_pool[_poolCount++] = entries[i];
|
|
}
|
|
|
|
private:
|
|
std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
|
|
_ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
|
|
unsigned long _poolCount;
|
|
std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
|
|
std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
|
|
Mutex _lock;
|
|
};
|
|
|
|
Cluster::Cluster(
|
|
const RuntimeEnvironment *renv,
|
|
uint16_t id,
|
|
const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
|
|
int32_t x,
|
|
int32_t y,
|
|
int32_t z,
|
|
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
|
|
void *sendFunctionArg,
|
|
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
|
|
void *addressToLocationFunctionArg) :
|
|
RR(renv),
|
|
_sendQueue(new _ClusterSendQueue()),
|
|
_sendFunction(sendFunction),
|
|
_sendFunctionArg(sendFunctionArg),
|
|
_addressToLocationFunction(addressToLocationFunction),
|
|
_addressToLocationFunctionArg(addressToLocationFunctionArg),
|
|
_x(x),
|
|
_y(y),
|
|
_z(z),
|
|
_id(id),
|
|
_zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
|
|
_members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
|
|
_lastFlushed(0),
|
|
_lastCleanedRemotePeers(0),
|
|
_lastCleanedQueue(0)
|
|
{
|
|
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
|
|
|
|
// Generate master secret by hashing the secret from our Identity key pair
|
|
RR->identity.sha512PrivateKey(_masterSecret);
|
|
|
|
// Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
|
|
memcpy(stmp,_masterSecret,sizeof(stmp));
|
|
stmp[0] ^= Utils::hton(id);
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
memcpy(_key,stmp,sizeof(_key));
|
|
Utils::burn(stmp,sizeof(stmp));
|
|
}
|
|
|
|
Cluster::~Cluster()
|
|
{
|
|
Utils::burn(_masterSecret,sizeof(_masterSecret));
|
|
Utils::burn(_key,sizeof(_key));
|
|
delete [] _members;
|
|
delete _sendQueue;
|
|
}
|
|
|
|
void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
|
|
{
|
|
Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
|
|
{
|
|
// FORMAT: <[16] iv><[8] MAC><... data>
|
|
if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
|
|
return;
|
|
|
|
// 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
|
|
char keytmp[32];
|
|
memcpy(keytmp,_key,32);
|
|
for(int i=0;i<8;++i)
|
|
keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
|
|
Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
|
|
Utils::burn(keytmp,sizeof(keytmp));
|
|
|
|
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
|
|
char polykey[ZT_POLY1305_KEY_LEN];
|
|
memset(polykey,0,sizeof(polykey));
|
|
s20.encrypt12(polykey,polykey,sizeof(polykey));
|
|
|
|
// Compute 16-byte MAC
|
|
char mac[ZT_POLY1305_MAC_LEN];
|
|
Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
|
|
|
|
// Check first 8 bytes of MAC against 64-bit MAC in stream
|
|
if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
|
|
return;
|
|
|
|
// Decrypt!
|
|
dmsg.setSize(len - 24);
|
|
s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
|
|
}
|
|
|
|
if (dmsg.size() < 4)
|
|
return;
|
|
const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
|
|
unsigned int ptr = 2;
|
|
if (fromMemberId == _id) // sanity check: we don't talk to ourselves
|
|
return;
|
|
const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
|
|
ptr += 2;
|
|
if (toMemberId != _id) // sanity check: message not for us?
|
|
return;
|
|
|
|
{ // make sure sender is actually considered a member
|
|
Mutex::Lock _l3(_memberIds_m);
|
|
if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
|
|
return;
|
|
}
|
|
|
|
try {
|
|
while (ptr < dmsg.size()) {
|
|
const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
const unsigned int nextPtr = ptr + mlen;
|
|
if (nextPtr > dmsg.size())
|
|
break;
|
|
|
|
int mtype = -1;
|
|
try {
|
|
switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
|
|
default:
|
|
break;
|
|
|
|
case CLUSTER_MESSAGE_ALIVE: {
|
|
_Member &m = _members[fromMemberId];
|
|
Mutex::Lock mlck(m.lock);
|
|
ptr += 7; // skip version stuff, not used yet
|
|
m.x = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
m.y = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
m.z = dmsg.at<int32_t>(ptr); ptr += 4;
|
|
ptr += 8; // skip local clock, not used
|
|
m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
|
|
m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
|
|
ptr += 8; // skip flags, unused
|
|
#ifdef ZT_TRACE
|
|
std::string addrs;
|
|
#endif
|
|
unsigned int physicalAddressCount = dmsg[ptr++];
|
|
m.zeroTierPhysicalEndpoints.clear();
|
|
for(unsigned int i=0;i<physicalAddressCount;++i) {
|
|
m.zeroTierPhysicalEndpoints.push_back(InetAddress());
|
|
ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
|
|
if (!(m.zeroTierPhysicalEndpoints.back())) {
|
|
m.zeroTierPhysicalEndpoints.pop_back();
|
|
}
|
|
#ifdef ZT_TRACE
|
|
else {
|
|
if (addrs.length() > 0)
|
|
addrs.push_back(',');
|
|
addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
|
|
}
|
|
#endif
|
|
}
|
|
#ifdef ZT_TRACE
|
|
if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
|
|
TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
|
|
}
|
|
#endif
|
|
m.lastReceivedAliveAnnouncement = RR->node->now();
|
|
} break;
|
|
|
|
case CLUSTER_MESSAGE_HAVE_PEER: {
|
|
Identity id;
|
|
ptr += id.deserialize(dmsg,ptr);
|
|
if (id) {
|
|
RR->topology->saveIdentity(id);
|
|
|
|
{
|
|
Mutex::Lock _l(_remotePeers_m);
|
|
_remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
|
|
}
|
|
|
|
_ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
|
|
unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
|
|
for(unsigned int i=0;i<qc;++i)
|
|
this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
|
|
_sendQueue->returnToPool(q,qc);
|
|
|
|
TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
|
|
}
|
|
} break;
|
|
|
|
case CLUSTER_MESSAGE_WANT_PEER: {
|
|
const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
|
|
SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
|
|
if ( (peer) && (peer->hasClusterOptimalPath(RR->node->now())) ) {
|
|
Buffer<1024> buf;
|
|
peer->identity().serialize(buf);
|
|
Mutex::Lock _l2(_members[fromMemberId].lock);
|
|
_send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
|
|
}
|
|
} break;
|
|
|
|
case CLUSTER_MESSAGE_REMOTE_PACKET: {
|
|
const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
if (plen) {
|
|
Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
|
|
//TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
|
|
switch(remotep.verb()) {
|
|
case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
|
|
case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
|
|
default: break; // ignore things we don't care about across cluster
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case CLUSTER_MESSAGE_PROXY_UNITE: {
|
|
const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
|
|
const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
|
|
const unsigned int numRemotePeerPaths = dmsg[ptr++];
|
|
InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
|
|
for(unsigned int i=0;i<numRemotePeerPaths;++i)
|
|
ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
|
|
|
|
TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
|
|
|
|
const uint64_t now = RR->node->now();
|
|
SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
|
|
if ((localPeer)&&(numRemotePeerPaths > 0)) {
|
|
InetAddress bestLocalV4,bestLocalV6;
|
|
localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
|
|
|
|
InetAddress bestRemoteV4,bestRemoteV6;
|
|
for(unsigned int i=0;i<numRemotePeerPaths;++i) {
|
|
if ((bestRemoteV4)&&(bestRemoteV6))
|
|
break;
|
|
switch(remotePeerPaths[i].ss_family) {
|
|
case AF_INET:
|
|
if (!bestRemoteV4)
|
|
bestRemoteV4 = remotePeerPaths[i];
|
|
break;
|
|
case AF_INET6:
|
|
if (!bestRemoteV6)
|
|
bestRemoteV6 = remotePeerPaths[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
rendezvousForLocal.append((uint8_t)0);
|
|
remotePeerAddress.appendTo(rendezvousForLocal);
|
|
|
|
Buffer<2048> rendezvousForRemote;
|
|
remotePeerAddress.appendTo(rendezvousForRemote);
|
|
rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
|
|
rendezvousForRemote.addSize(2); // space for actual packet payload length
|
|
rendezvousForRemote.append((uint8_t)0); // flags == 0
|
|
localPeerAddress.appendTo(rendezvousForRemote);
|
|
|
|
bool haveMatch = false;
|
|
if ((bestLocalV6)&&(bestRemoteV6)) {
|
|
haveMatch = true;
|
|
|
|
rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
|
|
rendezvousForLocal.append((uint8_t)16);
|
|
rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
|
|
|
|
rendezvousForRemote.append((uint16_t)bestLocalV6.port());
|
|
rendezvousForRemote.append((uint8_t)16);
|
|
rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
|
|
rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
|
|
} else if ((bestLocalV4)&&(bestRemoteV4)) {
|
|
haveMatch = true;
|
|
|
|
rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
|
|
rendezvousForLocal.append((uint8_t)4);
|
|
rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
|
|
|
|
rendezvousForRemote.append((uint16_t)bestLocalV4.port());
|
|
rendezvousForRemote.append((uint8_t)4);
|
|
rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
|
|
rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
|
|
}
|
|
|
|
if (haveMatch) {
|
|
{
|
|
Mutex::Lock _l2(_members[fromMemberId].lock);
|
|
_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
|
|
}
|
|
RR->sw->send(rendezvousForLocal,true,0);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case CLUSTER_MESSAGE_PROXY_SEND: {
|
|
const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
|
|
const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
|
|
const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
|
|
Packet outp(rcpt,RR->identity.address(),verb);
|
|
outp.append(dmsg.field(ptr,len),len); ptr += len;
|
|
RR->sw->send(outp,true,0);
|
|
//TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
|
|
} break;
|
|
}
|
|
} catch ( ... ) {
|
|
TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
|
|
// drop invalids
|
|
}
|
|
|
|
ptr = nextPtr;
|
|
}
|
|
} catch ( ... ) {
|
|
TRACE("invalid message (outer loop), discarding");
|
|
// drop invalids
|
|
}
|
|
}
|
|
|
|
void Cluster::broadcastHavePeer(const Identity &id)
|
|
{
|
|
Buffer<1024> buf;
|
|
id.serialize(buf);
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
|
|
}
|
|
}
|
|
|
|
void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
|
|
{
|
|
if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
|
|
return;
|
|
|
|
const uint64_t now = RR->node->now();
|
|
|
|
uint64_t mostRecentTs = 0;
|
|
unsigned int mostRecentMemberId = 0xffffffff;
|
|
{
|
|
Mutex::Lock _l2(_remotePeers_m);
|
|
std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
|
|
for(;;) {
|
|
if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
|
|
break;
|
|
else if (rpe->second > mostRecentTs) {
|
|
mostRecentTs = rpe->second;
|
|
mostRecentMemberId = rpe->first.second;
|
|
}
|
|
++rpe;
|
|
}
|
|
}
|
|
|
|
const uint64_t age = now - mostRecentTs;
|
|
if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
|
|
const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));
|
|
|
|
// Poll everyone with WANT_PEER if the age of our most recent entry is
|
|
// approaching expiration (or has expired, or does not exist).
|
|
char tmp[ZT_ADDRESS_LENGTH];
|
|
toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
|
|
}
|
|
}
|
|
|
|
// If there isn't a good place to send via, then enqueue this for retrying
|
|
// later and return after having broadcasted a WANT_PEER.
|
|
if (enqueueAndWait) {
|
|
TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
|
|
_sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Buffer<1024> buf;
|
|
if (unite) {
|
|
InetAddress v4,v6;
|
|
if (fromPeerAddress) {
|
|
SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
|
|
if (fromPeer)
|
|
fromPeer->getBestActiveAddresses(now,v4,v6);
|
|
}
|
|
uint8_t addrCount = 0;
|
|
if (v4)
|
|
++addrCount;
|
|
if (v6)
|
|
++addrCount;
|
|
if (addrCount) {
|
|
toPeerAddress.appendTo(buf);
|
|
fromPeerAddress.appendTo(buf);
|
|
buf.append(addrCount);
|
|
if (v4)
|
|
v4.serialize(buf);
|
|
if (v6)
|
|
v6.serialize(buf);
|
|
}
|
|
}
|
|
|
|
{
|
|
Mutex::Lock _l2(_members[mostRecentMemberId].lock);
|
|
if (buf.size() > 0)
|
|
_send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
|
|
if (_members[mostRecentMemberId].zeroTierPhysicalEndpoints.size() > 0) {
|
|
TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
|
|
RR->node->putPacket(InetAddress(),_members[mostRecentMemberId].zeroTierPhysicalEndpoints.front(),data,len);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::sendDistributedQuery(const Packet &pkt)
|
|
{
|
|
Buffer<4096> buf;
|
|
buf.append((uint16_t)pkt.size());
|
|
buf.append(pkt.data(),pkt.size());
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
_send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
|
|
}
|
|
}
|
|
|
|
void Cluster::doPeriodicTasks()
|
|
{
|
|
const uint64_t now = RR->node->now();
|
|
|
|
if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
|
|
_lastFlushed = now;
|
|
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
Mutex::Lock _l2(_members[*mid].lock);
|
|
|
|
if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
|
|
_members[*mid].lastAnnouncedAliveTo = now;
|
|
|
|
Buffer<2048> alive;
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
|
|
alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
|
|
alive.append((uint8_t)ZT_PROTO_VERSION);
|
|
if (_addressToLocationFunction) {
|
|
alive.append((int32_t)_x);
|
|
alive.append((int32_t)_y);
|
|
alive.append((int32_t)_z);
|
|
} else {
|
|
alive.append((int32_t)0);
|
|
alive.append((int32_t)0);
|
|
alive.append((int32_t)0);
|
|
}
|
|
alive.append((uint64_t)now);
|
|
alive.append((uint64_t)0); // TODO: compute and send load average
|
|
alive.append((uint64_t)RR->topology->countActive(now));
|
|
alive.append((uint64_t)0); // unused/reserved flags
|
|
alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
|
|
for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
|
|
pe->serialize(alive);
|
|
_send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
|
|
}
|
|
|
|
_flush(*mid);
|
|
}
|
|
}
|
|
|
|
if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
|
|
_lastCleanedRemotePeers = now;
|
|
|
|
Mutex::Lock _l(_remotePeers_m);
|
|
for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
|
|
if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
|
|
_remotePeers.erase(rp++);
|
|
else ++rp;
|
|
}
|
|
}
|
|
|
|
if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
|
|
_lastCleanedQueue = now;
|
|
_sendQueue->expire(now);
|
|
}
|
|
}
|
|
|
|
void Cluster::addMember(uint16_t memberId)
|
|
{
|
|
if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
|
|
return;
|
|
|
|
Mutex::Lock _l2(_members[memberId].lock);
|
|
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
|
|
return;
|
|
_memberIds.push_back(memberId);
|
|
std::sort(_memberIds.begin(),_memberIds.end());
|
|
}
|
|
|
|
_members[memberId].clear();
|
|
|
|
// Generate this member's message key from the master and its ID
|
|
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
|
|
memcpy(stmp,_masterSecret,sizeof(stmp));
|
|
stmp[0] ^= Utils::hton(memberId);
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
SHA512::hash(stmp,stmp,sizeof(stmp));
|
|
memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
|
|
Utils::burn(stmp,sizeof(stmp));
|
|
|
|
// Prepare q
|
|
_members[memberId].q.clear();
|
|
char iv[16];
|
|
Utils::getSecureRandom(iv,16);
|
|
_members[memberId].q.append(iv,16);
|
|
_members[memberId].q.addSize(8); // room for MAC
|
|
_members[memberId].q.append((uint16_t)_id);
|
|
_members[memberId].q.append((uint16_t)memberId);
|
|
}
|
|
|
|
void Cluster::removeMember(uint16_t memberId)
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
std::vector<uint16_t> newMemberIds;
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
if (*mid != memberId)
|
|
newMemberIds.push_back(*mid);
|
|
}
|
|
_memberIds = newMemberIds;
|
|
}
|
|
|
|
bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
|
|
{
|
|
if (_addressToLocationFunction) {
|
|
// Pick based on location if it can be determined
|
|
int px = 0,py = 0,pz = 0;
|
|
if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
|
|
TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
|
|
return false;
|
|
}
|
|
|
|
// Find member closest to this peer
|
|
const uint64_t now = RR->node->now();
|
|
std::vector<InetAddress> best;
|
|
const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
|
|
double bestDistance = (offload ? 2147483648.0 : currentDistance);
|
|
unsigned int bestMember = _id;
|
|
{
|
|
Mutex::Lock _l(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
_Member &m = _members[*mid];
|
|
Mutex::Lock _ml(m.lock);
|
|
|
|
// Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
|
|
if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
|
|
const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
|
|
if (mdist < bestDistance) {
|
|
bestDistance = mdist;
|
|
bestMember = *mid;
|
|
best = m.zeroTierPhysicalEndpoints;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
|
|
for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
|
|
if (a->ss_family == peerPhysicalAddress.ss_family) {
|
|
TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
|
|
redirectTo = *a;
|
|
return true;
|
|
}
|
|
}
|
|
TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
|
|
return false;
|
|
} else {
|
|
// TODO: pick based on load if no location info?
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Cluster::status(ZT_ClusterStatus &status) const
|
|
{
|
|
const uint64_t now = RR->node->now();
|
|
memset(&status,0,sizeof(ZT_ClusterStatus));
|
|
|
|
status.myId = _id;
|
|
|
|
{
|
|
ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
|
|
s->id = _id;
|
|
s->alive = 1;
|
|
s->x = _x;
|
|
s->y = _y;
|
|
s->z = _z;
|
|
s->load = 0; // TODO
|
|
s->peers = RR->topology->countActive(now);
|
|
for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
|
|
if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
|
|
break;
|
|
memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
|
|
}
|
|
}
|
|
|
|
{
|
|
Mutex::Lock _l1(_memberIds_m);
|
|
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
|
|
if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
|
|
break;
|
|
|
|
_Member &m = _members[*mid];
|
|
Mutex::Lock ml(m.lock);
|
|
|
|
ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
|
|
s->id = *mid;
|
|
s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
|
|
s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
|
|
s->x = m.x;
|
|
s->y = m.y;
|
|
s->z = m.z;
|
|
s->load = m.load;
|
|
s->peers = m.peers;
|
|
for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
|
|
if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
|
|
break;
|
|
memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
|
|
{
|
|
if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
|
|
return;
|
|
_Member &m = _members[memberId];
|
|
// assumes m.lock is locked!
|
|
if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
|
|
_flush(memberId);
|
|
m.q.append((uint16_t)(len + 1));
|
|
m.q.append((uint8_t)type);
|
|
m.q.append(msg,len);
|
|
}
|
|
|
|
void Cluster::_flush(uint16_t memberId)
|
|
{
|
|
_Member &m = _members[memberId];
|
|
// assumes m.lock is locked!
|
|
if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
|
|
// Create key from member's key and IV
|
|
char keytmp[32];
|
|
memcpy(keytmp,m.key,32);
|
|
for(int i=0;i<8;++i)
|
|
keytmp[i] ^= m.q[i];
|
|
Salsa20 s20(keytmp,256,m.q.field(8,8));
|
|
Utils::burn(keytmp,sizeof(keytmp));
|
|
|
|
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
|
|
char polykey[ZT_POLY1305_KEY_LEN];
|
|
memset(polykey,0,sizeof(polykey));
|
|
s20.encrypt12(polykey,polykey,sizeof(polykey));
|
|
|
|
// Encrypt m.q in place
|
|
s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
|
|
|
|
// Add MAC for authentication (encrypt-then-MAC)
|
|
char mac[ZT_POLY1305_MAC_LEN];
|
|
Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
|
|
memcpy(m.q.field(16,8),mac,8);
|
|
|
|
// Send!
|
|
_sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
|
|
|
|
// Prepare for more
|
|
m.q.clear();
|
|
char iv[16];
|
|
Utils::getSecureRandom(iv,16);
|
|
m.q.append(iv,16);
|
|
m.q.addSize(8); // room for MAC
|
|
m.q.append((uint16_t)_id); // from member ID
|
|
m.q.append((uint16_t)memberId); // to member ID
|
|
}
|
|
}
|
|
|
|
void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
|
|
{
|
|
if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
|
|
Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
|
|
if (queried) {
|
|
Buffer<1024> routp;
|
|
remotep.source().appendTo(routp);
|
|
routp.append((uint8_t)Packet::VERB_OK);
|
|
routp.addSize(2); // space for length
|
|
routp.append((uint8_t)Packet::VERB_WHOIS);
|
|
routp.append(remotep.packetId());
|
|
queried.serialize(routp);
|
|
routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
|
|
|
|
TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
|
|
Mutex::Lock _l2(_members[fromMemberId].lock);
|
|
_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
|
|
{
|
|
const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
|
|
const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
|
|
unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
|
|
const Address remotePeerAddress(remotep.source());
|
|
|
|
if (gatherLimit) {
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
|
|
remotePeerAddress.appendTo(routp);
|
|
routp.append((uint8_t)Packet::VERB_OK);
|
|
routp.addSize(2); // space for length
|
|
routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
|
|
routp.append(remotep.packetId());
|
|
routp.append(nwid);
|
|
mg.mac().appendTo(routp);
|
|
routp.append((uint32_t)mg.adi());
|
|
|
|
if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
|
|
gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
|
|
if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
|
|
routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
|
|
|
|
TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
|
|
Mutex::Lock _l2(_members[fromMemberId].lock);
|
|
_send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif // ZT_ENABLE_CLUSTER
|