ZeroTierOne/osdep/Binder.hpp
2019-01-14 10:25:53 -08:00

469 lines
15 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#ifndef ZT_BINDER_HPP
#define ZT_BINDER_HPP
#include "../node/Constants.hpp"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __WINDOWS__
#include <WinSock2.h>
#include <Windows.h>
#include <ShlObj.h>
#include <netioapi.h>
#include <iphlpapi.h>
#else
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <unistd.h>
#include <ifaddrs.h>
#ifdef __LINUX__
#include <sys/ioctl.h>
#include <net/if.h>
#endif
#endif
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include <map>
#include <set>
#include <atomic>
#include "../node/InetAddress.hpp"
#include "../node/Mutex.hpp"
#include "../node/Utils.hpp"
#include "Phy.hpp"
#include "OSUtils.hpp"
// Period between refreshes of bindings
#define ZT_BINDER_REFRESH_PERIOD 30000
// Max number of bindings
#define ZT_BINDER_MAX_BINDINGS 256
namespace ZeroTier {
/**
* Enumerates local devices and binds to all potential ZeroTier path endpoints
*
* This replaces binding to wildcard (0.0.0.0 and ::0) with explicit binding
* as part of the path to default gateway support. Under the hood it uses
* different queries on different OSes to enumerate devices, and also exposes
* device enumeration and endpoint IP data for use elsewhere.
*
* On OSes that do not support local port enumeration or where this is not
* meaningful, this degrades to binding to wildcard.
*/
class Binder
{
private:
struct _Binding
{
_Binding() : udpSock((PhySocket *)0),tcpListenSock((PhySocket *)0) {}
PhySocket *udpSock;
PhySocket *tcpListenSock;
InetAddress address;
};
public:
Binder() : _bindingCount(0) {}
/**
* Close all bound ports, should be called on shutdown
*
* @param phy Physical interface
*/
template<typename PHY_HANDLER_TYPE>
void closeAll(Phy<PHY_HANDLER_TYPE> &phy)
{
Mutex::Lock _l(_lock);
for(unsigned int b=0,c=_bindingCount;b<c;++b) {
phy.close(_bindings[b].udpSock,false);
phy.close(_bindings[b].tcpListenSock,false);
}
_bindingCount = 0;
}
/**
* Scan local devices and addresses and rebind TCP and UDP
*
* This should be called after wake from sleep, on detected network device
* changes, on startup, or periodically (e.g. every 30-60s).
*
* @param phy Physical interface
* @param ports Ports to bind on all interfaces
* @param portCount Number of ports
* @param explicitBind If present, override interface IP detection and bind to these (if possible)
* @param ifChecker Interface checker function to see if an interface should be used
* @tparam PHY_HANDLER_TYPE Type for Phy<> template
* @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method
*/
template<typename PHY_HANDLER_TYPE,typename INTERFACE_CHECKER>
void refresh(Phy<PHY_HANDLER_TYPE> &phy,unsigned int *ports,unsigned int portCount,const std::vector<InetAddress> explicitBind,INTERFACE_CHECKER &ifChecker)
{
std::map<InetAddress,std::string> localIfAddrs;
PhySocket *udps,*tcps;
Mutex::Lock _l(_lock);
bool interfacesEnumerated = true;
if (explicitBind.empty()) {
#ifdef __WINDOWS__
char aabuf[32768];
ULONG aalen = sizeof(aabuf);
if (GetAdaptersAddresses(AF_UNSPEC,GAA_FLAG_SKIP_ANYCAST|GAA_FLAG_SKIP_MULTICAST|GAA_FLAG_SKIP_DNS_SERVER,(void *)0,reinterpret_cast<PIP_ADAPTER_ADDRESSES>(aabuf),&aalen) == NO_ERROR) {
PIP_ADAPTER_ADDRESSES a = reinterpret_cast<PIP_ADAPTER_ADDRESSES>(aabuf);
while (a) {
PIP_ADAPTER_UNICAST_ADDRESS ua = a->FirstUnicastAddress;
while (ua) {
InetAddress ip(ua->Address.lpSockaddr);
if (ifChecker.shouldBindInterface("",ip)) {
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for(int x=0;x<(int)portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string()));
}
break;
}
}
ua = ua->Next;
}
a = a->Next;
}
}
else {
interfacesEnumerated = false;
}
#else // not __WINDOWS__
/* On Linux we use an alternative method if available since getifaddrs()
* gets very slow when there are lots of network namespaces. This won't
* work unless /proc/PID/net/if_inet6 exists and it may not on some
* embedded systems, so revert to getifaddrs() there. */
#ifdef __LINUX__
char fn[256],tmp[256];
std::set<std::string> ifnames;
const unsigned long pid = (unsigned long)getpid();
// Get all device names
OSUtils::ztsnprintf(fn,sizeof(fn),"/proc/%lu/net/dev",pid);
FILE *procf = fopen(fn,"r");
if (procf) {
while (fgets(tmp,sizeof(tmp),procf)) {
tmp[255] = 0;
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp," \t\r\n:|",&saveptr);(f);f=Utils::stok((char *)0," \t\r\n:|",&saveptr)) {
if ((strcmp(f,"Inter-") != 0)&&(strcmp(f,"face") != 0)&&(f[0] != 0))
ifnames.insert(f);
break; // we only want the first field
}
}
fclose(procf);
}
else {
interfacesEnumerated = false;
}
// Get IPv6 addresses (and any device names we don't already know)
OSUtils::ztsnprintf(fn,sizeof(fn),"/proc/%lu/net/if_inet6",pid);
procf = fopen(fn,"r");
if (procf) {
while (fgets(tmp,sizeof(tmp),procf)) {
tmp[255] = 0;
char *saveptr = (char *)0;
unsigned char ipbits[16];
memset(ipbits,0,sizeof(ipbits));
char *devname = (char *)0;
int n = 0;
for(char *f=Utils::stok(tmp," \t\r\n",&saveptr);(f);f=Utils::stok((char *)0," \t\r\n",&saveptr)) {
switch(n++) {
case 0: // IP in hex
Utils::unhex(f,32,ipbits,16);
break;
case 5: // device name
devname = f;
break;
}
}
if (devname) {
ifnames.insert(devname);
InetAddress ip(ipbits,16,0);
if (ifChecker.shouldBindInterface(devname,ip)) {
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for(int x=0;x<(int)portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(devname)));
}
break;
}
}
}
}
fclose(procf);
}
// Get IPv4 addresses for each device
if (ifnames.size() > 0) {
const int controlfd = (int)socket(AF_INET,SOCK_DGRAM,0);
struct ifconf configuration;
configuration.ifc_len = 0;
configuration.ifc_buf = nullptr;
if (controlfd < 0) goto ip4_address_error;
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error;
configuration.ifc_buf = (char*)malloc(configuration.ifc_len);
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error;
for (int i=0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i ++) {
struct ifreq& request = configuration.ifc_req[i];
struct sockaddr* addr = &request.ifr_ifru.ifru_addr;
if (addr->sa_family != AF_INET) continue;
std::string ifname = request.ifr_ifrn.ifrn_name;
// name can either be just interface name or interface name followed by ':' and arbitrary label
if (ifname.find(':') != std::string::npos)
ifname = ifname.substr(0, ifname.find(':'));
InetAddress ip(&(((struct sockaddr_in *)addr)->sin_addr),4,0);
if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) {
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for(int x=0;x<(int)portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,ifname));
}
break;
}
}
}
ip4_address_error:
free(configuration.ifc_buf);
if (controlfd > 0) close(controlfd);
}
const bool gotViaProc = (localIfAddrs.size() > 0);
#else
const bool gotViaProc = false;
#endif
#if !defined(ZT_SDK) || !defined(__ANDROID__) // getifaddrs() freeifaddrs() not available on Android
if (!gotViaProc) {
struct ifaddrs *ifatbl = (struct ifaddrs *)0;
struct ifaddrs *ifa;
if ((getifaddrs(&ifatbl) == 0)&&(ifatbl)) {
ifa = ifatbl;
while (ifa) {
if ((ifa->ifa_name)&&(ifa->ifa_addr)) {
InetAddress ip = *(ifa->ifa_addr);
if (ifChecker.shouldBindInterface(ifa->ifa_name,ip)) {
switch(ip.ipScope()) {
default: break;
case InetAddress::IP_SCOPE_PSEUDOPRIVATE:
case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE:
for(int x=0;x<(int)portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(ifa->ifa_name)));
}
break;
}
}
}
ifa = ifa->ifa_next;
}
freeifaddrs(ifatbl);
}
else {
interfacesEnumerated = false;
}
}
#endif
#endif
} else {
for(std::vector<InetAddress>::const_iterator i(explicitBind.begin());i!=explicitBind.end();++i)
localIfAddrs.insert(std::pair<InetAddress,std::string>(*i,std::string()));
}
// Default to binding to wildcard if we can't enumerate addresses
if (!interfacesEnumerated && localIfAddrs.empty()) {
for(int x=0;x<(int)portCount;++x) {
localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((uint32_t)0,ports[x]),std::string()));
localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,ports[x]),std::string()));
}
}
const unsigned int oldBindingCount = _bindingCount;
_bindingCount = 0;
// Save bindings that are still valid, close those that are not
for(unsigned int b=0;b<oldBindingCount;++b) {
if (localIfAddrs.find(_bindings[b].address) != localIfAddrs.end()) {
if (_bindingCount != b)
_bindings[(unsigned int)_bindingCount] = _bindings[b];
++_bindingCount;
} else {
PhySocket *const udps = _bindings[b].udpSock;
PhySocket *const tcps = _bindings[b].tcpListenSock;
_bindings[b].udpSock = (PhySocket *)0;
_bindings[b].tcpListenSock = (PhySocket *)0;
phy.close(udps,false);
phy.close(tcps,false);
}
}
// Create new bindings for those not already bound
for(std::map<InetAddress,std::string>::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) {
unsigned int bi = 0;
while (bi != _bindingCount) {
if (_bindings[bi].address == ii->first)
break;
++bi;
}
if (bi == _bindingCount) {
udps = phy.udpBind(reinterpret_cast<const struct sockaddr *>(&(ii->first)),(void *)0,ZT_UDP_DESIRED_BUF_SIZE);
tcps = phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&(ii->first)),(void *)0);
if ((udps)&&(tcps)) {
#ifdef __LINUX__
// Bind Linux sockets to their device so routes that we manage do not override physical routes (wish all platforms had this!)
if (ii->second.length() > 0) {
char tmp[256];
Utils::scopy(tmp,sizeof(tmp),ii->second.c_str());
int fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(udps);
if (fd >= 0)
setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp));
fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(tcps);
if (fd >= 0)
setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp));
}
#endif // __LINUX__
if (_bindingCount < ZT_BINDER_MAX_BINDINGS) {
_bindings[_bindingCount].udpSock = udps;
_bindings[_bindingCount].tcpListenSock = tcps;
_bindings[_bindingCount].address = ii->first;
phy.setIfName(udps, (char*)ii->second.c_str(), ii->second.length());
++_bindingCount;
}
} else {
phy.close(udps,false);
phy.close(tcps,false);
}
}
}
}
/**
* @return All currently bound local interface addresses
*/
inline std::vector<InetAddress> allBoundLocalInterfaceAddresses() const
{
std::vector<InetAddress> aa;
Mutex::Lock _l(_lock);
for(unsigned int b=0,c=_bindingCount;b<c;++b)
aa.push_back(_bindings[b].address);
return aa;
}
/**
* Send from all bound UDP sockets
*/
template<typename PHY_HANDLER_TYPE>
inline bool udpSendAll(Phy<PHY_HANDLER_TYPE> &phy,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{
bool r = false;
Mutex::Lock _l(_lock);
for(unsigned int b=0,c=_bindingCount;b<c;++b) {
if (ttl) phy.setIp4UdpTtl(_bindings[b].udpSock,ttl);
if (phy.udpSend(_bindings[b].udpSock,(const struct sockaddr *)addr,data,len)) r = true;
if (ttl) phy.setIp4UdpTtl(_bindings[b].udpSock,255);
}
return r;
}
/**
* @param addr Address to check
* @return True if this is a bound local interface address
*/
inline bool isBoundLocalInterfaceAddress(const InetAddress &addr) const
{
Mutex::Lock _l(_lock);
for(unsigned int b=0;b<_bindingCount;++b) {
if (_bindings[b].address == addr)
return true;
}
return false;
}
/**
* Quickly check that a UDP socket is valid
*
* @param udpSock UDP socket to check
* @return True if socket is currently bound/allocated
*/
inline bool isUdpSocketValid(PhySocket *const udpSock)
{
for(unsigned int b=0,c=_bindingCount;b<c;++b) {
if (_bindings[b].udpSock == udpSock)
return (b < _bindingCount); // double check atomic which may have changed
}
return false;
}
private:
_Binding _bindings[ZT_BINDER_MAX_BINDINGS];
std::atomic<unsigned int> _bindingCount;
Mutex _lock;
};
} // namespace ZeroTier
#endif