ZeroTierOne/tcp-proxy/tcp-proxy.cpp
2022-12-06 11:49:12 -08:00

318 lines
10 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// HACK! Will eventually use epoll() or something in Phy<> instead of select().
// Also be sure to change ulimit -n and fs.file-max in /etc/sysctl.conf on relays.
#if defined(__linux__) || defined(__LINUX__) || defined(__LINUX) || defined(LINUX)
#include <linux/posix_types.h>
#include <bits/types.h>
#undef __FD_SETSIZE
#define __FD_SETSIZE 1048576
#undef FD_SETSIZE
#define FD_SETSIZE 1048576
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <stdint.h>
#include <unistd.h>
#include <signal.h>
#include <map>
#include <set>
#include <string>
#include <algorithm>
#include <vector>
#include "../osdep/Phy.hpp"
#define ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS 300
#define ZT_TCP_PROXY_TCP_PORT 443
using namespace ZeroTier;
/*
* ZeroTier TCP Proxy Server
*
* This implements a simple packet encapsulation that is designed to look like
* a TLS connection. It's not a TLS connection, but it sends TLS format record
* headers. It could be extended in the future to implement a fake TLS
* handshake.
*
* At the moment, each packet is just made to look like TLS application data:
* <[1] TLS content type> - currently 0x17 for "application data"
* <[1] TLS major version> - currently 0x03 for TLS 1.2
* <[1] TLS minor version> - currently 0x03 for TLS 1.2
* <[2] payload length> - 16-bit length of payload in bytes
* <[...] payload> - Message payload
*
* TCP is inherently inefficient for encapsulating Ethernet, since TCP and TCP
* like protocols over TCP lead to double-ACKs. So this transport is only used
* to enable access when UDP or other datagram protocols are not available.
*
* Clients send a greeting, which is a four-byte message that contains:
* <[1] ZeroTier major version>
* <[1] minor version>
* <[2] revision>
*
* If a client has sent a greeting, it uses the new version of this protocol
* in which every encapsulated ZT packet is prepended by an IP address where
* it should be forwarded (or where it came from for replies). This causes
* this proxy to act as a remote UDP socket similar to a socks proxy, which
* will allow us to move this function off the rootservers and onto dedicated
* proxy nodes.
*
* Older ZT clients that do not send this message get their packets relayed
* to/from 127.0.0.1:9993, which will allow them to talk to and relay via
* the ZT node on the same machine as the proxy. We'll only support this for
* as long as such nodes appear to be in the wild.
*/
struct TcpProxyService;
struct TcpProxyService
{
Phy<TcpProxyService *> *phy;
int udpPortCounter;
struct Client
{
char tcpReadBuf[131072];
char tcpWriteBuf[131072];
unsigned long tcpWritePtr;
unsigned long tcpReadPtr;
PhySocket *tcp;
PhySocket *udp;
time_t lastActivity;
bool newVersion;
};
std::map< PhySocket *,Client > clients;
PhySocket *getUnusedUdp(void *uptr)
{
for(int i=0;i<65535;++i) {
++udpPortCounter;
if (udpPortCounter > 0xfffe)
udpPortCounter = 1024;
struct sockaddr_in laddr;
memset(&laddr,0,sizeof(struct sockaddr_in));
laddr.sin_family = AF_INET;
laddr.sin_port = htons((uint16_t)udpPortCounter);
PhySocket *udp = phy->udpBind(reinterpret_cast<struct sockaddr *>(&laddr),uptr);
if (udp)
return udp;
}
return (PhySocket *)0;
}
void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
{
if (!*uptr)
return;
if ((from->sa_family == AF_INET)&&(len >= 16)&&(len < 2048)) {
Client &c = *((Client *)*uptr);
c.lastActivity = time((time_t *)0);
unsigned long mlen = len;
if (c.newVersion)
mlen += 7; // new clients get IP info
if ((c.tcpWritePtr + 5 + mlen) <= sizeof(c.tcpWriteBuf)) {
if (!c.tcpWritePtr)
phy->setNotifyWritable(c.tcp,true);
c.tcpWriteBuf[c.tcpWritePtr++] = 0x17; // look like TLS data
c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
c.tcpWriteBuf[c.tcpWritePtr++] = (char)((mlen >> 8) & 0xff);
c.tcpWriteBuf[c.tcpWritePtr++] = (char)(mlen & 0xff);
if (c.newVersion) {
c.tcpWriteBuf[c.tcpWritePtr++] = (char)4; // IPv4
*((uint32_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = ((const struct sockaddr_in *)from)->sin_addr.s_addr;
c.tcpWritePtr += 4;
*((uint16_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = ((const struct sockaddr_in *)from)->sin_port;
c.tcpWritePtr += 2;
}
for(unsigned long i=0;i<len;++i)
c.tcpWriteBuf[c.tcpWritePtr++] = ((const char *)data)[i];
}
printf("<< UDP %s:%d -> %.16llx\n",inet_ntoa(reinterpret_cast<const struct sockaddr_in *>(from)->sin_addr),(int)ntohs(reinterpret_cast<const struct sockaddr_in *>(from)->sin_port),(unsigned long long)&c);
}
}
void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
{
// unused, we don't initiate outbound connections
}
void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
{
Client &c = clients[sockN];
PhySocket *udp = getUnusedUdp((void *)&c);
if (!udp) {
phy->close(sockN);
clients.erase(sockN);
printf("** TCP rejected, no more UDP ports to assign\n");
return;
}
c.tcpWritePtr = 0;
c.tcpReadPtr = 0;
c.tcp = sockN;
c.udp = udp;
c.lastActivity = time((time_t *)0);
c.newVersion = false;
*uptrN = (void *)&c;
printf("<< TCP from %s -> %.16llx\n",inet_ntoa(reinterpret_cast<const struct sockaddr_in *>(from)->sin_addr),(unsigned long long)&c);
}
void phyOnTcpClose(PhySocket *sock,void **uptr)
{
if (!*uptr)
return;
Client &c = *((Client *)*uptr);
phy->close(c.udp);
clients.erase(sock);
printf("** TCP %.16llx closed\n",(unsigned long long)*uptr);
}
void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
Client &c = *((Client *)*uptr);
c.lastActivity = time((time_t *)0);
for(unsigned long i=0;i<len;++i) {
if (c.tcpReadPtr >= sizeof(c.tcpReadBuf)) {
phy->close(sock);
return;
}
c.tcpReadBuf[c.tcpReadPtr++] = ((const char *)data)[i];
if (c.tcpReadPtr >= 5) {
unsigned long mlen = ( ((((unsigned long)c.tcpReadBuf[3]) & 0xff) << 8) | (((unsigned long)c.tcpReadBuf[4]) & 0xff) );
if (c.tcpReadPtr >= (mlen + 5)) {
if (mlen == 4) {
// Right now just sending this means the client is 'new enough' for the IP header
c.newVersion = true;
printf("<< TCP %.16llx HELLO\n",(unsigned long long)*uptr);
} else if (mlen >= 7) {
char *payload = c.tcpReadBuf + 5;
unsigned long payloadLen = mlen;
struct sockaddr_in dest;
memset(&dest,0,sizeof(dest));
if (c.newVersion) {
if (*payload == (char)4) {
// New clients tell us where their packets go.
++payload;
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = *((uint32_t *)payload);
payload += 4;
dest.sin_port = *((uint16_t *)payload); // will be in network byte order already
payload += 2;
payloadLen -= 7;
}
} else {
// For old clients we will just proxy everything to a local ZT instance. The
// fact that this will come from 127.0.0.1 will in turn prevent that instance
// from doing unite() with us. It'll just forward. There will not be many of
// these.
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1
dest.sin_port = htons(9993);
}
// Note: we do not relay to privileged ports... just an abuse prevention rule.
if ((ntohs(dest.sin_port) > 1024)&&(payloadLen >= 16)) {
phy->udpSend(c.udp,(const struct sockaddr *)&dest,payload,payloadLen);
printf(">> TCP %.16llx to %s:%d\n",(unsigned long long)*uptr,inet_ntoa(dest.sin_addr),(int)ntohs(dest.sin_port));
}
}
memmove(c.tcpReadBuf,c.tcpReadBuf + (mlen + 5),c.tcpReadPtr -= (mlen + 5));
}
}
}
}
void phyOnTcpWritable(PhySocket *sock,void **uptr)
{
Client &c = *((Client *)*uptr);
if (c.tcpWritePtr) {
long n = phy->streamSend(sock,c.tcpWriteBuf,c.tcpWritePtr);
if (n > 0) {
memmove(c.tcpWriteBuf,c.tcpWriteBuf + n,c.tcpWritePtr -= (unsigned long)n);
if (!c.tcpWritePtr)
phy->setNotifyWritable(sock,false);
}
} else phy->setNotifyWritable(sock,false);
}
void doHousekeeping()
{
std::vector<PhySocket *> toClose;
time_t now = time((time_t *)0);
for(std::map< PhySocket *,Client >::iterator c(clients.begin());c!=clients.end();++c) {
if ((now - c->second.lastActivity) >= ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS) {
toClose.push_back(c->first);
toClose.push_back(c->second.udp);
}
}
for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)
phy->close(*s);
}
};
int main(int argc,char **argv)
{
signal(SIGPIPE,SIG_IGN);
signal(SIGHUP,SIG_IGN);
srand(time((time_t *)0));
TcpProxyService svc;
Phy<TcpProxyService *> phy(&svc,false,true);
svc.phy = &phy;
svc.udpPortCounter = 1023;
{
struct sockaddr_in laddr;
memset(&laddr,0,sizeof(laddr));
laddr.sin_family = AF_INET;
laddr.sin_port = htons(ZT_TCP_PROXY_TCP_PORT);
if (!phy.tcpListen((const struct sockaddr *)&laddr)) {
fprintf(stderr,"%s: fatal error: unable to bind TCP port %d\n",argv[0],ZT_TCP_PROXY_TCP_PORT);
return 1;
}
}
time_t lastDidHousekeeping = time((time_t *)0);
for(;;) {
phy.poll(120000);
time_t now = time((time_t *)0);
if ((now - lastDidHousekeeping) > 120) {
lastDidHousekeeping = now;
svc.doHousekeeping();
}
}
return 0;
}