ZeroTierOne/ext/vsdm/vsdm.hpp

1492 lines
46 KiB
C++

/*
* VSDM: Very Simple Distributed Map
*
* (c)2017 ZeroTier, Inc.
* Written by Adam Ierymenko <adam.ierymenko@zerotier.com>
* License: MIT
*/
#ifndef ZT_VSDM_HPP__
#define ZT_VSDM_HPP__
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#if defined(_WIN32) || defined(_WIN64)
#include <WinSock2.h>
#include <WS2tcpip.h>
#include <Windows.h>
#define ZT_PHY_SOCKFD_TYPE SOCKET
#define ZT_PHY_SOCKFD_NULL (INVALID_SOCKET)
#define ZT_PHY_SOCKFD_VALID(s) ((s) != INVALID_SOCKET)
#define ZT_PHY_CLOSE_SOCKET(s) ::closesocket(s)
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
#define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
#else // not Windows
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#define ZT_PHY_SOCKFD_TYPE int
#define ZT_PHY_SOCKFD_NULL (-1)
#define ZT_PHY_SOCKFD_VALID(s) ((s) > -1)
#define ZT_PHY_CLOSE_SOCKET(s) ::close(s)
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
#define ZT_PHY_MAX_INTERCEPTS ZT_PHY_MAX_SOCKETS
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
#endif
#include <string>
#include <queue>
#include <unordered_map>
#include <thread>
#include <mutex>
#include <list>
#include <stdexcept>
#include <vector>
#include <functional>
/*********************************************************************************************************/
namespace ztVsdmInternal {
/* This is the Phy<> adapter implementation for selected sockets from ZeroTier One.
* It should build and run out of the box on Windows and most *nix systems. Parts
* not used by VSDM have been removed. */
typedef void PhySocket;
template <typename HANDLER_PTR_TYPE>
class Phy
{
private:
HANDLER_PTR_TYPE _handler;
enum PhySocketType
{
ZT_PHY_SOCKET_CLOSED = 0x00, // socket is closed, will be removed on next poll()
ZT_PHY_SOCKET_TCP_OUT_PENDING = 0x01,
ZT_PHY_SOCKET_TCP_OUT_CONNECTED = 0x02,
ZT_PHY_SOCKET_TCP_IN = 0x03,
ZT_PHY_SOCKET_TCP_LISTEN = 0x04,
ZT_PHY_SOCKET_UDP = 0x05,
ZT_PHY_SOCKET_FD = 0x06,
ZT_PHY_SOCKET_UNIX_IN = 0x07,
ZT_PHY_SOCKET_UNIX_LISTEN = 0x08
};
struct PhySocketImpl
{
PhySocketType type;
ZT_PHY_SOCKFD_TYPE sock;
void *uptr; // user-settable pointer
ZT_PHY_SOCKADDR_STORAGE_TYPE saddr; // remote for TCP_OUT and TCP_IN, local for TCP_LISTEN, RAW, and UDP
};
std::list<PhySocketImpl> _socks;
fd_set _readfds;
fd_set _writefds;
#if defined(_WIN32) || defined(_WIN64)
fd_set _exceptfds;
#endif
long _nfds;
ZT_PHY_SOCKFD_TYPE _whackReceiveSocket;
ZT_PHY_SOCKFD_TYPE _whackSendSocket;
bool _noDelay;
bool _noCheck;
public:
/**
* @param handler Pointer of type HANDLER_PTR_TYPE to handler
* @param noDelay If true, disable TCP NAGLE algorithm on TCP sockets
* @param noCheck If true, attempt to set UDP SO_NO_CHECK option to disable sending checksums
*/
Phy(HANDLER_PTR_TYPE handler,bool noDelay,bool noCheck) :
_handler(handler)
{
FD_ZERO(&_readfds);
FD_ZERO(&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_ZERO(&_exceptfds);
SOCKET pipes[2];
{ // hack copied from StackOverflow, behaves a bit like pipe() on *nix systems
struct sockaddr_in inaddr;
struct sockaddr addr;
SOCKET lst=::socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);
if (lst == INVALID_SOCKET)
throw std::runtime_error("unable to create pipes for select() abort");
memset(&inaddr, 0, sizeof(inaddr));
memset(&addr, 0, sizeof(addr));
inaddr.sin_family = AF_INET;
inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
inaddr.sin_port = 0;
int yes=1;
setsockopt(lst,SOL_SOCKET,SO_REUSEADDR,(char*)&yes,sizeof(yes));
bind(lst,(struct sockaddr *)&inaddr,sizeof(inaddr));
listen(lst,1);
int len=sizeof(inaddr);
getsockname(lst, &addr,&len);
pipes[0]=::socket(AF_INET, SOCK_STREAM,0);
if (pipes[0] == INVALID_SOCKET)
throw std::runtime_error("unable to create pipes for select() abort");
connect(pipes[0],&addr,len);
pipes[1]=accept(lst,0,0);
closesocket(lst);
}
#else // not Windows
int pipes[2];
if (::pipe(pipes))
throw std::runtime_error("unable to create pipes for select() abort");
#endif // Windows or not
_nfds = (pipes[0] > pipes[1]) ? (long)pipes[0] : (long)pipes[1];
_whackReceiveSocket = pipes[0];
_whackSendSocket = pipes[1];
_noDelay = noDelay;
_noCheck = noCheck;
}
~Phy()
{
for(typename std::list<PhySocketImpl>::const_iterator s(_socks.begin());s!=_socks.end();++s) {
if (s->type != ZT_PHY_SOCKET_CLOSED)
this->close((PhySocket *)&(*s),true);
}
ZT_PHY_CLOSE_SOCKET(_whackReceiveSocket);
ZT_PHY_CLOSE_SOCKET(_whackSendSocket);
}
/**
* @param s Socket object
* @return Underlying OS-type (usually int or long) file descriptor associated with object
*/
static inline ZT_PHY_SOCKFD_TYPE getDescriptor(PhySocket *s) throw() { return reinterpret_cast<PhySocketImpl *>(s)->sock; }
/**
* @param s Socket object
* @return Pointer to user object
*/
static inline void** getuptr(PhySocket *s) throw() { return &(reinterpret_cast<PhySocketImpl *>(s)->uptr); }
/**
* Cause poll() to stop waiting immediately
*
* This can be used to reset the polling loop after changes that require
* attention, or to shut down a background thread that is waiting, etc.
*/
inline void whack()
{
#if defined(_WIN32) || defined(_WIN64)
::send(_whackSendSocket,(const char *)this,1,0);
#else
(void)(::write(_whackSendSocket,(PhySocket *)this,1));
#endif
}
/**
* @return Number of open sockets
*/
inline unsigned long count() const throw() { return _socks.size(); }
/**
* @return Maximum number of sockets allowed
*/
inline unsigned long maxCount() const throw() { return ZT_PHY_MAX_SOCKETS; }
/**
* Bind a local listen socket to listen for new TCP connections
*
* @param localAddress Local address and port
* @param uptr Initial value of uptr for new socket (default: NULL)
* @return Socket or NULL on failure to bind
*/
inline PhySocket *tcpListen(const struct sockaddr *localAddress,void *uptr = (void *)0)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_STREAM,0);
if (!ZT_PHY_SOCKFD_VALID(s))
return (PhySocket *)0;
#if defined(_WIN32) || defined(_WIN64)
{
BOOL f;
f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
u_long iMode=1;
ioctlsocket(s,FIONBIO,&iMode);
}
#else
{
int f;
f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
fcntl(s,F_SETFL,O_NONBLOCK);
}
#endif
if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
if (::listen(s,1024)) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_TCP_LISTEN;
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
return (PhySocket *)&sws;
}
/**
* Start a non-blocking connect; CONNECT handler is called on success or failure
*
* A return value of NULL indicates a synchronous failure such as a
* failure to open a socket. The TCP connection handler is not called
* in this case.
*
* It is possible on some platforms for an "instant connect" to occur,
* such as when connecting to a loopback address. In this case, the
* 'connected' result parameter will be set to 'true' and if the
* 'callConnectHandler' flag is true (the default) the TCP connect
* handler will be called before the function returns.
*
* These semantics can be a bit confusing, but they're less so than
* the underlying semantics of asynchronous TCP connect.
*
* @param remoteAddress Remote address
* @param connected Result parameter: set to whether an "instant connect" has occurred (true if yes)
* @param uptr Initial value of uptr for new socket (default: NULL)
* @param callConnectHandler If true, call TCP connect handler even if result is known before function exit (default: true)
* @return New socket or NULL on failure
*/
inline PhySocket *tcpConnect(const struct sockaddr *remoteAddress,bool &connected,void *uptr = (void *)0,bool callConnectHandler = true)
{
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
return (PhySocket *)0;
ZT_PHY_SOCKFD_TYPE s = ::socket(remoteAddress->sa_family,SOCK_STREAM,0);
if (!ZT_PHY_SOCKFD_VALID(s)) {
connected = false;
return (PhySocket *)0;
}
#if defined(_WIN32) || defined(_WIN64)
{
BOOL f;
if (remoteAddress->sa_family == AF_INET6) { f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f)); }
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
u_long iMode=1;
ioctlsocket(s,FIONBIO,&iMode);
}
#else
{
int f;
if (remoteAddress->sa_family == AF_INET6) { f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f)); }
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
fcntl(s,F_SETFL,O_NONBLOCK);
}
#endif
connected = true;
if (::connect(s,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
connected = false;
#if defined(_WIN32) || defined(_WIN64)
if (WSAGetLastError() != WSAEWOULDBLOCK) {
#else
if (errno != EINPROGRESS) {
#endif
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
} // else connection is proceeding asynchronously...
}
try {
_socks.push_back(PhySocketImpl());
} catch ( ... ) {
ZT_PHY_CLOSE_SOCKET(s);
return (PhySocket *)0;
}
PhySocketImpl &sws = _socks.back();
if ((long)s > _nfds)
_nfds = (long)s;
if (connected) {
FD_SET(s,&_readfds);
sws.type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
} else {
FD_SET(s,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_SET(s,&_exceptfds);
#endif
sws.type = ZT_PHY_SOCKET_TCP_OUT_PENDING;
}
sws.sock = s;
sws.uptr = uptr;
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
memcpy(&(sws.saddr),remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
if ((callConnectHandler)&&(connected)) {
try {
_handler->phyOnTcpConnect((PhySocket *)&sws,&(sws.uptr),true);
} catch ( ... ) {}
}
return (PhySocket *)&sws;
}
/**
* Attempt to send data to a stream socket (non-blocking)
*
* If -1 is returned, the socket should no longer be used as it is now
* destroyed. If callCloseHandler is true, the close handler will be
* called before the function returns.
*
* This can be used with TCP, Unix, or socket pair sockets.
*
* @param sock An open stream socket (other socket types will fail)
* @param data Data to send
* @param len Length of data
* @param callCloseHandler If true, call close handler on socket closing failure condition (default: true)
* @return Number of bytes actually sent or -1 on fatal error (socket closure)
*/
inline long streamSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler = true)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
#if defined(_WIN32) || defined(_WIN64)
long n = (long)::send(sws.sock,reinterpret_cast<const char *>(data),len,0);
if (n == SOCKET_ERROR) {
switch(WSAGetLastError()) {
case WSAEINTR:
case WSAEWOULDBLOCK:
return 0;
default:
this->close(sock,callCloseHandler);
return -1;
}
}
#else // not Windows
long n = (long)::send(sws.sock,data,len,0);
if (n < 0) {
switch(errno) {
#ifdef EAGAIN
case EAGAIN:
#endif
#if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) )
case EWOULDBLOCK:
#endif
#ifdef EINTR
case EINTR:
#endif
return 0;
default:
this->close(sock,callCloseHandler);
return -1;
}
}
#endif // Windows or not
return n;
}
/**
* For streams, sets whether we want to be notified that the socket is writable
*
* This can be used with TCP, Unix, or socket pair sockets.
*
* Call whack() if this is being done from another thread and you want
* it to take effect immediately. Otherwise it is only guaranteed to
* take effect on the next poll().
*
* @param sock Stream connection socket
* @param notifyWritable Want writable notifications?
*/
inline const void setNotifyWritable(PhySocket *sock,bool notifyWritable)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (notifyWritable) {
FD_SET(sws.sock,&_writefds);
} else {
FD_CLR(sws.sock,&_writefds);
}
}
/**
* Set whether we want to be notified that a socket is readable
*
* This is primarily for raw sockets added with wrapSocket(). It could be
* used with others, but doing so would essentially lock them and prevent
* data from being read from them until this is set to 'true' again.
*
* @param sock Socket to modify
* @param notifyReadable True if socket should be monitored for readability
*/
inline const void setNotifyReadable(PhySocket *sock,bool notifyReadable)
{
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (notifyReadable) {
FD_SET(sws.sock,&_readfds);
} else {
FD_CLR(sws.sock,&_readfds);
}
}
/**
* Wait for activity and handle one or more events
*
* Note that this is not guaranteed to wait up to 'timeout' even
* if nothing happens, as whack() or other events such as signals
* may cause premature termination.
*
* @param timeout Timeout in milliseconds or 0 for none (forever)
*/
inline void poll(unsigned long timeout)
{
char buf[131072];
struct sockaddr_storage ss;
struct timeval tv;
fd_set rfds,wfds,efds;
memcpy(&rfds,&_readfds,sizeof(rfds));
memcpy(&wfds,&_writefds,sizeof(wfds));
#if defined(_WIN32) || defined(_WIN64)
memcpy(&efds,&_exceptfds,sizeof(efds));
#else
FD_ZERO(&efds);
#endif
tv.tv_sec = (long)(timeout / 1000);
tv.tv_usec = (long)((timeout % 1000) * 1000);
if (::select((int)_nfds + 1,&rfds,&wfds,&efds,(timeout > 0) ? &tv : (struct timeval *)0) <= 0)
return;
if (FD_ISSET(_whackReceiveSocket,&rfds)) {
char tmp[16];
#if defined(_WIN32) || defined(_WIN64)
::recv(_whackReceiveSocket,tmp,16,0);
#else
::read(_whackReceiveSocket,tmp,16);
#endif
}
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();) {
switch (s->type) {
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
#if defined(_WIN32) || defined(_WIN64)
if (FD_ISSET(s->sock,&efds)) {
this->close((PhySocket *)&(*s),true);
} else // ... if
#endif
if (FD_ISSET(s->sock,&wfds)) {
socklen_t slen = sizeof(ss);
if (::getpeername(s->sock,(struct sockaddr *)&ss,&slen) != 0) {
this->close((PhySocket *)&(*s),true);
} else {
s->type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
FD_SET(s->sock,&_readfds);
FD_CLR(s->sock,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_CLR(s->sock,&_exceptfds);
#endif
try {
_handler->phyOnTcpConnect((PhySocket *)&(*s),&(s->uptr),true);
} catch ( ... ) {}
}
}
break;
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
case ZT_PHY_SOCKET_TCP_IN: {
ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable
if (FD_ISSET(sock,&rfds)) {
long n = (long)::recv(sock,buf,sizeof(buf),0);
if (n <= 0) {
this->close((PhySocket *)&(*s),true);
} else {
try {
_handler->phyOnTcpData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n);
} catch ( ... ) {}
}
}
if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) {
try {
_handler->phyOnTcpWritable((PhySocket *)&(*s),&(s->uptr));
} catch ( ... ) {}
}
} break;
case ZT_PHY_SOCKET_TCP_LISTEN:
if (FD_ISSET(s->sock,&rfds)) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen);
if (ZT_PHY_SOCKFD_VALID(newSock)) {
if (_socks.size() >= ZT_PHY_MAX_SOCKETS) {
ZT_PHY_CLOSE_SOCKET(newSock);
} else {
#if defined(_WIN32) || defined(_WIN64)
{ BOOL f = (_noDelay ? TRUE : FALSE); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
{ u_long iMode=1; ioctlsocket(newSock,FIONBIO,&iMode); }
#else
{ int f = (_noDelay ? 1 : 0); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
fcntl(newSock,F_SETFL,O_NONBLOCK);
#endif
_socks.push_back(PhySocketImpl());
PhySocketImpl &sws = _socks.back();
FD_SET(newSock,&_readfds);
if ((long)newSock > _nfds)
_nfds = (long)newSock;
sws.type = ZT_PHY_SOCKET_TCP_IN;
sws.sock = newSock;
sws.uptr = (void *)0;
memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage));
try {
_handler->phyOnTcpAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr),(const struct sockaddr *)&(sws.saddr));
} catch ( ... ) {}
}
}
}
break;
case ZT_PHY_SOCKET_UDP:
if (FD_ISSET(s->sock,&rfds)) {
for(;;) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
long n = (long)::recvfrom(s->sock,buf,sizeof(buf),0,(struct sockaddr *)&ss,&slen);
if (n > 0) {
try {
_handler->phyOnDatagram((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&(s->saddr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n);
} catch ( ... ) {}
} else if (n < 0)
break;
}
}
break;
case ZT_PHY_SOCKET_UNIX_IN: {
#ifdef __UNIX_LIKE__
ZT_PHY_SOCKFD_TYPE sock = s->sock; // if closed, s->sock becomes invalid as s is no longer dereferencable
if ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds))) {
try {
_handler->phyOnUnixWritable((PhySocket *)&(*s),&(s->uptr),false);
} catch ( ... ) {}
}
if (FD_ISSET(sock,&rfds)) {
long n = (long)::read(sock,buf,sizeof(buf));
if (n <= 0) {
this->close((PhySocket *)&(*s),true);
} else {
try {
_handler->phyOnUnixData((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n);
} catch ( ... ) {}
}
}
#endif // __UNIX_LIKE__
} break;
case ZT_PHY_SOCKET_UNIX_LISTEN:
#ifdef __UNIX_LIKE__
if (FD_ISSET(s->sock,&rfds)) {
memset(&ss,0,sizeof(ss));
socklen_t slen = sizeof(ss);
ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen);
if (ZT_PHY_SOCKFD_VALID(newSock)) {
if (_socks.size() >= ZT_PHY_MAX_SOCKETS) {
ZT_PHY_CLOSE_SOCKET(newSock);
} else {
fcntl(newSock,F_SETFL,O_NONBLOCK);
_socks.push_back(PhySocketImpl());
PhySocketImpl &sws = _socks.back();
FD_SET(newSock,&_readfds);
if ((long)newSock > _nfds)
_nfds = (long)newSock;
sws.type = ZT_PHY_SOCKET_UNIX_IN;
sws.sock = newSock;
sws.uptr = (void *)0;
memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage));
try {
//_handler->phyOnUnixAccept((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr));
} catch ( ... ) {}
}
}
}
#endif // __UNIX_LIKE__
break;
case ZT_PHY_SOCKET_FD: {
ZT_PHY_SOCKFD_TYPE sock = s->sock;
const bool readable = ((FD_ISSET(sock,&rfds))&&(FD_ISSET(sock,&_readfds)));
const bool writable = ((FD_ISSET(sock,&wfds))&&(FD_ISSET(sock,&_writefds)));
if ((readable)||(writable)) {
try {
//_handler->phyOnFileDescriptorActivity((PhySocket *)&(*s),&(s->uptr),readable,writable);
} catch ( ... ) {}
}
} break;
default:
break;
}
if (s->type == ZT_PHY_SOCKET_CLOSED)
_socks.erase(s++);
else ++s;
}
}
/**
* @param sock Socket to close
* @param callHandlers If true, call handlers for TCP connect (success: false) or close (default: true)
*/
inline void close(PhySocket *sock,bool callHandlers = true)
{
if (!sock)
return;
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
if (sws.type == ZT_PHY_SOCKET_CLOSED)
return;
FD_CLR(sws.sock,&_readfds);
FD_CLR(sws.sock,&_writefds);
#if defined(_WIN32) || defined(_WIN64)
FD_CLR(sws.sock,&_exceptfds);
#endif
if (sws.type != ZT_PHY_SOCKET_FD)
ZT_PHY_CLOSE_SOCKET(sws.sock);
#ifdef __UNIX_LIKE__
if (sws.type == ZT_PHY_SOCKET_UNIX_LISTEN)
::unlink(((struct sockaddr_un *)(&(sws.saddr)))->sun_path);
#endif // __UNIX_LIKE__
if (callHandlers) {
switch(sws.type) {
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
try {
_handler->phyOnTcpConnect(sock,&(sws.uptr),false);
} catch ( ... ) {}
break;
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
case ZT_PHY_SOCKET_TCP_IN:
try {
_handler->phyOnTcpClose(sock,&(sws.uptr));
} catch ( ... ) {}
break;
case ZT_PHY_SOCKET_UNIX_IN:
#ifdef __UNIX_LIKE__
try {
_handler->phyOnUnixClose(sock,&(sws.uptr));
} catch ( ... ) {}
#endif // __UNIX_LIKE__
break;
default:
break;
}
}
// Causes entry to be deleted from list in poll(), ignored elsewhere
sws.type = ZT_PHY_SOCKET_CLOSED;
if ((long)sws.sock >= (long)_nfds) {
long nfds = (long)_whackSendSocket;
if ((long)_whackReceiveSocket > nfds)
nfds = (long)_whackReceiveSocket;
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();++s) {
if ((s->type != ZT_PHY_SOCKET_CLOSED)&&((long)s->sock > nfds))
nfds = (long)s->sock;
}
_nfds = nfds;
}
}
};
static inline uint64_t _swap64(const uint64_t n)
{
return (
((n & 0x00000000000000FFULL) << 56) |
((n & 0x000000000000FF00ULL) << 40) |
((n & 0x0000000000FF0000ULL) << 24) |
((n & 0x00000000FF000000ULL) << 8) |
((n & 0x000000FF00000000ULL) >> 8) |
((n & 0x0000FF0000000000ULL) >> 24) |
((n & 0x00FF000000000000ULL) >> 40) |
((n & 0xFF00000000000000ULL) >> 56)
);
}
} // namespace ztVsdmInternal
/*********************************************************************************************************/
/**
* No-op update watcher
*/
class vsdm_watcher_noop
{
public:
template<typename K,typename V>
inline void add(uint64_t,const K &k,const V &v,uint64_t) {}
template<typename K,typename V>
inline void update(uint64_t,const K &k,const V &v,uint64_t) {}
template<typename K>
inline void del(uint64_t,const K &k) {}
};
/**
* No-op cryptor that adds no overhead and does no encryption
*/
class vsdm_cryptor_noop
{
public:
static inline unsigned long overhead() { return 0; }
inline void encrypt(void *d,unsigned long l) {}
inline bool decrypt(void *d,unsigned long l) { return true; }
};
/**
* Default serializer supporting std::string and stdint.h types
*/
class vsdm_default_serializer
{
public:
static inline unsigned long objectSize(const std::string &o) { return o.length(); }
static inline unsigned long objectSize(const uint8_t o) { return 1; }
static inline unsigned long objectSize(const int8_t o) { return 1; }
static inline unsigned long objectSize(const uint16_t o) { return 2; }
static inline unsigned long objectSize(const int16_t o) { return 2; }
static inline unsigned long objectSize(const uint32_t o) { return 4; }
static inline unsigned long objectSize(const int32_t o) { return 4; }
static inline unsigned long objectSize(const uint64_t o) { return 8; }
static inline unsigned long objectSize(const int64_t o) { return 8; }
static inline const char *objectData(const std::string &o) { return o.data(); }
static inline const char *objectData(const uint8_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const int8_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const uint16_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const int16_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const uint32_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const int32_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const uint64_t &o) { return reinterpret_cast<const char *>(&o); }
static inline const char *objectData(const int64_t &o) { return reinterpret_cast<const char *>(&o); }
static inline bool objectDeserialize(const char *d,unsigned long l,std::string &o) { o.assign(d,l); return true; }
static inline bool objectDeserialize(const char *d,unsigned long l,uint8_t &o) { if (l == 1) { memcpy(&o,d,1); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,int8_t &o) { if (l == 1) { memcpy(&o,d,1); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,uint16_t &o) { if (l == 2) { memcpy(&o,d,2); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,int16_t &o) { if (l == 2) { memcpy(&o,d,2); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,uint32_t &o) { if (l == 4) { memcpy(&o,d,4); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,int32_t &o) { if (l == 4) { memcpy(&o,d,4); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,uint64_t &o) { if (l == 8) { memcpy(&o,d,8); return true; } else { return false; } }
static inline bool objectDeserialize(const char *d,unsigned long l,int64_t &o) { if (l == 8) { memcpy(&o,d,8); return true; } else { return false; } }
};
/**
* VSDM: Very Simple Distributed Map
*
* See README.md for full docs.
*
* @tparam K Key type (must be supported by serializer)
* @tparam V Value type (must be supported by serializer)
* @tparam L Maximum message length (max allowed: UINT32_MAX - 1, default: 131072)
* @tparam W Watcher function (default: vsdm_watcher_noop)
* @tparam S Serializer class with static methods to serialize keys and values (default: vsdm_default_serializer)
* @tparam C Cryptor to encrypt/decrypt and authenticate network traffic (default: vsdm_cryptor_noop)
* @tparam M Map type for underlying data store (default: std::unordered_map)
*/
template<
typename K,
typename V,
unsigned long L = 131072,
typename W = vsdm_watcher_noop,
typename S = vsdm_default_serializer,
typename C = vsdm_cryptor_noop,
template<typename,typename...> class M = std::unordered_map
>
class vsdm
{
friend void vsdm_thread_main(void *parent);
friend class ztVsdmInternal::Phy<vsdm *>;
private:
struct vsdm_entry
{
vsdm_entry() : rev(0),deletedAt(0),v() {}
uint64_t rev;
uint64_t deletedAt;
V v;
};
struct _connection
{
_connection() : outbuf(),inbuf(),gotHello(false),node(0),sock((ztVsdmInternal::PhySocket *)0) {}
std::string outbuf;
std::string inbuf;
bool gotHello;
uint64_t node;
ztVsdmInternal::PhySocket *sock;
};
public:
typedef K key_type;
typedef V value_type;
/**
* @param id Cluster ID, must be the same on all nodes
* @param node Arbitrary unique node ID
* @param restrictInbound If true, restrict inbound connections to known peer IPs (added via link())
* @param cryptor Encryptor/decryptor instance (default: C())
* @param watcher Watcher function instance (default: W())
*/
vsdm(uint64_t id,uint64_t node,bool restrictInbound,const C &cryptor = C(),const W &watcher = W()) :
_node(node),
_id(id),
_rev(0),
_connections(),
_m(),
_lock(),
_phy(this,false,false),
_cryptor(cryptor),
_watcher(watcher),
_run(true),
_restrictInbound(restrictInbound),
_t(_threadMain,reinterpret_cast<void *>(this))
{
}
~vsdm()
{
_run = false;
_phy.whack();
_t.join();
}
/**
* @param k Key to set
* @param v New value for key
* @return Revision of entry in map
*/
inline uint64_t set(const K &k,const V &v)
{
std::lock_guard<std::mutex> l(_lock);
vsdm_entry &e = _m[k];
e.rev = ++_rev;
e.deletedAt = 0;
e.v = v;
std::vector<uint64_t> sentToNodes;
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::iterator c2(_connections.begin());c2!=_connections.end();++c2) {
if ((c2->second.gotHello)&&(std::find(sentToNodes.begin(),sentToNodes.end(),c2->second.node) == sentToNodes.end())) {
sendUpdate(c2->second,k,e);
sentToNodes.push_back(c2->second.node);
#ifdef VSDM_DEBUG
fprintf(stderr,">> %lu: %s=%s\n",(unsigned long)c2->second.node,k.c_str(),v.c_str()); fflush(stderr);
#endif
}
}
_phy.whack();
return _rev;
}
/**
* @param k Key to check
* @return Revision of key that we have or 0 if not found
*/
inline uint64_t have(const K &k) const
{
std::lock_guard<std::mutex> l(_lock);
typename std::unordered_map<std::string,vsdm_entry>::const_iterator i(_m.find(k));
if ((i == _m.end())||(i->second.deletedAt))
return 0;
return i->second.rev;
}
/**
* @param k Key to get
* @param dfl Default value if key is not found
* @param have If non-NULL, set to revision of this key or 0 if not found
* @return Key value or dfl if not found
*/
inline V get(const K &k,const V &dfl = V(),uint64_t *have = (uint64_t *)0) const
{
std::lock_guard<std::mutex> l(_lock);
typename std::unordered_map<std::string,vsdm_entry>::const_iterator i(_m.find(k));
if ((i == _m.end())||(i->second.deletedAt)) {
if (have)
*have = 0;
return dfl;
}
if (have)
*have = i->second.rev;
return i->second.v;
}
/**
* @param k Key to get
* @param have If non-NULL, set to revision of this key or 0 if not found
* @return Key's value or default/empty V() if not found
*/
inline V get(const K &k,uint64_t *have) const
{
return get(k,V(),have);
}
/**
* Erase a key
*
* Erased entries are not wholly purged from memory immediately. They
* are marked as erased and purged after sufficient time for propagation.
*
* @param k Key to erase
* @return Previous revision of this key in map or 0 if not found
*/
inline bool del(const K &k)
{
uint64_t prev = 0;
std::lock_guard<std::mutex> l(_lock);
typename std::unordered_map<std::string,vsdm_entry>::iterator i(_m.find(k));
if (i == _m.end())
return 0;
prev = i->second.rev;
i->second.rev = ++_rev;
i->second.deletedAt = _rev;
i->second.v.clear();
std::vector<uint64_t> sentToNodes;
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::iterator c2(_connections.begin());c2!=_connections.end();++c2) {
if ((c2->second.gotHello)&&(std::find(sentToNodes.begin(),sentToNodes.end(),c2->second.node) == sentToNodes.end())) {
sendUpdate(c2->second,k,i->second);
sentToNodes.push_back(c2->second.node);
#ifdef VSDM_DEBUG
fprintf(stderr,">> %lu: %s=<DEL>\n",(unsigned long)c2->second.node,k.c_str()); fflush(stderr);
#endif
}
}
_phy.whack();
return prev;
}
/**
* Listen for incoming node connections on an address
*
* This can be called more than once to listen on more than one address and port.
*
* @param sa Socket address
* @return True if bind succeeded
*/
inline bool listen(const struct sockaddr *sa)
{
std::lock_guard<std::mutex> l(_lock);
return (_phy.tcpListen(sa) != (ztVsdmInternal::PhySocket *)0);
}
/**
* Add a remote node endpoint
*
* This can be called for an arbitrary number of other endpoints in the
* network to tell this node to attempt to maintain a link to them.
*
* @param node Node ID of remote
* @param sa Socket address of remote
* @param salen Length of socket address structure
*/
inline void link(uint64_t node,const struct sockaddr_in *sa,unsigned int salen)
{
std::lock_guard<std::mutex> l(_lock);
if ((node != _node)&&(salen <= sizeof(struct sockaddr_storage)))
memcpy(&(_peers[node]),sa,salen);
}
/**
* @return Node IDs of nodes that are currently connected
*/
inline std::vector<uint64_t> who() const
{
std::vector<uint64_t> w;
std::lock_guard<std::mutex> l(_lock);
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::const_iterator i(_connections.begin());i!=_connections.end();++i) {
if ((i->gotHello)&&(std::find(w.begin(),w.end(),i->second.node) == w.end()))
w.push_back(i->second.node);
}
return w;
}
/**
* @return True if we are currently connected to at least one other node
*/
inline bool connected() const
{
std::lock_guard<std::mutex> l(_lock);
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::const_iterator i(_connections.begin());i!=_connections.end();++i) {
if (i->gotHello)
return true;
}
return false;
}
/**
* Iterate through all members of this map, with optional deletion
*
* The function is executed against all key/value pairs and returns a signed integer.
* A negative return value causes the entry to be deleted, while a positive return
* value means the key's value (which is passed into the function as a reference) has
* been modified and should be replicated. A return value of zero means no change.
*
* Other methods should not be called since doing so can result in a deadlock.
*
* @param func Function to execute against all members of map, returns integer (see description)
*/
template<typename F>
inline void each(F func)
{
std::vector<uint64_t> sentToNodes;
bool whack = false;
std::lock_guard<std::mutex> l(_lock);
for(typename M<K,vsdm_entry>::iterator i(_m.begin());i!=_m.end();++i) {
if (!i->second.deletedAt) {
try {
const int result = func(i->first,i->second.v);
if (result < 0) {
i->second.rev = ++_rev;
i->second.deletedAt = _rev;
i->second.v.clear();
} else if (result > 0) {
i->second.rev = ++_rev;
i->second.deletedAt = 0;
// v will have been modified in place
}
if (result != 0) {
sentToNodes.clear();
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::iterator c2(_connections.begin());c2!=_connections.end();++c2) {
if ((c2->second.gotHello)&&(std::find(sentToNodes.begin(),sentToNodes.end(),c2->second.node) == sentToNodes.end())) {
sendUpdate(c2->second,i->first,i->second);
sentToNodes.push_back(c2->second.node);
}
}
whack = true;
}
} catch ( ... ) {}
}
}
if (whack)
_phy.whack();
}
private:
inline vsdm &operator=(const vsdm &v) { return *this; }
static void _threadMain(void *p) { reinterpret_cast<vsdm *>(p)->threadMain(); }
inline void threadMain()
{
std::vector<uint64_t> haveNodes;
time_t lastcheck = 0;
time_t lastclean = 0;
while (_run) {
_phy.poll(1000);
time_t now = time(0);
// Check connections with other nodes and try to establish them
// if they're not present.
if ((now - lastcheck) >= 2) {
lastcheck = now;
haveNodes.clear();
std::lock_guard<std::mutex> l(_lock);
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::const_iterator c(_connections.begin());c!=_connections.end();++c) {
if (std::find(haveNodes.begin(),haveNodes.end(),c->second.node) == haveNodes.end())
haveNodes.push_back(c->second.node);
}
for(std::unordered_map<uint64_t,struct sockaddr_storage>::iterator p(_peers.begin());p!=_peers.end();++p) {
if (std::find(haveNodes.begin(),haveNodes.end(),p->first) == haveNodes.end()) {
bool connected = false;
ztVsdmInternal::PhySocket *ns = _phy.tcpConnect((const struct sockaddr *)&(p->second),connected,(void *)0,true);
if (ns) {
_connection &c = _connections[ns];
c.gotHello = false;
c.node = p->first;
c.sock = ns;
}
}
}
}
// Forget deleted entries if they've had ample time to propagate
if ((now - lastclean) >= 120) {
lastclean = now;
uint64_t delHorizon = _m.size() * (2 + _peers.size());
if (_rev > delHorizon) {
delHorizon -= _rev;
std::lock_guard<std::mutex> l(_lock);
for(typename M<K,vsdm_entry>::iterator i(_m.begin());i!=_m.end();) {
if ((i->second.deletedAt > 0)&&(i->second.deletedAt < delHorizon))
_m.erase(i++);
else ++i;
}
}
}
}
}
inline void sendUpdate(_connection &c,const std::string &k,const vsdm_entry &e)
{
// assumes lock is locked
const uint32_t ks = (uint32_t)S::objectSize(k);
uint32_t vs = 0;
uint32_t hdr[4];
hdr[0] = htonl((uint32_t)((e.rev >> 32) & 0xffffffff));
hdr[1] = htonl((uint32_t)(e.rev & 0xffffffff));
hdr[2] = htonl(ks);
if (e.deletedAt) {
hdr[3] = 0xffffffff;
} else {
vs = (uint32_t)S::objectSize(e.v);
hdr[3] = htonl(vs);
}
const uint32_t s = htonl((uint32_t)(16 + C::overhead() + ks + vs));
c.outbuf.append((const char *)&s,4);
const unsigned long start = (unsigned long)c.outbuf.length();
c.outbuf.append((const char *)hdr,16);
c.outbuf.append(S::objectData(k),ks);
if (!e.deletedAt)
c.outbuf.append(S::objectData(e.v),vs);
c.outbuf.append(C::overhead(),(char)0);
const unsigned long end = (unsigned long)c.outbuf.length();
_cryptor.encrypt(reinterpret_cast<void *>(const_cast<char *>(c.outbuf.data()) + start),end - start);
_phy.setNotifyWritable(c.sock,true);
}
inline void sendUpdateToAll(ztVsdmInternal::PhySocket *receivedOnSock,const uint64_t receivedFromNode,const std::string &k,const vsdm_entry &e)
{
// assumes lock is locked
std::vector<uint64_t> sentToNodes;
for(typename std::unordered_map<ztVsdmInternal::PhySocket *,_connection>::iterator c2(_connections.begin());c2!=_connections.end();++c2) {
if ((c2->first != receivedOnSock)&&(c2->second.gotHello)&&(c2->second.node != receivedFromNode)&&(std::find(sentToNodes.begin(),sentToNodes.end(),c2->second.node) == sentToNodes.end())) {
sendUpdate(c2->second,k,e);
sentToNodes.push_back(c2->second.node);
#ifdef VSDM_DEBUG
fprintf(stderr,">> %lu: %s=%s\n",(unsigned long)c2->second.node,k.c_str(),(e.deletedAt) ? "<DEL>" : e.v.c_str()); fflush(stderr);
#endif
}
}
_phy.whack();
}
inline void sendHello(ztVsdmInternal::PhySocket *sock)
{
uint64_t hdr[3];
if (htonl(1) == 1) {
hdr[0] = _node;
hdr[1] = _id;
hdr[2] = _rev;
} else {
hdr[0] = ztVsdmInternal::_swap64(_node);
hdr[1] = ztVsdmInternal::_swap64(_id);
hdr[2] = ztVsdmInternal::_swap64(_rev);
}
uint8_t tmp[24 + C::overhead()];
memcpy(tmp,hdr,24);
_cryptor.encrypt(reinterpret_cast<void *>(tmp),sizeof(tmp));
_phy.streamSend(sock,reinterpret_cast<void *>(tmp),sizeof(tmp));
}
inline void phyOnTcpConnect(ztVsdmInternal::PhySocket *sock,void **uptr,bool success)
{
std::lock_guard<std::mutex> l(_lock);
if (success) {
_connection &c = _connections[sock];
c.gotHello = false;
c.sock = sock;
*uptr = (void *)&c;
sendHello(sock);
} else {
_connections.erase(sock);
}
}
inline void phyOnTcpAccept(ztVsdmInternal::PhySocket *sockL,ztVsdmInternal::PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
{
std::lock_guard<std::mutex> l(_lock);
if (_restrictInbound) {
bool ok = false;
for(typename std::unordered_map<uint64_t,struct sockaddr_storage>::const_iterator i(_peers.begin());i!=_peers.end();++i) {
if (from->sa_family == i->second.ss_family) {
if ( (from->sa_family == AF_INET) && (reinterpret_cast<const struct sockaddr_in *>(from)->sin_addr.s_addr == reinterpret_cast<const struct sockaddr_in *>(&(i->second))->sin_addr.s_addr) ) {
ok = true;
break;
} else if ( (from->sa_family == AF_INET6) && (memcmp(reinterpret_cast<const struct sockaddr_in6 *>(from)->sin6_addr.s6_addr,reinterpret_cast<const struct sockaddr_in6 *>(&(i->second))->sin6_addr.s6_addr,16) == 0) ) {
ok = true;
break;
}
}
}
if (!ok) {
#ifdef VSDM_DEBUG
fprintf(stderr," * dropped inbound connection: peer not from a known IP address\n"); fflush(stderr);
#endif
_phy.close(sockN,false);
return;
}
}
_connection &c = _connections[sockN];
c.gotHello = false;
c.node = _node; // impossible value for a remote
c.sock = sockN;
*uptrN = (void *)&c;
sendHello(sockN);
}
inline void phyOnTcpClose(ztVsdmInternal::PhySocket *sock,void **uptr)
{
std::lock_guard<std::mutex> l(_lock);
_connections.erase(sock);
}
inline void phyOnTcpData(ztVsdmInternal::PhySocket *sock,void **uptr,void *data,unsigned long len)
{
_connection *const c = (_connection *)*uptr;
if (!c) return;
std::unique_lock<std::mutex> l(_lock);
c->inbuf.append(reinterpret_cast<char *>(data),len);
for(;;) {
if (c->gotHello) {
if (c->inbuf.length() >= 20) { // got message size and header
uint32_t _totalLen;
memcpy(&_totalLen,c->inbuf.data(),4);
const unsigned long totalLen = ntohl(_totalLen);
if ((totalLen > L)||(totalLen < 16)) { // message too small or too large
_connections.erase(sock);
_phy.close(sock,false);
return;
}
if (c->inbuf.length() >= (4 + totalLen)) { // got full message
if (!_cryptor.decrypt(reinterpret_cast<void *>(const_cast<char *>(c->inbuf.data()) + 4),totalLen)) {
_connections.erase(sock);
_phy.close(sock,false);
return;
}
uint32_t hdr[4];
memcpy(hdr,c->inbuf.data() + 4,16);
const uint64_t objectRev = ((uint64_t)ntohl(hdr[0]) << 32) | (uint64_t)ntohl(hdr[1]);
const unsigned long keyLen = (unsigned long)ntohl(hdr[2]);
unsigned long valueLen = (unsigned long)ntohl(hdr[3]);
if (objectRev > _rev)
_rev = objectRev;
uint64_t deletedAt = 0;
if (valueLen == 0xffffffff) {
valueLen = 0;
deletedAt = _rev;
}
if ((keyLen + valueLen + 16 + C::overhead()) > totalLen) { // key and/or value length invalid
_connections.erase(sock);
_phy.close(sock,false);
return;
}
K k;
if (!S::objectDeserialize(c->inbuf.data() + 16 + 4,keyLen,k)) {
_connections.erase(sock);
_phy.close(sock,false);
return;
}
vsdm_entry &e = _m[k];
if (e.rev < objectRev) {
const bool added = (e.rev == 0);
e.rev = objectRev;
e.deletedAt = deletedAt;
if (e.deletedAt) {
e.v = V();
} else {
if (!S::objectDeserialize(c->inbuf.data() + 16 + 4 + keyLen,valueLen,e.v)) {
_connections.erase(sock);
_phy.close(sock,false);
return;
}
}
#ifdef VSDM_DEBUG
fprintf(stderr,"<< %lu: %s=%s\n",(unsigned long)c->node,k.c_str(),(deletedAt) ? "<DEL>" : e.v.c_str()); fflush(stderr);
#endif
sendUpdateToAll(sock,c->node,k,e);
l.unlock();
try {
if (added) {
_watcher.add(c->node,k,e.v,objectRev);
} else if (deletedAt) {
_watcher.del(c->node,k);
} else {
_watcher.update(c->node,k,e.v,objectRev);
}
} catch ( ... ) {}
l.lock();
}
c->inbuf.erase(c->inbuf.begin(),c->inbuf.begin() + totalLen + 4);
// continue and process more messages in queue, if any
} else { // still waiting on full message
break;
}
} else { // still waiting on message size and header
break;
}
} else if (c->inbuf.length() >= (24 + C::overhead())) { // got hello header
if (!_cryptor.decrypt(reinterpret_cast<void *>(const_cast<char *>(c->inbuf.data())),24 + C::overhead())) {
_connections.erase(sock);
_phy.close(sock,false);
return;
}
uint64_t hdr[3];
memcpy(hdr,c->inbuf.data(),24);
c->inbuf.erase(c->inbuf.begin(),c->inbuf.begin() + 24 + C::overhead());
if (htonl(1) != 1) {
hdr[0] = ztVsdmInternal::_swap64(hdr[0]);
hdr[1] = ztVsdmInternal::_swap64(hdr[1]);
hdr[2] = ztVsdmInternal::_swap64(hdr[2]);
}
if ((hdr[0] == _node)||(hdr[1] != _id)) { // don't connect to self, and don't connect to other map IDs
_connections.erase(sock);
_phy.close(sock,false);
break;
} else {
c->gotHello = true;
c->node = hdr[0];
if (hdr[2] > _rev)
_rev = hdr[2];
for(typename M<std::string,vsdm_entry>::const_iterator i(_m.begin());i!=_m.end();++i) {
if (i->second.rev >= hdr[2]) {
sendUpdate(*c,i->first,i->second);
#ifdef VSDM_DEBUG
fprintf(stderr,">> %lu: %s=%s (new link)\n",(unsigned long)c->node,i->first.c_str(),i->second.v.c_str()); fflush(stderr);
#endif
}
}
_phy.whack();
}
// continue and process more messages in queue, if any
} else { // still waiting on hello header
break;
}
}
}
inline void phyOnTcpWritable(ztVsdmInternal::PhySocket *sock,void **uptr)
{
std::lock_guard<std::mutex> l(_lock);
_connection *c = (_connection *)*uptr;
if (c) {
if (c->outbuf.length() > 0) {
long n = _phy.streamSend(sock,c->outbuf.data(),c->outbuf.length());
if (n <= 0) {
_connections.erase(sock);
_phy.close(sock,false);
return;
} else if (n == (long)c->outbuf.length()) {
c->outbuf.clear();
} else {
c->outbuf.erase(c->outbuf.begin(),c->outbuf.begin() + n);
}
}
if (c->outbuf.length() == 0) {
_phy.setNotifyWritable(c->sock,false);
}
}
}
inline void phyOnDatagram(ztVsdmInternal::PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len) {}
inline void phyOnFileDescriptorActivity(ztVsdmInternal::PhySocket *sock,void **uptr,bool readable,bool writable) {}
inline void phyOnUnixAccept(ztVsdmInternal::PhySocket *sockL,ztVsdmInternal::PhySocket *sockN,void **uptrL,void **uptrN) {}
inline void phyOnUnixClose(ztVsdmInternal::PhySocket *sock,void **uptr) {}
inline void phyOnUnixData(ztVsdmInternal::PhySocket *sock,void **uptr,void *data,unsigned long len) {}
inline void phyOnUnixWritable(ztVsdmInternal::PhySocket *sock,void **uptr) {}
const uint64_t _node;
const uint64_t _id;
uint64_t _rev;
std::unordered_map<uint64_t,struct sockaddr_storage> _peers;
std::unordered_map<ztVsdmInternal::PhySocket *,_connection> _connections;
M<K,vsdm_entry> _m;
mutable std::mutex _lock;
ztVsdmInternal::Phy<vsdm *> _phy;
C _cryptor;
W _watcher;
volatile bool _run;
bool _restrictInbound;
std::thread _t;
};
#endif