ZeroTierOne/node/EllipticCurveKey.hpp

126 lines
3.6 KiB
C++

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef _ZT_ELLIPTICCURVEKEY_H
#define _ZT_ELLIPTICCURVEKEY_H
#include <string>
#include <algorithm>
#include <string.h>
#include "Utils.hpp"
/**
* Key type ID for identifying our use of NIST-P-521
*
* If in the future other types of keys are supported (post-quantum crypto?)
* then we'll need a key type 2, etc. When keys are stored in the database
* they are prefixed by this key type ID byte.
*/
#define ZT_KEY_TYPE 1
#define ZT_EC_OPENSSL_CURVE NID_secp521r1
#define ZT_EC_CURVE_NAME "NIST-P-521"
#define ZT_EC_PRIME_BYTES 66
#define ZT_EC_PUBLIC_KEY_BYTES (ZT_EC_PRIME_BYTES + 1)
#define ZT_EC_PRIVATE_KEY_BYTES ZT_EC_PRIME_BYTES
#define ZT_EC_MAX_BYTES ZT_EC_PUBLIC_KEY_BYTES
namespace ZeroTier {
class EllipticCurveKeyPair;
/**
* An elliptic curve public or private key
*/
class EllipticCurveKey
{
friend class EllipticCurveKeyPair;
public:
EllipticCurveKey()
throw() :
_bytes(0)
{
memset(_key,0,sizeof(_key));
}
EllipticCurveKey(const void *data,unsigned int len)
throw()
{
if (len <= ZT_EC_MAX_BYTES) {
_bytes = len;
memcpy(_key,data,len);
} else _bytes = 0;
}
EllipticCurveKey(const EllipticCurveKey &k)
throw()
{
_bytes = k._bytes;
memcpy(_key,k._key,_bytes);
}
inline EllipticCurveKey &operator=(const EllipticCurveKey &k)
throw()
{
_bytes = k._bytes;
memcpy(_key,k._key,_bytes);
return *this;
}
inline void set(const void *data,unsigned int len)
throw()
{
if (len <= ZT_EC_MAX_BYTES) {
_bytes = len;
memcpy(_key,data,len);
} else _bytes = 0;
}
inline const unsigned char *data() const throw() { return _key; }
inline unsigned int size() const throw() { return _bytes; }
inline std::string toHex() const throw() { return Utils::hex(_key,_bytes); }
inline unsigned char operator[](const unsigned int i) const throw() { return _key[i]; }
inline bool operator==(const EllipticCurveKey &k) const throw() { return ((_bytes == k._bytes)&&(!memcmp(_key,k._key,_bytes))); }
inline bool operator<(const EllipticCurveKey &k) const throw() { return std::lexicographical_compare(_key,&_key[_bytes],k._key,&k._key[k._bytes]); }
inline bool operator!=(const EllipticCurveKey &k) const throw() { return !(*this == k); }
inline bool operator>(const EllipticCurveKey &k) const throw() { return (k < *this); }
inline bool operator<=(const EllipticCurveKey &k) const throw() { return !(k < *this); }
inline bool operator>=(const EllipticCurveKey &k) const throw() { return !(*this < k); }
private:
unsigned int _bytes;
unsigned char _key[ZT_EC_MAX_BYTES];
};
} // namespace ZeroTier
#endif