ZeroTierOne/service/OneService.cpp

3293 lines
114 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <string>
#include <map>
#include <vector>
#include <algorithm>
#include <list>
#include <thread>
#include <mutex>
#include <condition_variable>
#include "../version.h"
#include "../include/ZeroTierOne.h"
#include "../node/Constants.hpp"
#include "../node/Mutex.hpp"
#include "../node/Node.hpp"
#include "../node/Utils.hpp"
#include "../node/InetAddress.hpp"
#include "../node/MAC.hpp"
#include "../node/Identity.hpp"
#include "../node/World.hpp"
#include "../node/Salsa20.hpp"
#include "../node/Poly1305.hpp"
#include "../node/SHA512.hpp"
#include "../node/Bond.hpp"
#include "../node/Peer.hpp"
#include "../osdep/Phy.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Http.hpp"
#include "../osdep/PortMapper.hpp"
#include "../osdep/Binder.hpp"
#include "../osdep/ManagedRoute.hpp"
#include "../osdep/BlockingQueue.hpp"
#include "OneService.hpp"
#include "SoftwareUpdater.hpp"
#ifdef __WINDOWS__
#include <WinSock2.h>
#include <Windows.h>
#include <ShlObj.h>
#include <netioapi.h>
#include <iphlpapi.h>
//#include <unistd.h>
#define stat _stat
#else
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include <ifaddrs.h>
#endif
#ifdef __APPLE__
#include "../osdep/MacDNSHelper.hpp"
#elif defined(__WINDOWS__)
#include "../osdep/WinDNSHelper.hpp"
#endif
#ifdef ZT_USE_SYSTEM_HTTP_PARSER
#include <http_parser.h>
#else
#include "../ext/http-parser/http_parser.h"
#endif
#if ZT_VAULT_SUPPORT
extern "C" {
#include <curl/curl.h>
}
#endif
#include "../ext/json/json.hpp"
using json = nlohmann::json;
#include "../controller/EmbeddedNetworkController.hpp"
#include "../controller/PostgreSQL.hpp"
#include "../controller/Redis.hpp"
#include "../osdep/EthernetTap.hpp"
#ifdef __WINDOWS__
#include "../osdep/WindowsEthernetTap.hpp"
#endif
#ifndef ZT_SOFTWARE_UPDATE_DEFAULT
#define ZT_SOFTWARE_UPDATE_DEFAULT "disable"
#endif
// Sanity limits for HTTP
#define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64)
#define ZT_MAX_HTTP_CONNECTIONS 65536
// Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also
// bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi.
#define ZT_IF_METRIC 5000
// How often to check for new multicast subscriptions on a tap device
#define ZT_TAP_CHECK_MULTICAST_INTERVAL 5000
// TCP fallback relay (run by ZeroTier, Inc. -- this will eventually go away)
#ifndef ZT_SDK
#define ZT_TCP_FALLBACK_RELAY "204.80.128.1/443"
#endif
// Frequency at which we re-resolve the TCP fallback relay
#define ZT_TCP_FALLBACK_RERESOLVE_DELAY 86400000
// Attempt to engage TCP fallback after this many ms of no reply to packets sent to global-scope IPs
#define ZT_TCP_FALLBACK_AFTER 60000
// How often to check for local interface addresses
#define ZT_LOCAL_INTERFACE_CHECK_INTERVAL 60000
// Maximum write buffer size for outgoing TCP connections (sanity limit)
#define ZT_TCP_MAX_WRITEQ_SIZE 33554432
// TCP activity timeout
#define ZT_TCP_ACTIVITY_TIMEOUT 60000
#if ZT_VAULT_SUPPORT
size_t curlResponseWrite(void *ptr, size_t size, size_t nmemb, std::string *data)
{
data->append((char*)ptr, size * nmemb);
return size * nmemb;
}
#endif
namespace ZeroTier {
namespace {
static const InetAddress NULL_INET_ADDR;
// Fake TLS hello for TCP tunnel outgoing connections (TUNNELED mode)
static const char ZT_TCP_TUNNEL_HELLO[9] = { 0x17,0x03,0x03,0x00,0x04,(char)ZEROTIER_ONE_VERSION_MAJOR,(char)ZEROTIER_ONE_VERSION_MINOR,(char)((ZEROTIER_ONE_VERSION_REVISION >> 8) & 0xff),(char)(ZEROTIER_ONE_VERSION_REVISION & 0xff) };
static std::string _trimString(const std::string &s)
{
unsigned long end = (unsigned long)s.length();
while (end) {
char c = s[end - 1];
if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t'))
--end;
else break;
}
unsigned long start = 0;
while (start < end) {
char c = s[start];
if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t'))
++start;
else break;
}
return s.substr(start,end - start);
}
static void _networkToJson(nlohmann::json &nj,const ZT_VirtualNetworkConfig *nc,const std::string &portDeviceName,const OneService::NetworkSettings &localSettings)
{
char tmp[256];
const char *nstatus = "",*ntype = "";
switch(nc->status) {
case ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION: nstatus = "REQUESTING_CONFIGURATION"; break;
case ZT_NETWORK_STATUS_OK: nstatus = "OK"; break;
case ZT_NETWORK_STATUS_ACCESS_DENIED: nstatus = "ACCESS_DENIED"; break;
case ZT_NETWORK_STATUS_NOT_FOUND: nstatus = "NOT_FOUND"; break;
case ZT_NETWORK_STATUS_PORT_ERROR: nstatus = "PORT_ERROR"; break;
case ZT_NETWORK_STATUS_CLIENT_TOO_OLD: nstatus = "CLIENT_TOO_OLD"; break;
case ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED: nstatus = "AUTHENTICATION_REQUIRED"; break;
}
switch(nc->type) {
case ZT_NETWORK_TYPE_PRIVATE: ntype = "PRIVATE"; break;
case ZT_NETWORK_TYPE_PUBLIC: ntype = "PUBLIC"; break;
}
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",nc->nwid);
nj["id"] = tmp;
nj["nwid"] = tmp;
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",(unsigned int)((nc->mac >> 40) & 0xff),(unsigned int)((nc->mac >> 32) & 0xff),(unsigned int)((nc->mac >> 24) & 0xff),(unsigned int)((nc->mac >> 16) & 0xff),(unsigned int)((nc->mac >> 8) & 0xff),(unsigned int)(nc->mac & 0xff));
nj["mac"] = tmp;
nj["name"] = nc->name;
nj["status"] = nstatus;
nj["type"] = ntype;
nj["mtu"] = nc->mtu;
nj["dhcp"] = (bool)(nc->dhcp != 0);
nj["bridge"] = (bool)(nc->bridge != 0);
nj["broadcastEnabled"] = (bool)(nc->broadcastEnabled != 0);
nj["portError"] = nc->portError;
nj["netconfRevision"] = nc->netconfRevision;
nj["portDeviceName"] = portDeviceName;
nj["allowManaged"] = localSettings.allowManaged;
nj["allowGlobal"] = localSettings.allowGlobal;
nj["allowDefault"] = localSettings.allowDefault;
nj["allowDNS"] = localSettings.allowDNS;
nlohmann::json aa = nlohmann::json::array();
for(unsigned int i=0;i<nc->assignedAddressCount;++i) {
aa.push_back(reinterpret_cast<const InetAddress *>(&(nc->assignedAddresses[i]))->toString(tmp));
}
nj["assignedAddresses"] = aa;
nlohmann::json ra = nlohmann::json::array();
for(unsigned int i=0;i<nc->routeCount;++i) {
nlohmann::json rj;
rj["target"] = reinterpret_cast<const InetAddress *>(&(nc->routes[i].target))->toString(tmp);
if (nc->routes[i].via.ss_family == nc->routes[i].target.ss_family)
rj["via"] = reinterpret_cast<const InetAddress *>(&(nc->routes[i].via))->toIpString(tmp);
else rj["via"] = nlohmann::json();
rj["flags"] = (int)nc->routes[i].flags;
rj["metric"] = (int)nc->routes[i].metric;
ra.push_back(rj);
}
nj["routes"] = ra;
nlohmann::json mca = nlohmann::json::array();
for(unsigned int i=0;i<nc->multicastSubscriptionCount;++i) {
nlohmann::json m;
m["mac"] = MAC(nc->multicastSubscriptions[i].mac).toString(tmp);
m["adi"] = nc->multicastSubscriptions[i].adi;
mca.push_back(m);
}
nj["multicastSubscriptions"] = mca;
nlohmann::json m;
m["domain"] = nc->dns.domain;
m["servers"] = nlohmann::json::array();
for(int j=0;j<ZT_MAX_DNS_SERVERS;++j) {
InetAddress a(nc->dns.server_addr[j]);
if (a.isV4() || a.isV6()) {
char buf[256];
m["servers"].push_back(a.toIpString(buf));
}
}
nj["dns"] = m;
nj["authenticationURL"] = nc->authenticationURL;
nj["authenticationExpiryTime"] = nc->authenticationExpiryTime;
nj["ssoEnabled"] = nc->ssoEnabled;
}
static void _peerToJson(nlohmann::json &pj,const ZT_Peer *peer)
{
char tmp[256];
const char *prole = "";
switch(peer->role) {
case ZT_PEER_ROLE_LEAF: prole = "LEAF"; break;
case ZT_PEER_ROLE_MOON: prole = "MOON"; break;
case ZT_PEER_ROLE_PLANET: prole = "PLANET"; break;
}
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.10llx",peer->address);
pj["address"] = tmp;
pj["versionMajor"] = peer->versionMajor;
pj["versionMinor"] = peer->versionMinor;
pj["versionRev"] = peer->versionRev;
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%d.%d.%d",peer->versionMajor,peer->versionMinor,peer->versionRev);
pj["version"] = tmp;
pj["latency"] = peer->latency;
pj["role"] = prole;
pj["isBonded"] = peer->isBonded;
if (peer->isBonded) {
pj["bondingPolicy"] = peer->bondingPolicy;
pj["isHealthy"] = peer->isHealthy;
pj["numAliveLinks"] = peer->numAliveLinks;
pj["numTotalLinks"] = peer->numTotalLinks;
}
nlohmann::json pa = nlohmann::json::array();
for(unsigned int i=0;i<peer->pathCount;++i) {
int64_t lastSend = peer->paths[i].lastSend;
int64_t lastReceive = peer->paths[i].lastReceive;
nlohmann::json j;
j["address"] = reinterpret_cast<const InetAddress *>(&(peer->paths[i].address))->toString(tmp);
j["lastSend"] = (lastSend < 0) ? 0 : lastSend;
j["lastReceive"] = (lastReceive < 0) ? 0 : lastReceive;
j["trustedPathId"] = peer->paths[i].trustedPathId;
j["active"] = (bool)(peer->paths[i].expired == 0);
j["expired"] = (bool)(peer->paths[i].expired != 0);
j["preferred"] = (bool)(peer->paths[i].preferred != 0);
pa.push_back(j);
}
pj["paths"] = pa;
}
static void _bondToJson(nlohmann::json &pj, SharedPtr<Bond> &bond)
{
uint64_t now = OSUtils::now();
int bondingPolicy = bond->policy();
pj["bondingPolicy"] = Bond::getPolicyStrByCode(bondingPolicy);
if (bondingPolicy == ZT_BOND_POLICY_NONE) {
return;
}
pj["isHealthy"] = bond->isHealthy();
pj["numAliveLinks"] = bond->getNumAliveLinks();
pj["numTotalLinks"] = bond->getNumTotalLinks();
pj["failoverInterval"] = bond->getFailoverInterval();
pj["downDelay"] = bond->getDownDelay();
pj["upDelay"] = bond->getUpDelay();
if (bondingPolicy == ZT_BOND_POLICY_BALANCE_RR) {
pj["packetsPerLink"] = bond->getPacketsPerLink();
}
if (bondingPolicy == ZT_BOND_POLICY_ACTIVE_BACKUP) {
pj["linkSelectMethod"] = bond->getLinkSelectMethod();
}
nlohmann::json pa = nlohmann::json::array();
std::vector< SharedPtr<Path> > paths = bond->paths(now);
for(unsigned int i=0;i<paths.size();++i) {
char pathStr[128];
paths[i]->address().toString(pathStr);
nlohmann::json j;
j["ifname"] = bond->getLink(paths[i])->ifname();
j["path"] = pathStr;
/*
j["alive"] = paths[i]->alive(now,true);
j["bonded"] = paths[i]->bonded();
j["latencyMean"] = paths[i]->latencyMean();
j["latencyVariance"] = paths[i]->latencyVariance();
j["packetLossRatio"] = paths[i]->packetLossRatio();
j["packetErrorRatio"] = paths[i]->packetErrorRatio();
j["givenLinkSpeed"] = 1000;
j["allocation"] = paths[i]->allocation();
*/
pa.push_back(j);
}
pj["links"] = pa;
}
static void _moonToJson(nlohmann::json &mj,const World &world)
{
char tmp[4096];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",world.id());
mj["id"] = tmp;
mj["timestamp"] = world.timestamp();
mj["signature"] = Utils::hex(world.signature().data,ZT_C25519_SIGNATURE_LEN,tmp);
mj["updatesMustBeSignedBy"] = Utils::hex(world.updatesMustBeSignedBy().data,ZT_C25519_PUBLIC_KEY_LEN,tmp);
nlohmann::json ra = nlohmann::json::array();
for(std::vector<World::Root>::const_iterator r(world.roots().begin());r!=world.roots().end();++r) {
nlohmann::json rj;
rj["identity"] = r->identity.toString(false,tmp);
nlohmann::json eps = nlohmann::json::array();
for(std::vector<InetAddress>::const_iterator a(r->stableEndpoints.begin());a!=r->stableEndpoints.end();++a)
eps.push_back(a->toString(tmp));
rj["stableEndpoints"] = eps;
ra.push_back(rj);
}
mj["roots"] = ra;
mj["waiting"] = false;
}
class OneServiceImpl;
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf);
static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData);
static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len);
static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen);
static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl);
static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr);
static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result);
static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len);
static int ShttpOnMessageBegin(http_parser *parser);
static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length);
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2)
static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length);
#else
static int ShttpOnStatus(http_parser *parser);
#endif
static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length);
static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length);
static int ShttpOnHeadersComplete(http_parser *parser);
static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length);
static int ShttpOnMessageComplete(http_parser *parser);
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 1)
static const struct http_parser_settings HTTP_PARSER_SETTINGS = {
ShttpOnMessageBegin,
ShttpOnUrl,
ShttpOnStatus,
ShttpOnHeaderField,
ShttpOnValue,
ShttpOnHeadersComplete,
ShttpOnBody,
ShttpOnMessageComplete
};
#else
static const struct http_parser_settings HTTP_PARSER_SETTINGS = {
ShttpOnMessageBegin,
ShttpOnUrl,
ShttpOnHeaderField,
ShttpOnValue,
ShttpOnHeadersComplete,
ShttpOnBody,
ShttpOnMessageComplete
};
#endif
/**
* A TCP connection and related state and buffers
*/
struct TcpConnection
{
enum {
TCP_UNCATEGORIZED_INCOMING, // uncategorized incoming connection
TCP_HTTP_INCOMING,
TCP_HTTP_OUTGOING,
TCP_TUNNEL_OUTGOING // TUNNELED mode proxy outbound connection
} type;
OneServiceImpl *parent;
PhySocket *sock;
InetAddress remoteAddr;
uint64_t lastReceive;
// Used for inbound HTTP connections
http_parser parser;
unsigned long messageSize;
std::string currentHeaderField;
std::string currentHeaderValue;
std::string url;
std::string status;
std::map< std::string,std::string > headers;
std::string readq;
std::string writeq;
Mutex writeq_m;
};
struct OneServiceIncomingPacket
{
uint64_t now;
int64_t sock;
struct sockaddr_storage from;
unsigned int size;
uint8_t data[ZT_MAX_MTU];
};
class OneServiceImpl : public OneService
{
public:
// begin member variables --------------------------------------------------
const std::string _homePath;
std::string _authToken;
std::string _controllerDbPath;
const std::string _networksPath;
const std::string _moonsPath;
EmbeddedNetworkController *_controller;
Phy<OneServiceImpl *> _phy;
Node *_node;
SoftwareUpdater *_updater;
PhySocket *_localControlSocket4;
PhySocket *_localControlSocket6;
bool _updateAutoApply;
bool _allowTcpFallbackRelay;
bool _allowSecondaryPort;
unsigned int _primaryPort;
unsigned int _secondaryPort;
unsigned int _tertiaryPort;
volatile unsigned int _udpPortPickerCounter;
// Local configuration and memo-ized information from it
json _localConfig;
Hashtable< uint64_t,std::vector<InetAddress> > _v4Hints;
Hashtable< uint64_t,std::vector<InetAddress> > _v6Hints;
Hashtable< uint64_t,std::vector<InetAddress> > _v4Blacklists;
Hashtable< uint64_t,std::vector<InetAddress> > _v6Blacklists;
std::vector< InetAddress > _globalV4Blacklist;
std::vector< InetAddress > _globalV6Blacklist;
std::vector< InetAddress > _allowManagementFrom;
std::vector< std::string > _interfacePrefixBlacklist;
Mutex _localConfig_m;
std::vector<InetAddress> explicitBind;
/*
* To attempt to handle NAT/gateway craziness we use three local UDP ports:
*
* [0] is the normal/default port, usually 9993
* [1] is a port derived from our ZeroTier address
* [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings
*
* [2] exists because on some gateways trying to do regular NAT-t interferes
* destructively with uPnP port mapping behavior in very weird buggy ways.
* It's only used if uPnP/NAT-PMP is enabled in this build.
*/
unsigned int _ports[3];
Binder _binder;
// Time we last received a packet from a global address
uint64_t _lastDirectReceiveFromGlobal;
#ifdef ZT_TCP_FALLBACK_RELAY
uint64_t _lastSendToGlobalV4;
#endif
// Last potential sleep/wake event
uint64_t _lastRestart;
// Deadline for the next background task service function
volatile int64_t _nextBackgroundTaskDeadline;
// Configured networks
struct NetworkState
{
NetworkState() :
tap((EthernetTap *)0)
{
// Real defaults are in network 'up' code in network event handler
settings.allowManaged = true;
settings.allowGlobal = false;
settings.allowDefault = false;
settings.allowDNS = false;
memset(&config, 0, sizeof(ZT_VirtualNetworkConfig));
}
~NetworkState()
{
this->managedRoutes.clear();
this->tap.reset();
}
std::shared_ptr<EthernetTap> tap;
ZT_VirtualNetworkConfig config; // memcpy() of raw config from core
std::vector<InetAddress> managedIps;
std::map< InetAddress, SharedPtr<ManagedRoute> > managedRoutes;
NetworkSettings settings;
};
std::map<uint64_t,NetworkState> _nets;
Mutex _nets_m;
// Active TCP/IP connections
std::vector< TcpConnection * > _tcpConnections;
Mutex _tcpConnections_m;
TcpConnection *_tcpFallbackTunnel;
// Termination status information
ReasonForTermination _termReason;
std::string _fatalErrorMessage;
Mutex _termReason_m;
// uPnP/NAT-PMP port mapper if enabled
bool _portMappingEnabled; // local.conf settings
#ifdef ZT_USE_MINIUPNPC
PortMapper *_portMapper;
#endif
// HashiCorp Vault Settings
#if ZT_VAULT_SUPPORT
bool _vaultEnabled;
std::string _vaultURL;
std::string _vaultToken;
std::string _vaultPath; // defaults to cubbyhole/zerotier/identity.secret for per-access key storage
#endif
// Set to false to force service to stop
volatile bool _run;
Mutex _run_m;
RedisConfig *_rc;
std::string _ssoRedirectURL;
// end member variables ----------------------------------------------------
OneServiceImpl(const char *hp,unsigned int port) :
_homePath((hp) ? hp : ".")
,_controllerDbPath(_homePath + ZT_PATH_SEPARATOR_S "controller.d")
,_networksPath(_homePath + ZT_PATH_SEPARATOR_S "networks.d")
,_moonsPath(_homePath + ZT_PATH_SEPARATOR_S "moons.d")
,_controller((EmbeddedNetworkController *)0)
,_phy(this,false,true)
,_node((Node *)0)
,_updater((SoftwareUpdater *)0)
,_localControlSocket4((PhySocket *)0)
,_localControlSocket6((PhySocket *)0)
,_updateAutoApply(false)
,_primaryPort(port)
,_udpPortPickerCounter(0)
,_lastDirectReceiveFromGlobal(0)
#ifdef ZT_TCP_FALLBACK_RELAY
,_lastSendToGlobalV4(0)
#endif
,_lastRestart(0)
,_nextBackgroundTaskDeadline(0)
,_tcpFallbackTunnel((TcpConnection *)0)
,_termReason(ONE_STILL_RUNNING)
,_portMappingEnabled(true)
#ifdef ZT_USE_MINIUPNPC
,_portMapper((PortMapper *)0)
#endif
#ifdef ZT_VAULT_SUPPORT
,_vaultEnabled(false)
,_vaultURL()
,_vaultToken()
,_vaultPath("cubbyhole/zerotier")
#endif
,_run(true)
,_rc(NULL)
,_ssoRedirectURL()
{
_ports[0] = 0;
_ports[1] = 0;
_ports[2] = 0;
#if ZT_VAULT_SUPPORT
curl_global_init(CURL_GLOBAL_DEFAULT);
#endif
}
virtual ~OneServiceImpl()
{
_binder.closeAll(_phy);
_phy.close(_localControlSocket4);
_phy.close(_localControlSocket6);
#if ZT_VAULT_SUPPORT
curl_global_cleanup();
#endif
#ifdef ZT_USE_MINIUPNPC
delete _portMapper;
#endif
delete _controller;
delete _rc;
}
virtual ReasonForTermination run()
{
try {
{
const std::string authTokenPath(_homePath + ZT_PATH_SEPARATOR_S "authtoken.secret");
if (!OSUtils::readFile(authTokenPath.c_str(),_authToken)) {
unsigned char foo[24];
Utils::getSecureRandom(foo,sizeof(foo));
_authToken = "";
for(unsigned int i=0;i<sizeof(foo);++i)
_authToken.push_back("abcdefghijklmnopqrstuvwxyz0123456789"[(unsigned long)foo[i] % 36]);
if (!OSUtils::writeFile(authTokenPath.c_str(),_authToken)) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "authtoken.secret could not be written";
return _termReason;
} else {
OSUtils::lockDownFile(authTokenPath.c_str(),false);
}
}
_authToken = _trimString(_authToken);
}
{
struct ZT_Node_Callbacks cb;
cb.version = 0;
cb.stateGetFunction = SnodeStateGetFunction;
cb.statePutFunction = SnodeStatePutFunction;
cb.wirePacketSendFunction = SnodeWirePacketSendFunction;
cb.virtualNetworkFrameFunction = SnodeVirtualNetworkFrameFunction;
cb.virtualNetworkConfigFunction = SnodeVirtualNetworkConfigFunction;
cb.eventCallback = SnodeEventCallback;
cb.pathCheckFunction = SnodePathCheckFunction;
cb.pathLookupFunction = SnodePathLookupFunction;
_node = new Node(this,(void *)0,&cb,OSUtils::now());
}
// local.conf
readLocalSettings();
applyLocalConfig();
// Save original port number to show it if bind error
const int _configuredPort = _primaryPort;
// Make sure we can use the primary port, and hunt for one if configured to do so
const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random
for(int k=0;k<portTrials;++k) {
if (_primaryPort == 0) {
unsigned int randp = 0;
Utils::getSecureRandom(&randp,sizeof(randp));
_primaryPort = 20000 + (randp % 45500);
}
if (_trialBind(_primaryPort)) {
_ports[0] = _primaryPort;
} else {
_primaryPort = 0;
}
}
if (_ports[0] == 0) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = std::string("cannot bind to local control interface port ")+std::to_string(_configuredPort);
return _termReason;
}
// Bind TCP control socket to 127.0.0.1 and ::1 as well for loopback TCP control socket queries
{
struct sockaddr_in lo4;
memset(&lo4,0,sizeof(lo4));
lo4.sin_family = AF_INET;
lo4.sin_addr.s_addr = Utils::hton((uint32_t)0x7f000001);
lo4.sin_port = Utils::hton((uint16_t)_ports[0]);
_localControlSocket4 = _phy.tcpListen((const struct sockaddr *)&lo4);
struct sockaddr_in6 lo6;
memset(&lo6,0,sizeof(lo6));
lo6.sin6_family = AF_INET6;
lo6.sin6_addr.s6_addr[15] = 1;
lo6.sin6_port = lo4.sin_port;
_localControlSocket6 = _phy.tcpListen((const struct sockaddr *)&lo6);
}
// Save primary port to a file so CLIs and GUIs can learn it easily
char portstr[64];
OSUtils::ztsnprintf(portstr,sizeof(portstr),"%u",_ports[0]);
OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "zerotier-one.port").c_str(),std::string(portstr));
// Attempt to bind to a secondary port.
// This exists because there are buggy NATs out there that fail if more
// than one device behind the same NAT tries to use the same internal
// private address port number. Buggy NATs are a running theme.
//
// This used to pick the secondary port based on the node ID until we
// discovered another problem: buggy routers and malicious traffic
// "detection". A lot of routers have such things built in these days
// and mis-detect ZeroTier traffic as malicious and block it resulting
// in a node that appears to be in a coma. Secondary ports are now
// randomized on startup.
if (_allowSecondaryPort) {
if (_secondaryPort) {
_ports[1] = _secondaryPort;
} else {
_ports[1] = _getRandomPort();
}
}
#ifdef ZT_USE_MINIUPNPC
if (_portMappingEnabled) {
// If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't
// use the other two ports for that because some NATs do really funky
// stuff with ports that are explicitly mapped that breaks things.
if (_ports[1]) {
if (_tertiaryPort) {
_ports[2] = _tertiaryPort;
} else {
_ports[2] = 20000 + (_ports[0] % 40000);
for(int i=0;;++i) {
if (i > 1000) {
_ports[2] = 0;
break;
} else if (++_ports[2] >= 65536) {
_ports[2] = 20000;
}
if (_trialBind(_ports[2]))
break;
}
if (_ports[2]) {
char uniqueName[64];
OSUtils::ztsnprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx@%u",_node->address(),_ports[2]);
_portMapper = new PortMapper(_ports[2],uniqueName);
}
}
}
}
#endif
// Delete legacy iddb.d if present (cleanup)
OSUtils::rmDashRf((_homePath + ZT_PATH_SEPARATOR_S "iddb.d").c_str());
// Network controller is now enabled by default for desktop and server
_controller = new EmbeddedNetworkController(_node,_homePath.c_str(),_controllerDbPath.c_str(),_ports[0], _rc);
if (!_ssoRedirectURL.empty()) {
_controller->setSSORedirectURL(_ssoRedirectURL);
}
_node->setNetconfMaster((void *)_controller);
// Join existing networks in networks.d
{
std::vector<std::string> networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str()));
for(std::vector<std::string>::iterator f(networksDotD.begin());f!=networksDotD.end();++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16)&&(f->substr(16) == ".conf"))
_node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0,(void *)0);
}
}
// Orbit existing moons in moons.d
{
std::vector<std::string> moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str()));
for(std::vector<std::string>::iterator f(moonsDotD.begin());f!=moonsDotD.end();++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16)&&(f->substr(16) == ".moon"))
_node->orbit((void *)0,Utils::hexStrToU64(f->substr(0,dot).c_str()),0);
}
}
// Main I/O loop
_nextBackgroundTaskDeadline = 0;
int64_t clockShouldBe = OSUtils::now();
_lastRestart = clockShouldBe;
int64_t lastTapMulticastGroupCheck = 0;
int64_t lastBindRefresh = 0;
int64_t lastUpdateCheck = clockShouldBe;
int64_t lastCleanedPeersDb = 0;
int64_t lastLocalInterfaceAddressCheck = (clockShouldBe - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle
int64_t lastLocalConfFileCheck = OSUtils::now();
int64_t lastOnline = lastLocalConfFileCheck;
for(;;) {
_run_m.lock();
if (!_run) {
_run_m.unlock();
_termReason_m.lock();
_termReason = ONE_NORMAL_TERMINATION;
_termReason_m.unlock();
break;
} else {
_run_m.unlock();
}
const int64_t now = OSUtils::now();
// Attempt to detect sleep/wake events by detecting delay overruns
bool restarted = false;
if ((now > clockShouldBe)&&((now - clockShouldBe) > 10000)) {
_lastRestart = now;
restarted = true;
}
// Check for updates (if enabled)
if ((_updater)&&((now - lastUpdateCheck) > 10000)) {
lastUpdateCheck = now;
if (_updater->check(now) && _updateAutoApply)
_updater->apply();
}
// Reload local.conf if anything changed recently
if ((now - lastLocalConfFileCheck) >= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) {
lastLocalConfFileCheck = now;
struct stat result;
if(stat((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), &result)==0) {
int64_t mod_time = result.st_mtime * 1000;
if ((now - mod_time) <= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) {
readLocalSettings();
applyLocalConfig();
}
}
}
// If secondary port is not configured to a constant value and we've been offline for a while,
// bind a new secondary port. This is a workaround for a "coma" issue caused by buggy NATs that stop
// working on one port after a while.
if (_node->online()) {
lastOnline = now;
} else if ((_secondaryPort == 0)&&((now - lastOnline) > ZT_PATH_HEARTBEAT_PERIOD)) {
_secondaryPort = _getRandomPort();
lastBindRefresh = 0;
}
// Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default)
if (((now - lastBindRefresh) >= (_node->bondController()->inUse() ? ZT_BINDER_REFRESH_PERIOD / 4 : ZT_BINDER_REFRESH_PERIOD))||(restarted)) {
lastBindRefresh = now;
unsigned int p[3];
unsigned int pc = 0;
for(int i=0;i<3;++i) {
if (_ports[i])
p[pc++] = _ports[i];
}
_binder.refresh(_phy,p,pc,explicitBind,*this);
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap)
syncManagedStuff(n->second,false,true,false);
}
}
}
// Run background task processor in core if it's time to do so
int64_t dl = _nextBackgroundTaskDeadline;
if (dl <= now) {
_node->processBackgroundTasks((void *)0,now,&_nextBackgroundTaskDeadline);
dl = _nextBackgroundTaskDeadline;
}
// Close TCP fallback tunnel if we have direct UDP
if ((_tcpFallbackTunnel)&&((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2)))
_phy.close(_tcpFallbackTunnel->sock);
// Sync multicast group memberships
if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) {
lastTapMulticastGroupCheck = now;
std::vector< std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > > > mgChanges;
{
Mutex::Lock _l(_nets_m);
mgChanges.reserve(_nets.size() + 1);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
mgChanges.push_back(std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > >(n->first,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> >()));
n->second.tap->scanMulticastGroups(mgChanges.back().second.first,mgChanges.back().second.second);
}
}
}
for(std::vector< std::pair< uint64_t,std::pair< std::vector<MulticastGroup>,std::vector<MulticastGroup> > > >::iterator c(mgChanges.begin());c!=mgChanges.end();++c) {
for(std::vector<MulticastGroup>::iterator m(c->second.first.begin());m!=c->second.first.end();++m)
_node->multicastSubscribe((void *)0,c->first,m->mac().toInt(),m->adi());
for(std::vector<MulticastGroup>::iterator m(c->second.second.begin());m!=c->second.second.end();++m)
_node->multicastUnsubscribe(c->first,m->mac().toInt(),m->adi());
}
}
// Sync information about physical network interfaces
if ((now - lastLocalInterfaceAddressCheck) >= (_node->bondController()->inUse() ? ZT_LOCAL_INTERFACE_CHECK_INTERVAL / 8 : ZT_LOCAL_INTERFACE_CHECK_INTERVAL)) {
lastLocalInterfaceAddressCheck = now;
_node->clearLocalInterfaceAddresses();
#ifdef ZT_USE_MINIUPNPC
if (_portMapper) {
std::vector<InetAddress> mappedAddresses(_portMapper->get());
for(std::vector<InetAddress>::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*ext)));
}
#endif
std::vector<InetAddress> boundAddrs(_binder.allBoundLocalInterfaceAddresses());
for(std::vector<InetAddress>::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i) {
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*i)));
}
}
// Clean peers.d periodically
if ((now - lastCleanedPeersDb) >= 3600000) {
lastCleanedPeersDb = now;
OSUtils::cleanDirectory((_homePath + ZT_PATH_SEPARATOR_S "peers.d").c_str(),now - 2592000000LL); // delete older than 30 days
}
const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 500;
clockShouldBe = now + (int64_t)delay;
_phy.poll(delay);
}
} catch (std::exception &e) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = std::string("unexpected exception in main thread: ")+e.what();
} catch ( ... ) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "unexpected exception in main thread: unknown exception";
}
try {
Mutex::Lock _l(_tcpConnections_m);
while (!_tcpConnections.empty())
_phy.close((*_tcpConnections.begin())->sock);
} catch ( ... ) {}
{
Mutex::Lock _l(_nets_m);
_nets.clear();
}
delete _updater;
_updater = (SoftwareUpdater *)0;
delete _node;
_node = (Node *)0;
return _termReason;
}
void readLocalSettings()
{
// Read local configuration
std::map<InetAddress,ZT_PhysicalPathConfiguration> ppc;
// LEGACY: support old "trustedpaths" flat file
FILE *trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(),"r");
if (trustpaths) {
fprintf(stderr,"WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S);
char buf[1024];
while (fgets(buf,sizeof(buf),trustpaths)) {
int fno = 0;
char *saveptr = (char *)0;
uint64_t trustedPathId = 0;
InetAddress trustedPathNetwork;
for(char *f=Utils::stok(buf,"=\r\n \t",&saveptr);(f);f=Utils::stok((char *)0,"=\r\n \t",&saveptr)) {
if (fno == 0) {
trustedPathId = Utils::hexStrToU64(f);
} else if (fno == 1) {
trustedPathNetwork = InetAddress(f);
} else break;
++fno;
}
if ( (trustedPathId != 0) && ((trustedPathNetwork.ss_family == AF_INET)||(trustedPathNetwork.ss_family == AF_INET6)) && (trustedPathNetwork.netmaskBits() > 0) ) {
ppc[trustedPathNetwork].trustedPathId = trustedPathId;
ppc[trustedPathNetwork].mtu = 0; // use default
}
}
fclose(trustpaths);
}
// Read local config file
Mutex::Lock _l2(_localConfig_m);
std::string lcbuf;
if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(),lcbuf)) {
if (lcbuf.length() > 0) {
try {
_localConfig = OSUtils::jsonParse(lcbuf);
if (!_localConfig.is_object()) {
fprintf(stderr,"ERROR: unable to parse local.conf (root element is not a JSON object)" ZT_EOL_S);
exit(1);
}
} catch ( ... ) {
fprintf(stderr,"ERROR: unable to parse local.conf (invalid JSON)" ZT_EOL_S);
exit(1);
}
}
}
// Make a copy so lookups don't modify in place;
json lc(_localConfig);
// Get any trusted paths in local.conf (we'll parse the rest of physical[] elsewhere)
json &physical = lc["physical"];
if (physical.is_object()) {
for(json::iterator phy(physical.begin());phy!=physical.end();++phy) {
InetAddress net(OSUtils::jsonString(phy.key(),"").c_str());
if (net) {
if (phy.value().is_object()) {
uint64_t tpid;
if ((tpid = OSUtils::jsonInt(phy.value()["trustedPathId"],0ULL)) != 0ULL) {
if ((net.ss_family == AF_INET)||(net.ss_family == AF_INET6))
ppc[net].trustedPathId = tpid;
}
ppc[net].mtu = (int)OSUtils::jsonInt(phy.value()["mtu"],0ULL); // 0 means use default
}
}
}
}
json &settings = lc["settings"];
if (settings.is_object()) {
// Allow controller DB path to be put somewhere else
const std::string cdbp(OSUtils::jsonString(settings["controllerDbPath"],""));
if (cdbp.length() > 0)
_controllerDbPath = cdbp;
_ssoRedirectURL = OSUtils::jsonString(settings["ssoRedirectURL"], "");
#ifdef ZT_CONTROLLER_USE_LIBPQ
// TODO: Redis config
json &redis = settings["redis"];
if (redis.is_object() && _rc == NULL) {
_rc = new RedisConfig;
_rc->hostname = OSUtils::jsonString(redis["hostname"],"");
_rc->port = OSUtils::jsonInt(redis["port"],0);
_rc->password = OSUtils::jsonString(redis["password"],"");
_rc->clusterMode = OSUtils::jsonBool(redis["clusterMode"], false);
}
#endif
// Bind to wildcard instead of to specific interfaces (disables full tunnel capability)
json &bind = settings["bind"];
if (bind.is_array()) {
for(unsigned long i=0;i<bind.size();++i) {
const std::string ips(OSUtils::jsonString(bind[i],""));
if (ips.length() > 0) {
InetAddress ip(ips.c_str());
if ((ip.ss_family == AF_INET)||(ip.ss_family == AF_INET6))
explicitBind.push_back(ip);
}
}
}
}
// Set trusted paths if there are any
if (!ppc.empty()) {
for(std::map<InetAddress,ZT_PhysicalPathConfiguration>::iterator i(ppc.begin());i!=ppc.end();++i)
_node->setPhysicalPathConfiguration(reinterpret_cast<const struct sockaddr_storage *>(&(i->first)),&(i->second));
}
}
virtual ReasonForTermination reasonForTermination() const
{
Mutex::Lock _l(_termReason_m);
return _termReason;
}
virtual std::string fatalErrorMessage() const
{
Mutex::Lock _l(_termReason_m);
return _fatalErrorMessage;
}
virtual std::string portDeviceName(uint64_t nwid) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t,NetworkState>::const_iterator n(_nets.find(nwid));
if ((n != _nets.end())&&(n->second.tap))
return n->second.tap->deviceName();
else return std::string();
}
#ifdef ZT_SDK
virtual std::string givenHomePath()
{
return _homePath;
}
void getRoutes(uint64_t nwid, void *routeArray, unsigned int *numRoutes)
{
Mutex::Lock _l(_nets_m);
NetworkState &n = _nets[nwid];
*numRoutes = *numRoutes < n.config.routeCount ? *numRoutes : n.config.routeCount;
for(unsigned int i=0; i<*numRoutes; i++) {
ZT_VirtualNetworkRoute *vnr = (ZT_VirtualNetworkRoute*)routeArray;
memcpy(&vnr[i], &(n.config.routes[i]), sizeof(ZT_VirtualNetworkRoute));
}
}
virtual Node *getNode()
{
return _node;
}
#endif // ZT_SDK
virtual void terminate()
{
_run_m.lock();
_run = false;
_run_m.unlock();
_phy.whack();
}
virtual bool getNetworkSettings(const uint64_t nwid,NetworkSettings &settings) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t,NetworkState>::const_iterator n(_nets.find(nwid));
if (n == _nets.end())
return false;
settings = n->second.settings;
return true;
}
virtual bool setNetworkSettings(const uint64_t nwid,const NetworkSettings &settings)
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t,NetworkState>::iterator n(_nets.find(nwid));
if (n == _nets.end())
return false;
n->second.settings = settings;
char nlcpath[4096];
OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_networksPath.c_str(),nwid);
FILE *out = fopen(nlcpath,"w");
if (out) {
fprintf(out,"allowManaged=%d\n",(int)n->second.settings.allowManaged);
fprintf(out,"allowGlobal=%d\n",(int)n->second.settings.allowGlobal);
fprintf(out,"allowDefault=%d\n",(int)n->second.settings.allowDefault);
fprintf(out,"allowDNS=%d\n",(int)n->second.settings.allowDNS);
fclose(out);
}
if (n->second.tap)
syncManagedStuff(n->second,true,true,true);
return true;
}
// =========================================================================
// Internal implementation methods for control plane, route setup, etc.
// =========================================================================
inline unsigned int handleControlPlaneHttpRequest(
const InetAddress &fromAddress,
unsigned int httpMethod,
const std::string &path,
const std::map<std::string,std::string> &headers,
const std::string &body,
std::string &responseBody,
std::string &responseContentType)
{
char tmp[256];
unsigned int scode = 404;
json res;
std::vector<std::string> ps(OSUtils::split(path.c_str(),"/","",""));
std::map<std::string,std::string> urlArgs;
/* Note: this is kind of restricted in what it'll take. It does not support
* URL encoding, and /'s in URL args will screw it up. But the only URL args
* it really uses in ?jsonp=funcionName, and otherwise it just takes simple
* paths to simply-named resources. */
if (!ps.empty()) {
std::size_t qpos = ps[ps.size() - 1].find('?');
if (qpos != std::string::npos) {
std::string args(ps[ps.size() - 1].substr(qpos + 1));
ps[ps.size() - 1] = ps[ps.size() - 1].substr(0,qpos);
std::vector<std::string> asplit(OSUtils::split(args.c_str(),"&","",""));
for(std::vector<std::string>::iterator a(asplit.begin());a!=asplit.end();++a) {
std::size_t eqpos = a->find('=');
if (eqpos == std::string::npos)
urlArgs[*a] = "";
else urlArgs[a->substr(0,eqpos)] = a->substr(eqpos + 1);
}
}
} else {
return 404;
}
bool isAuth = false;
{
std::map<std::string,std::string>::const_iterator ah(headers.find("x-zt1-auth"));
if ((ah != headers.end())&&(_authToken == ah->second)) {
isAuth = true;
} else {
ah = urlArgs.find("auth");
if ((ah != urlArgs.end())&&(_authToken == ah->second))
isAuth = true;
}
}
#ifdef __SYNOLOGY__
// Authenticate via Synology's built-in cgi script
if (!isAuth) {
int synotoken_pos = path.find("SynoToken");
int argpos = path.find('?');
if(synotoken_pos != std::string::npos && argpos != std::string::npos) {
std::string cookie = path.substr(argpos+1, synotoken_pos-(argpos+1));
std::string synotoken = path.substr(synotoken_pos);
std::string cookie_val = cookie.substr(cookie.find('=')+1);
std::string synotoken_val = synotoken.substr(synotoken.find('=')+1);
// Set necessary env for auth script
std::map<std::string,std::string>::const_iterator ah2(headers.find("x-forwarded-for"));
setenv("HTTP_COOKIE", cookie_val.c_str(), true);
setenv("HTTP_X_SYNO_TOKEN", synotoken_val.c_str(), true);
setenv("REMOTE_ADDR", ah2->second.c_str(),true);
char user[256], buf[1024];
FILE *fp = NULL;
bzero(user, 256);
fp = popen("/usr/syno/synoman/webman/modules/authenticate.cgi", "r");
if(!fp)
isAuth = false;
else {
bzero(buf, sizeof(buf));
fread(buf, 1024, 1, fp);
if(strlen(buf) > 0) {
snprintf(user, 256, "%s", buf);
isAuth = true;
}
}
pclose(fp);
}
}
#endif
if (httpMethod == HTTP_GET) {
if (isAuth) {
if (ps[0] == "bond") {
if (_node->bondController()->inUse()) {
if (ps.size() == 3) {
//fprintf(stderr, "ps[0]=%s\nps[1]=%s\nps[2]=%s\n", ps[0].c_str(), ps[1].c_str(), ps[2].c_str());
if (ps[2].length() == 10) {
// check if hex string
const uint64_t id = Utils::hexStrToU64(ps[2].c_str());
if (ps[1] == "show") {
SharedPtr<Bond> bond = _node->bondController()->getBondByPeerId(id);
if (bond) {
_bondToJson(res,bond);
scode = 200;
} else {
fprintf(stderr, "unable to find bond to peer %llx\n", (unsigned long long)id);
scode = 400;
}
}
if (ps[1] == "flows") {
fprintf(stderr, "displaying flows\n");
}
}
}
} else {
scode = 400; /* bond controller is not enabled */
}
} else if (ps[0] == "config") {
Mutex::Lock lc(_localConfig_m);
res = _localConfig;
scode = 200;
} else if (ps[0] == "status") {
ZT_NodeStatus status;
_node->status(&status);
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.10llx",status.address);
res["address"] = tmp;
res["publicIdentity"] = status.publicIdentity;
res["online"] = (bool)(status.online != 0);
res["tcpFallbackActive"] = (_tcpFallbackTunnel != (TcpConnection *)0);
res["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR;
res["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR;
res["versionRev"] = ZEROTIER_ONE_VERSION_REVISION;
res["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD;
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%d.%d.%d",ZEROTIER_ONE_VERSION_MAJOR,ZEROTIER_ONE_VERSION_MINOR,ZEROTIER_ONE_VERSION_REVISION);
res["version"] = tmp;
res["clock"] = OSUtils::now();
{
Mutex::Lock _l(_localConfig_m);
res["config"] = _localConfig;
}
json &settings = res["config"]["settings"];
settings["primaryPort"] = OSUtils::jsonInt(settings["primaryPort"],(uint64_t)_primaryPort) & 0xffff;
settings["allowTcpFallbackRelay"] = OSUtils::jsonBool(settings["allowTcpFallbackRelay"],_allowTcpFallbackRelay);
/*
if (_node->bondController()->inUse()) {
json &multipathConfig = res["bonds"];
ZT_PeerList *pl = _node->peers();
char peerAddrStr[256];
if (pl) {
for(unsigned long i=0;i<pl->peerCount;++i) {
if (pl->peers[i].isBonded) {
nlohmann::json pj;
_bondToJson(pj,&(pl->peers[i]));
OSUtils::ztsnprintf(peerAddrStr,sizeof(peerAddrStr),"%.10llx",pl->peers[i].address);
multipathConfig[peerAddrStr] = (pj);
}
}
}
}
*/
#ifdef ZT_USE_MINIUPNPC
settings["portMappingEnabled"] = OSUtils::jsonBool(settings["portMappingEnabled"],true);
#else
settings["portMappingEnabled"] = false; // not supported in build
#endif
#ifndef ZT_SDK
settings["softwareUpdate"] = OSUtils::jsonString(settings["softwareUpdate"],ZT_SOFTWARE_UPDATE_DEFAULT);
settings["softwareUpdateChannel"] = OSUtils::jsonString(settings["softwareUpdateChannel"],ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL);
#endif
const World planet(_node->planet());
res["planetWorldId"] = planet.id();
res["planetWorldTimestamp"] = planet.timestamp();
scode = 200;
} else if (ps[0] == "moon") {
std::vector<World> moons(_node->moons());
if (ps.size() == 1) {
// Return [array] of all moons
res = json::array();
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
json mj;
_moonToJson(mj,*m);
res.push_back(mj);
}
scode = 200;
} else {
// Return a single moon by ID
const uint64_t id = Utils::hexStrToU64(ps[1].c_str());
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
if (m->id() == id) {
_moonToJson(res,*m);
scode = 200;
break;
}
}
}
} else if (ps[0] == "network") {
ZT_VirtualNetworkList *nws = _node->networks();
if (nws) {
if (ps.size() == 1) {
// Return [array] of all networks
res = nlohmann::json::array();
for(unsigned long i=0;i<nws->networkCount;++i) {
OneService::NetworkSettings localSettings;
getNetworkSettings(nws->networks[i].nwid,localSettings);
nlohmann::json nj;
_networkToJson(nj,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings);
res.push_back(nj);
}
scode = 200;
} else if (ps.size() == 2) {
// Return a single network by ID or 404 if not found
const uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str());
for(unsigned long i=0;i<nws->networkCount;++i) {
if (nws->networks[i].nwid == wantnw) {
OneService::NetworkSettings localSettings;
getNetworkSettings(nws->networks[i].nwid,localSettings);
_networkToJson(res,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings);
scode = 200;
break;
}
}
} else scode = 404;
_node->freeQueryResult((void *)nws);
} else scode = 500;
} else if (ps[0] == "peer") {
ZT_PeerList *pl = _node->peers();
if (pl) {
if (ps.size() == 1) {
// Return [array] of all peers
res = nlohmann::json::array();
for(unsigned long i=0;i<pl->peerCount;++i) {
nlohmann::json pj;
_peerToJson(pj,&(pl->peers[i]));
res.push_back(pj);
}
scode = 200;
} else if (ps.size() == 2) {
// Return a single peer by ID or 404 if not found
uint64_t wantp = Utils::hexStrToU64(ps[1].c_str());
for(unsigned long i=0;i<pl->peerCount;++i) {
if (pl->peers[i].address == wantp) {
_peerToJson(res,&(pl->peers[i]));
scode = 200;
break;
}
}
} else scode = 404;
_node->freeQueryResult((void *)pl);
} else scode = 500;
} else if (ps[0] == "bonds") {
ZT_PeerList *pl = _node->peers();
if (pl) {
if (ps.size() == 1) {
// Return [array] of all peers
res = nlohmann::json::array();
for(unsigned long i=0;i<pl->peerCount;++i) {
nlohmann::json pj;
_peerToJson(pj,&(pl->peers[i]));
res.push_back(pj);
}
scode = 200;
} else if (ps.size() == 2) {
// Return a single peer by ID or 404 if not found
uint64_t wantp = Utils::hexStrToU64(ps[1].c_str());
for(unsigned long i=0;i<pl->peerCount;++i) {
if (pl->peers[i].address == wantp) {
_peerToJson(res,&(pl->peers[i]));
scode = 200;
break;
}
}
} else scode = 404;
_node->freeQueryResult((void *)pl);
} else scode = 500;
} else {
if (_controller) {
scode = _controller->handleControlPlaneHttpGET(std::vector<std::string>(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType);
} else scode = 404;
}
} else scode = 401; // isAuth == false
} else if ((httpMethod == HTTP_POST)||(httpMethod == HTTP_PUT)) {
if (isAuth) {
if (ps[0] == "bond") {
if (_node->bondController()->inUse()) {
if (ps.size() == 3) {
//fprintf(stderr, "ps[0]=%s\nps[1]=%s\nps[2]=%s\n", ps[0].c_str(), ps[1].c_str(), ps[2].c_str());
if (ps[2].length() == 10) {
// check if hex string
const uint64_t id = Utils::hexStrToU64(ps[2].c_str());
if (ps[1] == "rotate") {
SharedPtr<Bond> bond = _node->bondController()->getBondByPeerId(id);
if (bond) {
scode = bond->abForciblyRotateLink() ? 200 : 400;
} else {
fprintf(stderr, "unable to find bond to peer %llx\n", (unsigned long long)id);
scode = 400;
}
}
if (ps[1] == "enable") {
fprintf(stderr, "enabling bond\n");
}
}
}
} else {
scode = 400; /* bond controller is not enabled */
}
} else if (ps[0] == "config") {
// Right now we only support writing the things the UI supports changing.
if (ps.size() == 2) {
if (ps[1] == "settings") {
try {
json j(OSUtils::jsonParse(body));
if (j.is_object()) {
Mutex::Lock lcl(_localConfig_m);
json lc(_localConfig);
for(json::const_iterator s(j.begin());s!=j.end();++s) {
lc["settings"][s.key()] = s.value();
}
std::string lcStr = OSUtils::jsonDump(lc, 4);
if (OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), lcStr)) {
_localConfig = lc;
}
} else {
scode = 400;
}
} catch ( ... ) {
scode = 400;
}
} else {
scode = 404;
}
} else {
scode = 404;
}
} else if (ps[0] == "moon") {
if (ps.size() == 2) {
uint64_t seed = 0;
try {
json j(OSUtils::jsonParse(body));
if (j.is_object()) {
seed = Utils::hexStrToU64(OSUtils::jsonString(j["seed"],"0").c_str());
}
} catch ( ... ) {
// discard invalid JSON
}
std::vector<World> moons(_node->moons());
const uint64_t id = Utils::hexStrToU64(ps[1].c_str());
for(std::vector<World>::const_iterator m(moons.begin());m!=moons.end();++m) {
if (m->id() == id) {
_moonToJson(res,*m);
scode = 200;
break;
}
}
if ((scode != 200)&&(seed != 0)) {
char tmp[64];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"%.16llx",id);
res["id"] = tmp;
res["roots"] = json::array();
res["timestamp"] = 0;
res["signature"] = json();
res["updatesMustBeSignedBy"] = json();
res["waiting"] = true;
_node->orbit((void *)0,id,seed);
scode = 200;
}
} else scode = 404;
} else if (ps[0] == "network") {
if (ps.size() == 2) {
uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str());
_node->join(wantnw,(void *)0,(void *)0); // does nothing if we are a member
ZT_VirtualNetworkList *nws = _node->networks();
if (nws) {
for(unsigned long i=0;i<nws->networkCount;++i) {
if (nws->networks[i].nwid == wantnw) {
OneService::NetworkSettings localSettings;
getNetworkSettings(nws->networks[i].nwid,localSettings);
try {
json j(OSUtils::jsonParse(body));
if (j.is_object()) {
json &allowManaged = j["allowManaged"];
if (allowManaged.is_boolean()) localSettings.allowManaged = (bool)allowManaged;
json &allowGlobal = j["allowGlobal"];
if (allowGlobal.is_boolean()) localSettings.allowGlobal = (bool)allowGlobal;
json &allowDefault = j["allowDefault"];
if (allowDefault.is_boolean()) localSettings.allowDefault = (bool)allowDefault;
json &allowDNS = j["allowDNS"];
if (allowDNS.is_boolean()) localSettings.allowDNS = (bool)allowDNS;
}
} catch ( ... ) {
// discard invalid JSON
}
setNetworkSettings(nws->networks[i].nwid,localSettings);
_networkToJson(res,&(nws->networks[i]),portDeviceName(nws->networks[i].nwid),localSettings);
scode = 200;
break;
}
}
_node->freeQueryResult((void *)nws);
} else scode = 500;
} else scode = 404;
} else {
if (_controller)
scode = _controller->handleControlPlaneHttpPOST(std::vector<std::string>(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType);
else scode = 404;
}
} else scode = 401; // isAuth == false
} else if (httpMethod == HTTP_DELETE) {
if (isAuth) {
if (ps[0] == "moon") {
if (ps.size() == 2) {
_node->deorbit((void *)0,Utils::hexStrToU64(ps[1].c_str()));
res["result"] = true;
scode = 200;
} // else 404
} else if (ps[0] == "network") {
ZT_VirtualNetworkList *nws = _node->networks();
if (nws) {
if (ps.size() == 2) {
uint64_t wantnw = Utils::hexStrToU64(ps[1].c_str());
for(unsigned long i=0;i<nws->networkCount;++i) {
if (nws->networks[i].nwid == wantnw) {
_node->leave(wantnw,(void **)0,(void *)0);
res["result"] = true;
scode = 200;
break;
}
}
} // else 404
_node->freeQueryResult((void *)nws);
} else scode = 500;
} else {
if (_controller)
scode = _controller->handleControlPlaneHttpDELETE(std::vector<std::string>(ps.begin()+1,ps.end()),urlArgs,headers,body,responseBody,responseContentType);
else scode = 404;
}
} else scode = 401; // isAuth = false
} else {
scode = 400;
}
if (responseBody.length() == 0) {
if ((res.is_object())||(res.is_array()))
responseBody = OSUtils::jsonDump(res);
else responseBody = "{}";
responseContentType = "application/json";
}
// Wrap result in jsonp function call if the user included a jsonp= url argument.
// Also double-check isAuth since forbidding this without auth feels safer.
std::map<std::string,std::string>::const_iterator jsonp(urlArgs.find("jsonp"));
if ((isAuth)&&(jsonp != urlArgs.end())&&(responseContentType == "application/json")) {
if (responseBody.length() > 0)
responseBody = jsonp->second + "(" + responseBody + ");";
else responseBody = jsonp->second + "(null);";
responseContentType = "application/javascript";
}
return scode;
}
// Must be called after _localConfig is read or modified
void applyLocalConfig()
{
Mutex::Lock _l(_localConfig_m);
json lc(_localConfig);
_v4Hints.clear();
_v6Hints.clear();
_v4Blacklists.clear();
_v6Blacklists.clear();
json &virt = lc["virtual"];
if (virt.is_object()) {
for(json::iterator v(virt.begin());v!=virt.end();++v) {
const std::string nstr = v.key();
if ((nstr.length() == ZT_ADDRESS_LENGTH_HEX)&&(v.value().is_object())) {
const Address ztaddr(Utils::hexStrToU64(nstr.c_str()));
if (ztaddr) {
const uint64_t ztaddr2 = ztaddr.toInt();
std::vector<InetAddress> &v4h = _v4Hints[ztaddr2];
std::vector<InetAddress> &v6h = _v6Hints[ztaddr2];
std::vector<InetAddress> &v4b = _v4Blacklists[ztaddr2];
std::vector<InetAddress> &v6b = _v6Blacklists[ztaddr2];
json &tryAddrs = v.value()["try"];
if (tryAddrs.is_array()) {
for(unsigned long i=0;i<tryAddrs.size();++i) {
const InetAddress ip(OSUtils::jsonString(tryAddrs[i],"").c_str());
if (ip.ss_family == AF_INET)
v4h.push_back(ip);
else if (ip.ss_family == AF_INET6)
v6h.push_back(ip);
}
}
json &blAddrs = v.value()["blacklist"];
if (blAddrs.is_array()) {
for(unsigned long i=0;i<blAddrs.size();++i) {
const InetAddress ip(OSUtils::jsonString(blAddrs[i],"").c_str());
if (ip.ss_family == AF_INET)
v4b.push_back(ip);
else if (ip.ss_family == AF_INET6)
v6b.push_back(ip);
}
}
if (v4h.empty()) _v4Hints.erase(ztaddr2);
if (v6h.empty()) _v6Hints.erase(ztaddr2);
if (v4b.empty()) _v4Blacklists.erase(ztaddr2);
if (v6b.empty()) _v6Blacklists.erase(ztaddr2);
}
}
}
}
_globalV4Blacklist.clear();
_globalV6Blacklist.clear();
json &physical = lc["physical"];
if (physical.is_object()) {
for(json::iterator phy(physical.begin());phy!=physical.end();++phy) {
const InetAddress net(OSUtils::jsonString(phy.key(),"").c_str());
if ((net)&&(net.netmaskBits() > 0)) {
if (phy.value().is_object()) {
if (OSUtils::jsonBool(phy.value()["blacklist"],false)) {
if (net.ss_family == AF_INET)
_globalV4Blacklist.push_back(net);
else if (net.ss_family == AF_INET6)
_globalV6Blacklist.push_back(net);
}
}
}
}
}
_allowManagementFrom.clear();
_interfacePrefixBlacklist.clear();
json &settings = lc["settings"];
if (!_node->bondController()->inUse()) {
// defaultBondingPolicy
std::string defaultBondingPolicyStr(OSUtils::jsonString(settings["defaultBondingPolicy"],""));
int defaultBondingPolicy = _node->bondController()->getPolicyCodeByStr(defaultBondingPolicyStr);
_node->bondController()->setBondingLayerDefaultPolicy(defaultBondingPolicy);
_node->bondController()->setBondingLayerDefaultPolicyStr(defaultBondingPolicyStr); // Used if custom policy
// Custom Policies
json &customBondingPolicies = settings["policies"];
for (json::iterator policyItr = customBondingPolicies.begin(); policyItr != customBondingPolicies.end();++policyItr) {
// Custom Policy
std::string customPolicyStr(policyItr.key());
json &customPolicy = policyItr.value();
std::string basePolicyStr(OSUtils::jsonString(customPolicy["basePolicy"],""));
if (basePolicyStr.empty()) {
fprintf(stderr, "error: no base policy was specified for custom policy (%s)\n", customPolicyStr.c_str());
}
int basePolicyCode = _node->bondController()->getPolicyCodeByStr(basePolicyStr);
if (basePolicyCode == ZT_BOND_POLICY_NONE) {
fprintf(stderr, "error: custom policy (%s) is invalid, unknown base policy (%s).\n",
customPolicyStr.c_str(), basePolicyStr.c_str());
continue;
} if (_node->bondController()->getPolicyCodeByStr(customPolicyStr) != ZT_BOND_POLICY_NONE) {
fprintf(stderr, "error: custom policy (%s) will be ignored, cannot use standard policy names for custom policies.\n",
customPolicyStr.c_str());
continue;
}
// New bond, used as a copy template for new instances
SharedPtr<Bond> newTemplateBond = new Bond(NULL, basePolicyStr, customPolicyStr, SharedPtr<Peer>());
// Acceptable ranges
newTemplateBond->setPolicy(basePolicyCode);
newTemplateBond->setMaxAcceptableLatency(OSUtils::jsonInt(customPolicy["maxAcceptableLatency"],-1));
newTemplateBond->setMaxAcceptableMeanLatency(OSUtils::jsonInt(customPolicy["maxAcceptableMeanLatency"],-1));
newTemplateBond->setMaxAcceptablePacketDelayVariance(OSUtils::jsonInt(customPolicy["maxAcceptablePacketDelayVariance"],-1));
newTemplateBond->setMaxAcceptablePacketLossRatio((float)OSUtils::jsonDouble(customPolicy["maxAcceptablePacketLossRatio"],-1));
newTemplateBond->setMaxAcceptablePacketErrorRatio((float)OSUtils::jsonDouble(customPolicy["maxAcceptablePacketErrorRatio"],-1));
newTemplateBond->setMinAcceptableAllocation((float)OSUtils::jsonDouble(customPolicy["minAcceptableAllocation"],0));
// Quality weights
json &qualityWeights = customPolicy["qualityWeights"];
if (qualityWeights.size() == ZT_QOS_WEIGHT_SIZE) { // TODO: Generalize this
float weights[ZT_QOS_WEIGHT_SIZE];
weights[ZT_QOS_LAT_IDX] = (float)OSUtils::jsonDouble(qualityWeights["lat"],0.0);
weights[ZT_QOS_LTM_IDX] = (float)OSUtils::jsonDouble(qualityWeights["ltm"],0.0);
weights[ZT_QOS_PDV_IDX] = (float)OSUtils::jsonDouble(qualityWeights["pdv"],0.0);
weights[ZT_QOS_PLR_IDX] = (float)OSUtils::jsonDouble(qualityWeights["plr"],0.0);
weights[ZT_QOS_PER_IDX] = (float)OSUtils::jsonDouble(qualityWeights["per"],0.0);
weights[ZT_QOS_THR_IDX] = (float)OSUtils::jsonDouble(qualityWeights["thr"],0.0);
weights[ZT_QOS_THM_IDX] = (float)OSUtils::jsonDouble(qualityWeights["thm"],0.0);
weights[ZT_QOS_THV_IDX] = (float)OSUtils::jsonDouble(qualityWeights["thv"],0.0);
newTemplateBond->setUserQualityWeights(weights,ZT_QOS_WEIGHT_SIZE);
}
// Bond-specific properties
newTemplateBond->setUpDelay(OSUtils::jsonInt(customPolicy["upDelay"],-1));
newTemplateBond->setDownDelay(OSUtils::jsonInt(customPolicy["downDelay"],-1));
newTemplateBond->setFlowRebalanceStrategy(OSUtils::jsonInt(customPolicy["flowRebalanceStrategy"],(uint64_t)0));
newTemplateBond->setFailoverInterval(OSUtils::jsonInt(customPolicy["failoverInterval"],ZT_BOND_FAILOVER_DEFAULT_INTERVAL));
newTemplateBond->setPacketsPerLink(OSUtils::jsonInt(customPolicy["packetsPerLink"],-1));
// Policy-Specific link set
json &links = customPolicy["links"];
for (json::iterator linkItr = links.begin(); linkItr != links.end();++linkItr) {
std::string linkNameStr(linkItr.key());
json &link = linkItr.value();
bool enabled = OSUtils::jsonInt(link["enabled"],true);
uint32_t speed = OSUtils::jsonInt(link["speed"],0);
float alloc = (float)OSUtils::jsonDouble(link["alloc"],0);
if (speed && alloc) {
fprintf(stderr, "error: cannot specify both speed (%d) and alloc (%f) for link (%s), pick one, link disabled.\n",
speed, alloc, linkNameStr.c_str());
enabled = false;
}
uint8_t ipvPref = OSUtils::jsonInt(link["ipvPref"],0);
std::string failoverToStr(OSUtils::jsonString(link["failoverTo"],""));
// Mode
std::string linkModeStr(OSUtils::jsonString(link["mode"],"spare"));
uint8_t linkMode = ZT_BOND_SLAVE_MODE_SPARE;
if (linkModeStr == "primary") { linkMode = ZT_BOND_SLAVE_MODE_PRIMARY; }
if (linkModeStr == "spare") { linkMode = ZT_BOND_SLAVE_MODE_SPARE; }
// ipvPref
if ((ipvPref != 0) && (ipvPref != 4) && (ipvPref != 6) && (ipvPref != 46) && (ipvPref != 64)) {
fprintf(stderr, "error: invalid ipvPref value (%d), link disabled.\n", ipvPref);
enabled = false;
}
if (linkMode == ZT_BOND_SLAVE_MODE_SPARE && failoverToStr.length()) {
fprintf(stderr, "error: cannot specify failover links for spares, link disabled.\n");
failoverToStr = "";
enabled = false;
}
_node->bondController()->addCustomLink(customPolicyStr, new Link(linkNameStr,ipvPref,speed,enabled,linkMode,failoverToStr,alloc));
}
std::string linkSelectMethodStr(OSUtils::jsonString(customPolicy["activeReselect"],"optimize"));
if (linkSelectMethodStr == "always") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_ALWAYS);
}
if (linkSelectMethodStr == "better") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_BETTER);
}
if (linkSelectMethodStr == "failure") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_FAILURE);
}
if (linkSelectMethodStr == "optimize") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_OPTIMIZE);
}
if (newTemplateBond->getLinkSelectMethod() < 0 || newTemplateBond->getLinkSelectMethod() > 3) {
fprintf(stderr, "warning: invalid value (%s) for linkSelectMethod, assuming mode: always\n", linkSelectMethodStr.c_str());
}
/*
newBond->setPolicy(_node->bondController()->getPolicyCodeByStr(basePolicyStr));
newBond->setFlowHashing((bool)OSUtils::jsonInt(userSpecifiedBondingPolicies[i]["allowFlowHashing"],(bool)allowFlowHashing));
newBond->setBondMonitorInterval((unsigned int)OSUtils::jsonInt(userSpecifiedBondingPolicies[i]["monitorInterval"],(uint64_t)0));
newBond->setAllowPathNegotiation((bool)OSUtils::jsonInt(userSpecifiedBondingPolicies[i]["allowPathNegotiation"],(bool)false));
*/
if (!_node->bondController()->addCustomPolicy(newTemplateBond)) {
fprintf(stderr, "error: a custom policy of this name (%s) already exists.\n", customPolicyStr.c_str());
}
}
// Peer-specific bonding
json &peerSpecificBonds = settings["peerSpecificBonds"];
for (json::iterator peerItr = peerSpecificBonds.begin(); peerItr != peerSpecificBonds.end();++peerItr) {
_node->bondController()->assignBondingPolicyToPeer(std::stoull(peerItr.key(),0,16), peerItr.value());
}
// Check settings
if (defaultBondingPolicyStr.length() && !defaultBondingPolicy && !_node->bondController()->inUse()) {
fprintf(stderr, "error: unknown policy (%s) specified by defaultBondingPolicy, bond disabled.\n", defaultBondingPolicyStr.c_str());
}
}
// bondingPolicy cannot be used with allowTcpFallbackRelay
_allowTcpFallbackRelay = OSUtils::jsonBool(settings["allowTcpFallbackRelay"],true) && !(_node->bondController()->inUse());
_primaryPort = (unsigned int)OSUtils::jsonInt(settings["primaryPort"],(uint64_t)_primaryPort) & 0xffff;
_allowSecondaryPort = OSUtils::jsonBool(settings["allowSecondaryPort"],true);
_secondaryPort = (unsigned int)OSUtils::jsonInt(settings["secondaryPort"],0);
_tertiaryPort = (unsigned int)OSUtils::jsonInt(settings["tertiaryPort"],0);
if (_secondaryPort != 0 || _tertiaryPort != 0) {
fprintf(stderr,"WARNING: using manually-specified secondary and/or tertiary ports. This can cause NAT issues." ZT_EOL_S);
}
_portMappingEnabled = OSUtils::jsonBool(settings["portMappingEnabled"],true);
#ifndef ZT_SDK
const std::string up(OSUtils::jsonString(settings["softwareUpdate"],ZT_SOFTWARE_UPDATE_DEFAULT));
const bool udist = OSUtils::jsonBool(settings["softwareUpdateDist"],false);
if (((up == "apply")||(up == "download"))||(udist)) {
if (!_updater)
_updater = new SoftwareUpdater(*_node,_homePath);
_updateAutoApply = (up == "apply");
_updater->setUpdateDistribution(udist);
_updater->setChannel(OSUtils::jsonString(settings["softwareUpdateChannel"],ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL));
} else {
delete _updater;
_updater = (SoftwareUpdater *)0;
_updateAutoApply = false;
}
#endif
json &ignoreIfs = settings["interfacePrefixBlacklist"];
if (ignoreIfs.is_array()) {
for(unsigned long i=0;i<ignoreIfs.size();++i) {
const std::string tmp(OSUtils::jsonString(ignoreIfs[i],""));
if (tmp.length() > 0)
_interfacePrefixBlacklist.push_back(tmp);
}
}
json &amf = settings["allowManagementFrom"];
if (amf.is_array()) {
for(unsigned long i=0;i<amf.size();++i) {
const InetAddress nw(OSUtils::jsonString(amf[i],"").c_str());
if (nw)
_allowManagementFrom.push_back(nw);
}
}
}
#if ZT_VAULT_SUPPORT
json &vault = settings["vault"];
if (vault.is_object()) {
const std::string url(OSUtils::jsonString(vault["vaultURL"], "").c_str());
if (!url.empty()) {
_vaultURL = url;
}
const std::string token(OSUtils::jsonString(vault["vaultToken"], "").c_str());
if (!token.empty()) {
_vaultToken = token;
}
const std::string path(OSUtils::jsonString(vault["vaultPath"], "").c_str());
if (!path.empty()) {
_vaultPath = path;
}
}
// also check environment variables for values. Environment variables
// will override local.conf variables
const std::string envURL(getenv("VAULT_ADDR"));
if (!envURL.empty()) {
_vaultURL = envURL;
}
const std::string envToken(getenv("VAULT_TOKEN"));
if (!envToken.empty()) {
_vaultToken = envToken;
}
const std::string envPath(getenv("VAULT_PATH"));
if (!envPath.empty()) {
_vaultPath = envPath;
}
if (!_vaultURL.empty() && !_vaultToken.empty()) {
_vaultEnabled = true;
}
#endif
// Checks if a managed IP or route target is allowed
bool checkIfManagedIsAllowed(const NetworkState &n,const InetAddress &target)
{
if (!n.settings.allowManaged)
return false;
if (!n.settings.allowManagedWhitelist.empty()) {
bool allowed = false;
for (InetAddress addr : n.settings.allowManagedWhitelist) {
if (addr.containsAddress(target) && addr.netmaskBits() <= target.netmaskBits()) {
allowed = true;
break;
}
}
if (!allowed) return false;
}
if (target.isDefaultRoute())
return n.settings.allowDefault;
switch(target.ipScope()) {
case InetAddress::IP_SCOPE_NONE:
case InetAddress::IP_SCOPE_MULTICAST:
case InetAddress::IP_SCOPE_LOOPBACK:
case InetAddress::IP_SCOPE_LINK_LOCAL:
return false;
case InetAddress::IP_SCOPE_GLOBAL:
return n.settings.allowGlobal;
default:
return true;
}
}
// Match only an IP from a vector of IPs -- used in syncManagedStuff()
inline bool matchIpOnly(const std::set<InetAddress> &ips,const InetAddress &ip) const
{
for(std::set<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->ipsEqual(ip))
return true;
}
return false;
}
// Apply or update managed IPs for a configured network (be sure n.tap exists)
void syncManagedStuff(NetworkState &n,bool syncIps,bool syncRoutes, bool syncDns)
{
char ipbuf[64];
// assumes _nets_m is locked
if (syncIps) {
std::vector<InetAddress> newManagedIps;
newManagedIps.reserve(n.config.assignedAddressCount);
for(unsigned int i=0;i<n.config.assignedAddressCount;++i) {
const InetAddress *ii = reinterpret_cast<const InetAddress *>(&(n.config.assignedAddresses[i]));
if (checkIfManagedIsAllowed(n,*ii))
newManagedIps.push_back(*ii);
}
std::sort(newManagedIps.begin(),newManagedIps.end());
newManagedIps.erase(std::unique(newManagedIps.begin(),newManagedIps.end()),newManagedIps.end());
for(std::vector<InetAddress>::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) {
if (std::find(newManagedIps.begin(),newManagedIps.end(),*ip) == newManagedIps.end()) {
if (!n.tap->removeIp(*ip))
fprintf(stderr,"ERROR: unable to remove ip address %s" ZT_EOL_S, ip->toString(ipbuf));
}
}
#ifdef __SYNOLOGY__
if (!n.tap->addIpSyn(newManagedIps))
fprintf(stderr,"ERROR: unable to add ip addresses to ifcfg" ZT_EOL_S);
#else
for(std::vector<InetAddress>::iterator ip(newManagedIps.begin());ip!=newManagedIps.end();++ip) {
if (std::find(n.managedIps.begin(),n.managedIps.end(),*ip) == n.managedIps.end()) {
if (!n.tap->addIp(*ip))
fprintf(stderr,"ERROR: unable to add ip address %s" ZT_EOL_S, ip->toString(ipbuf));
}
}
#endif
n.managedIps.swap(newManagedIps);
}
if (syncRoutes) {
// Get tap device name (use LUID in hex on Windows) and IP addresses.
#if defined(__WINDOWS__) && !defined(ZT_SDK)
char tapdevbuf[64];
OSUtils::ztsnprintf(tapdevbuf,sizeof(tapdevbuf),"%.16llx",(unsigned long long)((WindowsEthernetTap *)(n.tap.get()))->luid().Value);
std::string tapdev(tapdevbuf);
#else
std::string tapdev(n.tap->deviceName());
#endif
std::vector<InetAddress> tapIps(n.tap->ips());
std::set<InetAddress> myIps(tapIps.begin(), tapIps.end());
for(unsigned int i=0;i<n.config.assignedAddressCount;++i)
myIps.insert(InetAddress(n.config.assignedAddresses[i]));
std::set<InetAddress> haveRouteTargets;
for(unsigned int i=0;i<n.config.routeCount;++i) {
const InetAddress *const target = reinterpret_cast<const InetAddress *>(&(n.config.routes[i].target));
const InetAddress *const via = reinterpret_cast<const InetAddress *>(&(n.config.routes[i].via));
// Make sure we are allowed to set this managed route, and that 'via' is not our IP. The latter
// avoids setting routes via the router on the router.
if ( (!checkIfManagedIsAllowed(n,*target)) || ((via->ss_family == target->ss_family)&&(matchIpOnly(myIps,*via))) )
continue;
// Find an IP on the interface that can be a source IP, abort if no IPs assigned.
const InetAddress *src = nullptr;
unsigned int mostMatchingPrefixBits = 0;
for(std::set<InetAddress>::const_iterator i(myIps.begin());i!=myIps.end();++i) {
const unsigned int matchingPrefixBits = i->matchingPrefixBits(*target);
if (matchingPrefixBits >= mostMatchingPrefixBits && ((target->isV4() && i->isV4()) || (target->isV6() && i->isV6()))) {
mostMatchingPrefixBits = matchingPrefixBits;
src = &(*i);
}
}
if (!src)
continue;
// Ignore routes implied by local managed IPs since adding the IP adds the route.
// Apple on the other hand seems to need this at least on some versions.
#ifndef __APPLE__
bool haveRoute = false;
for(std::vector<InetAddress>::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) {
if ((target->netmaskBits() == ip->netmaskBits())&&(target->containsAddress(*ip))) {
haveRoute = true;
break;
}
}
if (haveRoute)
continue;
#endif
haveRouteTargets.insert(*target);
#ifndef ZT_SDK
SharedPtr<ManagedRoute> &mr = n.managedRoutes[*target];
if (!mr)
mr.set(new ManagedRoute(*target, *via, *src, tapdev.c_str()));
#endif
}
for(std::map< InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes.begin());r!=n.managedRoutes.end();) {
if (haveRouteTargets.find(r->first) == haveRouteTargets.end())
n.managedRoutes.erase(r++);
else ++r;
}
// Sync device-local managed routes first, then indirect results. That way
// we don't get destination unreachable for routes that are via things
// that do not yet have routes in the system.
for(std::map< InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes.begin());r!=n.managedRoutes.end();++r) {
if (!r->second->via())
r->second->sync();
}
for(std::map< InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes.begin());r!=n.managedRoutes.end();++r) {
if (r->second->via())
r->second->sync();
}
}
if (syncDns) {
if (n.settings.allowDNS) {
if (strlen(n.config.dns.domain) != 0) {
std::vector<InetAddress> servers;
for (int j = 0; j < ZT_MAX_DNS_SERVERS; ++j) {
InetAddress a(n.config.dns.server_addr[j]);
if (a.isV4() || a.isV6()) {
servers.push_back(a);
}
}
n.tap->setDns(n.config.dns.domain, servers);
}
} else {
#ifdef __APPLE__
MacDNSHelper::removeDNS(n.config.nwid);
#elif defined(__WINDOWS__)
WinDNSHelper::removeDNS(n.config.nwid);
#endif
}
}
}
// =========================================================================
// Handlers for Node and Phy<> callbacks
// =========================================================================
inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len)
{
const uint64_t now = OSUtils::now();
if ((len >= 16)&&(reinterpret_cast<const InetAddress *>(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL))
_lastDirectReceiveFromGlobal = now;
const ZT_ResultCode rc = _node->processWirePacket(nullptr,now,reinterpret_cast<int64_t>(sock),reinterpret_cast<const struct sockaddr_storage *>(from),data,len,&_nextBackgroundTaskDeadline);
if (ZT_ResultCode_isFatal(rc)) {
char tmp[256];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc);
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = tmp;
this->terminate();
}
}
inline void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
{
if (!success) {
phyOnTcpClose(sock,uptr);
return;
}
TcpConnection *const tc = reinterpret_cast<TcpConnection *>(*uptr);
if (!tc) { // sanity check
_phy.close(sock,true);
return;
}
tc->sock = sock;
if (tc->type == TcpConnection::TCP_TUNNEL_OUTGOING) {
if (_tcpFallbackTunnel)
_phy.close(_tcpFallbackTunnel->sock);
_tcpFallbackTunnel = tc;
_phy.streamSend(sock,ZT_TCP_TUNNEL_HELLO,sizeof(ZT_TCP_TUNNEL_HELLO));
} else {
_phy.close(sock,true);
}
}
inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
{
if (!from) {
_phy.close(sockN,false);
return;
} else {
#ifdef ZT_SDK
// Immediately close new local connections. The intention is to prevent the backplane from being accessed when operating as libzt
if (!allowHttpBackplaneManagement && ((InetAddress*)from)->ipScope() == InetAddress::IP_SCOPE_LOOPBACK) {
_phy.close(sockN,false);
return;
}
#endif
TcpConnection *tc = new TcpConnection();
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc);
}
tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING;
tc->parent = this;
tc->sock = sockN;
tc->remoteAddr = from;
tc->lastReceive = OSUtils::now();
http_parser_init(&(tc->parser),HTTP_REQUEST);
tc->parser.data = (void *)tc;
tc->messageSize = 0;
*uptrN = (void *)tc;
}
}
void phyOnTcpClose(PhySocket *sock,void **uptr)
{
TcpConnection *tc = (TcpConnection *)*uptr;
if (tc) {
if (tc == _tcpFallbackTunnel) {
_tcpFallbackTunnel = (TcpConnection *)0;
}
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.erase(std::remove(_tcpConnections.begin(),_tcpConnections.end(),tc),_tcpConnections.end());
}
delete tc;
}
}
void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
try {
if (!len) return; // sanity check, should never happen
TcpConnection *tc = reinterpret_cast<TcpConnection *>(*uptr);
tc->lastReceive = OSUtils::now();
switch(tc->type) {
case TcpConnection::TCP_UNCATEGORIZED_INCOMING:
switch(reinterpret_cast<uint8_t *>(data)[0]) {
// HTTP: GET, PUT, POST, HEAD, DELETE
case 'G':
case 'P':
case 'D':
case 'H': {
// This is only allowed from IPs permitted to access the management
// backplane, which is just 127.0.0.1/::1 unless otherwise configured.
bool allow;
{
Mutex::Lock _l(_localConfig_m);
if (_allowManagementFrom.empty()) {
allow = (tc->remoteAddr.ipScope() == InetAddress::IP_SCOPE_LOOPBACK);
} else {
allow = false;
for(std::vector<InetAddress>::const_iterator i(_allowManagementFrom.begin());i!=_allowManagementFrom.end();++i) {
if (i->containsAddress(tc->remoteAddr)) {
allow = true;
break;
}
}
}
}
if (allow) {
tc->type = TcpConnection::TCP_HTTP_INCOMING;
phyOnTcpData(sock,uptr,data,len);
} else {
_phy.close(sock);
}
} break;
// Drop unknown protocols
default:
_phy.close(sock);
break;
}
return;
case TcpConnection::TCP_HTTP_INCOMING:
case TcpConnection::TCP_HTTP_OUTGOING:
http_parser_execute(&(tc->parser),&HTTP_PARSER_SETTINGS,(const char *)data,len);
if ((tc->parser.upgrade)||(tc->parser.http_errno != HPE_OK))
_phy.close(sock);
return;
case TcpConnection::TCP_TUNNEL_OUTGOING:
tc->readq.append((const char *)data,len);
while (tc->readq.length() >= 5) {
const char *data = tc->readq.data();
const unsigned long mlen = ( ((((unsigned long)data[3]) & 0xff) << 8) | (((unsigned long)data[4]) & 0xff) );
if (tc->readq.length() >= (mlen + 5)) {
InetAddress from;
unsigned long plen = mlen; // payload length, modified if there's an IP header
data += 5; // skip forward past pseudo-TLS junk and mlen
if (plen == 4) {
// Hello message, which isn't sent by proxy and would be ignored by client
} else if (plen) {
// Messages should contain IPv4 or IPv6 source IP address data
switch(data[0]) {
case 4: // IPv4
if (plen >= 7) {
from.set((const void *)(data + 1),4,((((unsigned int)data[5]) & 0xff) << 8) | (((unsigned int)data[6]) & 0xff));
data += 7; // type + 4 byte IP + 2 byte port
plen -= 7;
} else {
_phy.close(sock);
return;
}
break;
case 6: // IPv6
if (plen >= 19) {
from.set((const void *)(data + 1),16,((((unsigned int)data[17]) & 0xff) << 8) | (((unsigned int)data[18]) & 0xff));
data += 19; // type + 16 byte IP + 2 byte port
plen -= 19;
} else {
_phy.close(sock);
return;
}
break;
case 0: // none/omitted
++data;
--plen;
break;
default: // invalid address type
_phy.close(sock);
return;
}
if (from) {
InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff,0xffff);
const ZT_ResultCode rc = _node->processWirePacket(
(void *)0,
OSUtils::now(),
-1,
reinterpret_cast<struct sockaddr_storage *>(&from),
data,
plen,
&_nextBackgroundTaskDeadline);
if (ZT_ResultCode_isFatal(rc)) {
char tmp[256];
OSUtils::ztsnprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc);
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = tmp;
this->terminate();
_phy.close(sock);
return;
}
}
}
if (tc->readq.length() > (mlen + 5))
tc->readq.erase(tc->readq.begin(),tc->readq.begin() + (mlen + 5));
else tc->readq.clear();
} else break;
}
return;
}
} catch ( ... ) {
_phy.close(sock);
}
}
inline void phyOnTcpWritable(PhySocket *sock,void **uptr)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(*uptr);
bool closeit = false;
{
Mutex::Lock _l(tc->writeq_m);
if (tc->writeq.length() > 0) {
long sent = (long)_phy.streamSend(sock,tc->writeq.data(),(unsigned long)tc->writeq.length(),true);
if (sent > 0) {
if ((unsigned long)sent >= (unsigned long)tc->writeq.length()) {
tc->writeq.clear();
_phy.setNotifyWritable(sock,false);
if (tc->type == TcpConnection::TCP_HTTP_INCOMING)
closeit = true; // HTTP keep alive not supported
} else {
tc->writeq.erase(tc->writeq.begin(),tc->writeq.begin() + sent);
}
}
} else {
_phy.setNotifyWritable(sock,false);
}
}
if (closeit)
_phy.close(sock);
}
inline void phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) {}
inline void phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {}
inline void phyOnUnixClose(PhySocket *sock,void **uptr) {}
inline void phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
inline void phyOnUnixWritable(PhySocket *sock,void **uptr) {}
inline int nodeVirtualNetworkConfigFunction(uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwc)
{
Mutex::Lock _l(_nets_m);
NetworkState &n = _nets[nwid];
switch(op) {
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP:
if (!n.tap) {
try {
char friendlyName[128];
OSUtils::ztsnprintf(friendlyName,sizeof(friendlyName),"ZeroTier One [%.16llx]",nwid);
n.tap = EthernetTap::newInstance(
nullptr,
_homePath.c_str(),
MAC(nwc->mac),
nwc->mtu,
(unsigned int)ZT_IF_METRIC,
nwid,
friendlyName,
StapFrameHandler,
(void *)this);
*nuptr = (void *)&n;
char nlcpath[256];
OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_homePath.c_str(),nwid);
std::string nlcbuf;
if (OSUtils::readFile(nlcpath,nlcbuf)) {
Dictionary<4096> nc;
nc.load(nlcbuf.c_str());
Buffer<1024> allowManaged;
if (nc.get("allowManaged", allowManaged) && allowManaged.size() > 0) {
std::string addresses (allowManaged.begin(), allowManaged.size());
if (allowManaged.size() <= 5) { // untidy parsing for backward compatibility
if (allowManaged[0] == '1' || allowManaged[0] == 't' || allowManaged[0] == 'T') {
n.settings.allowManaged = true;
} else {
n.settings.allowManaged = false;
}
} else {
// this should be a list of IP addresses
n.settings.allowManaged = true;
size_t pos = 0;
while (true) {
size_t nextPos = addresses.find(',', pos);
std::string address = addresses.substr(pos, (nextPos == std::string::npos ? addresses.size() : nextPos) - pos);
n.settings.allowManagedWhitelist.push_back(InetAddress(address.c_str()));
if (nextPos == std::string::npos) break;
pos = nextPos + 1;
}
}
} else {
n.settings.allowManaged = true;
}
n.settings.allowGlobal = nc.getB("allowGlobal", false);
n.settings.allowDefault = nc.getB("allowDefault", false);
n.settings.allowDNS = nc.getB("allowDNS", false);
}
} catch (std::exception &exc) {
#ifdef __WINDOWS__
FILE *tapFailLog = fopen((_homePath + ZT_PATH_SEPARATOR_S"port_error_log.txt").c_str(),"a");
if (tapFailLog) {
fprintf(tapFailLog,"%.16llx: %s" ZT_EOL_S,(unsigned long long)nwid,exc.what());
fclose(tapFailLog);
}
#else
fprintf(stderr,"ERROR: unable to configure virtual network port: %s" ZT_EOL_S,exc.what());
#endif
_nets.erase(nwid);
return -999;
} catch ( ... ) {
return -999; // tap init failed
}
}
// After setting up tap, fall through to CONFIG_UPDATE since we also want to do this...
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE:
memcpy(&(n.config),nwc,sizeof(ZT_VirtualNetworkConfig));
if (n.tap) { // sanity check
#if defined(__WINDOWS__) && !defined(ZT_SDK)
// wait for up to 5 seconds for the WindowsEthernetTap to actually be initialized
//
// without WindowsEthernetTap::isInitialized() returning true, the won't actually
// be online yet and setting managed routes on it will fail.
const int MAX_SLEEP_COUNT = 500;
for (int i = 0; !((WindowsEthernetTap *)(n.tap.get()))->isInitialized() && i < MAX_SLEEP_COUNT; i++) {
Sleep(10);
}
#endif
syncManagedStuff(n,true,true,true);
n.tap->setMtu(nwc->mtu);
} else {
_nets.erase(nwid);
return -999; // tap init failed
}
break;
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN:
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY:
if (n.tap) { // sanity check
#if defined(__WINDOWS__) && !defined(ZT_SDK)
std::string winInstanceId(((WindowsEthernetTap *)(n.tap.get()))->instanceId());
#endif
*nuptr = (void *)0;
n.tap.reset();
_nets.erase(nwid);
#if defined(__WINDOWS__) && !defined(ZT_SDK)
if ((op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY)&&(winInstanceId.length() > 0))
WindowsEthernetTap::deletePersistentTapDevice(winInstanceId.c_str());
#endif
if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) {
char nlcpath[256];
OSUtils::ztsnprintf(nlcpath,sizeof(nlcpath),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf",_homePath.c_str(),nwid);
OSUtils::rm(nlcpath);
}
} else {
_nets.erase(nwid);
}
break;
}
return 0;
}
inline void nodeEventCallback(enum ZT_Event event,const void *metaData)
{
switch(event) {
case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_IDENTITY_COLLISION;
_fatalErrorMessage = "identity/address collision";
this->terminate();
} break;
case ZT_EVENT_TRACE: {
if (metaData) {
::fprintf(stderr,"%s" ZT_EOL_S,(const char *)metaData);
::fflush(stderr);
}
} break;
case ZT_EVENT_USER_MESSAGE: {
const ZT_UserMessage *um = reinterpret_cast<const ZT_UserMessage *>(metaData);
if ((um->typeId == ZT_SOFTWARE_UPDATE_USER_MESSAGE_TYPE)&&(_updater)) {
_updater->handleSoftwareUpdateUserMessage(um->origin,um->data,um->length);
}
} break;
case ZT_EVENT_REMOTE_TRACE: {
const ZT_RemoteTrace *rt = reinterpret_cast<const ZT_RemoteTrace *>(metaData);
if ((rt)&&(rt->len > 0)&&(rt->len <= ZT_MAX_REMOTE_TRACE_SIZE)&&(rt->data))
_controller->handleRemoteTrace(*rt);
}
default:
break;
}
}
#if ZT_VAULT_SUPPORT
inline bool nodeVaultPutIdentity(enum ZT_StateObjectType type, const void *data, int len)
{
bool retval = false;
if (type != ZT_STATE_OBJECT_IDENTITY_PUBLIC && type != ZT_STATE_OBJECT_IDENTITY_SECRET) {
return retval;
}
CURL *curl = curl_easy_init();
if (curl) {
char token[512] = { 0 };
snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str());
struct curl_slist *chunk = NULL;
chunk = curl_slist_append(chunk, token);
char content_type[512] = { 0 };
snprintf(content_type, sizeof(content_type), "Content-Type: application/json");
chunk = curl_slist_append(chunk, content_type);
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
char url[2048] = { 0 };
snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str());
curl_easy_setopt(curl, CURLOPT_URL, url);
json d = json::object();
if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
std::string key((const char*)data, len);
d["public"] = key;
}
else if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) {
std::string key((const char*)data, len);
d["secret"] = key;
}
if (!d.empty()) {
std::string post = d.dump();
if (!post.empty()) {
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, post.c_str());
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, post.length());
#ifndef NDEBUG
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);
#endif
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
long response_code = 0;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code);
if (response_code == 200 || response_code == 204) {
retval = true;
}
}
}
}
curl_easy_cleanup(curl);
curl = NULL;
curl_slist_free_all(chunk);
chunk = NULL;
}
return retval;
}
#endif
inline void nodeStatePutFunction(enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len)
{
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) {
if (nodeVaultPutIdentity(type, data, len)) {
// value successfully written to Vault
return;
}
// else fallback to disk
}
#endif
char p[1024];
FILE *f;
bool secure = false;
char dirname[1024];
dirname[0] = 0;
switch(type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
secure = true;
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "moons.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.moon",dirname,(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "networks.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.16llx.conf",dirname,(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_PEER:
OSUtils::ztsnprintf(dirname,sizeof(dirname),"%s" ZT_PATH_SEPARATOR_S "peers.d",_homePath.c_str());
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "%.10llx.peer",dirname,(unsigned long long)id[0]);
break;
default:
return;
}
if ((len >= 0)&&(data)) {
// Check to see if we've already written this first. This reduces
// redundant writes and I/O overhead on most platforms and has
// little effect on others.
f = fopen(p,"rb");
if (f) {
char *const buf = (char *)malloc(len*4);
if (buf) {
long l = (long)fread(buf,1,(size_t)(len*4),f);
fclose(f);
if ((l == (long)len)&&(memcmp(data,buf,l) == 0)) {
free(buf);
return;
}
free(buf);
}
}
f = fopen(p,"wb");
if ((!f)&&(dirname[0])) { // create subdirectory if it does not exist
OSUtils::mkdir(dirname);
f = fopen(p,"wb");
}
if (f) {
if (fwrite(data,len,1,f) != 1)
fprintf(stderr,"WARNING: unable to write to file: %s (I/O error)" ZT_EOL_S,p);
fclose(f);
if (secure)
OSUtils::lockDownFile(p,false);
} else {
fprintf(stderr,"WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S,p);
}
} else {
OSUtils::rm(p);
}
}
#if ZT_VAULT_SUPPORT
inline int nodeVaultGetIdentity(enum ZT_StateObjectType type, void *data, unsigned int maxlen)
{
if (type != ZT_STATE_OBJECT_IDENTITY_SECRET && type != ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
return -1;
}
int ret = -1;
CURL *curl = curl_easy_init();
if (curl) {
char token[512] = { 0 };
snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str());
struct curl_slist *chunk = NULL;
chunk = curl_slist_append(chunk, token);
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
char url[2048] = { 0 };
snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str());
curl_easy_setopt(curl, CURLOPT_URL, url);
std::string response;
std::string res_headers;
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &curlResponseWrite);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &response);
curl_easy_setopt(curl, CURLOPT_HEADERDATA, &res_headers);
#ifndef NDEBUG
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);
#endif
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
long response_code = 0;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code);
if (response_code == 200) {
try {
json payload = json::parse(response);
if (!payload["data"].is_null()) {
json &d = payload["data"];
if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) {
std::string secret = OSUtils::jsonString(d["secret"],"");
if (!secret.empty()) {
ret = (int)secret.length();
memcpy(data, secret.c_str(), ret);
}
}
else if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
std::string pub = OSUtils::jsonString(d["public"],"");
if (!pub.empty()) {
ret = (int)pub.length();
memcpy(data, pub.c_str(), ret);
}
}
}
}
catch (...) {
ret = -1;
}
}
}
curl_easy_cleanup(curl);
curl = NULL;
curl_slist_free_all(chunk);
chunk = NULL;
}
return ret;
}
#endif
inline int nodeStateGetFunction(enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen)
{
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) ) {
int retval = nodeVaultGetIdentity(type, data, maxlen);
if (retval >= 0)
return retval;
// else continue file based lookup
}
#endif
char p[4096];
switch(type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.public",_homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "identity.secret",_homePath.c_str());
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "planet",_homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "moons.d" ZT_PATH_SEPARATOR_S "%.16llx.moon",_homePath.c_str(),(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf",_homePath.c_str(),(unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_PEER:
OSUtils::ztsnprintf(p,sizeof(p),"%s" ZT_PATH_SEPARATOR_S "peers.d" ZT_PATH_SEPARATOR_S "%.10llx.peer",_homePath.c_str(),(unsigned long long)id[0]);
break;
default:
return -1;
}
FILE *f = fopen(p,"rb");
if (f) {
int n = (int)fread(data,1,maxlen,f);
fclose(f);
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) {
// If we've gotten here while Vault is enabled, Vault does not know the key and it's been
// read from disk instead.
//
// We should put the value in Vault and remove the local file.
if (nodeVaultPutIdentity(type, data, n)) {
unlink(p);
}
}
#endif
if (n >= 0)
return n;
}
return -1;
}
inline int nodeWirePacketSendFunction(const int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{
#ifdef ZT_TCP_FALLBACK_RELAY
if(_allowTcpFallbackRelay) {
if (addr->ss_family == AF_INET) {
// TCP fallback tunnel support, currently IPv4 only
if ((len >= 16)&&(reinterpret_cast<const InetAddress *>(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
// Engage TCP tunnel fallback if we haven't received anything valid from a global
// IP address in ZT_TCP_FALLBACK_AFTER milliseconds. If we do start getting
// valid direct traffic we'll stop using it and close the socket after a while.
const int64_t now = OSUtils::now();
if (((now - _lastDirectReceiveFromGlobal) > ZT_TCP_FALLBACK_AFTER)&&((now - _lastRestart) > ZT_TCP_FALLBACK_AFTER)) {
if (_tcpFallbackTunnel) {
bool flushNow = false;
{
Mutex::Lock _l(_tcpFallbackTunnel->writeq_m);
if (_tcpFallbackTunnel->writeq.size() < (1024 * 64)) {
if (_tcpFallbackTunnel->writeq.length() == 0) {
_phy.setNotifyWritable(_tcpFallbackTunnel->sock,true);
flushNow = true;
}
const unsigned long mlen = len + 7;
_tcpFallbackTunnel->writeq.push_back((char)0x17);
_tcpFallbackTunnel->writeq.push_back((char)0x03);
_tcpFallbackTunnel->writeq.push_back((char)0x03); // fake TLS 1.2 header
_tcpFallbackTunnel->writeq.push_back((char)((mlen >> 8) & 0xff));
_tcpFallbackTunnel->writeq.push_back((char)(mlen & 0xff));
_tcpFallbackTunnel->writeq.push_back((char)4); // IPv4
_tcpFallbackTunnel->writeq.append(reinterpret_cast<const char *>(reinterpret_cast<const void *>(&(reinterpret_cast<const struct sockaddr_in *>(addr)->sin_addr.s_addr))),4);
_tcpFallbackTunnel->writeq.append(reinterpret_cast<const char *>(reinterpret_cast<const void *>(&(reinterpret_cast<const struct sockaddr_in *>(addr)->sin_port))),2);
_tcpFallbackTunnel->writeq.append((const char *)data,len);
}
}
if (flushNow) {
void *tmpptr = (void *)_tcpFallbackTunnel;
phyOnTcpWritable(_tcpFallbackTunnel->sock,&tmpptr);
}
} else if (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER)&&((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INVERVAL / 2))) {
const InetAddress addr(ZT_TCP_FALLBACK_RELAY);
TcpConnection *tc = new TcpConnection();
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc);
}
tc->type = TcpConnection::TCP_TUNNEL_OUTGOING;
tc->remoteAddr = addr;
tc->lastReceive = OSUtils::now();
tc->parent = this;
tc->sock = (PhySocket *)0; // set in connect handler
tc->messageSize = 0;
bool connected = false;
_phy.tcpConnect(reinterpret_cast<const struct sockaddr *>(&addr),connected,(void *)tc,true);
}
}
_lastSendToGlobalV4 = now;
}
}
}
#endif // ZT_TCP_FALLBACK_RELAY
// Even when relaying we still send via UDP. This way if UDP starts
// working we can instantly "fail forward" to it and stop using TCP
// proxy fallback, which is slow.
if ((localSocket != -1)&&(localSocket != 0)&&(_binder.isUdpSocketValid((PhySocket *)((uintptr_t)localSocket)))) {
if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),ttl);
const bool r = _phy.udpSend((PhySocket *)((uintptr_t)localSocket),(const struct sockaddr *)addr,data,len);
if ((ttl)&&(addr->ss_family == AF_INET)) _phy.setIp4UdpTtl((PhySocket *)((uintptr_t)localSocket),255);
return ((r) ? 0 : -1);
} else {
return ((_binder.udpSendAll(_phy,addr,data,len,ttl)) ? 0 : -1);
}
}
inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{
NetworkState *n = reinterpret_cast<NetworkState *>(*nuptr);
if ((!n)||(!n->tap))
return;
n->tap->put(MAC(sourceMac),MAC(destMac),etherType,data,len);
}
inline int nodePathCheckFunction(uint64_t ztaddr,const int64_t localSocket,const struct sockaddr_storage *remoteAddr)
{
// Make sure we're not trying to do ZeroTier-over-ZeroTier
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
std::vector<InetAddress> ips(n->second.tap->ips());
for(std::vector<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->containsAddress(*(reinterpret_cast<const InetAddress *>(remoteAddr)))) {
return 0;
}
}
}
}
}
/* Note: I do not think we need to scan for overlap with managed routes
* because of the "route forking" and interface binding that we do. This
* ensures (we hope) that ZeroTier traffic will still take the physical
* path even if its managed routes override this for other traffic. Will
* revisit if we see recursion problems. */
// Check blacklists
const Hashtable< uint64_t,std::vector<InetAddress> > *blh = (const Hashtable< uint64_t,std::vector<InetAddress> > *)0;
const std::vector<InetAddress> *gbl = (const std::vector<InetAddress> *)0;
if (remoteAddr->ss_family == AF_INET) {
blh = &_v4Blacklists;
gbl = &_globalV4Blacklist;
} else if (remoteAddr->ss_family == AF_INET6) {
blh = &_v6Blacklists;
gbl = &_globalV6Blacklist;
}
if (blh) {
Mutex::Lock _l(_localConfig_m);
const std::vector<InetAddress> *l = blh->get(ztaddr);
if (l) {
for(std::vector<InetAddress>::const_iterator a(l->begin());a!=l->end();++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress *>(remoteAddr)))
return 0;
}
}
}
if (gbl) {
for(std::vector<InetAddress>::const_iterator a(gbl->begin());a!=gbl->end();++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress *>(remoteAddr)))
return 0;
}
}
return 1;
}
inline int nodePathLookupFunction(uint64_t ztaddr, int family, struct sockaddr_storage* result)
{
const Hashtable< uint64_t, std::vector<InetAddress> >* lh = (const Hashtable< uint64_t, std::vector<InetAddress> > *)0;
if (family < 0)
lh = (_node->prng() & 1) ? &_v4Hints : &_v6Hints;
else if (family == AF_INET)
lh = &_v4Hints;
else if (family == AF_INET6)
lh = &_v6Hints;
else return 0;
const std::vector<InetAddress>* l = lh->get(ztaddr);
if ((l) && (!l->empty())) {
memcpy(result, &((*l)[(unsigned long)_node->prng() % l->size()]), sizeof(struct sockaddr_storage));
return 1;
}
else return 0;
}
inline void tapFrameHandler(uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
{
_node->processVirtualNetworkFrame((void*)0, OSUtils::now(), nwid, from.toInt(), to.toInt(), etherType, vlanId, data, len, &_nextBackgroundTaskDeadline);
}
inline void onHttpRequestToServer(TcpConnection* tc)
{
char tmpn[4096];
std::string data;
std::string contentType("text/plain"); // default if not changed in handleRequest()
unsigned int scode = 404;
// Note that we check allowed IP ranges when HTTP connections are first detected in
// phyOnTcpData(). If we made it here the source IP is okay.
try {
scode = handleControlPlaneHttpRequest(tc->remoteAddr, tc->parser.method, tc->url, tc->headers, tc->readq, data, contentType);
}
catch (std::exception& exc) {
fprintf(stderr, "WARNING: unexpected exception processing control HTTP request: %s" ZT_EOL_S, exc.what());
scode = 500;
}
catch (...) {
fprintf(stderr, "WARNING: unexpected exception processing control HTTP request: unknown exception" ZT_EOL_S);
scode = 500;
}
const char* scodestr;
switch (scode) {
case 200: scodestr = "OK"; break;
case 400: scodestr = "Bad Request"; break;
case 401: scodestr = "Unauthorized"; break;
case 403: scodestr = "Forbidden"; break;
case 404: scodestr = "Not Found"; break;
case 500: scodestr = "Internal Server Error"; break;
case 501: scodestr = "Not Implemented"; break;
case 503: scodestr = "Service Unavailable"; break;
default: scodestr = "Error"; break;
}
OSUtils::ztsnprintf(tmpn, sizeof(tmpn), "HTTP/1.1 %.3u %s\r\nCache-Control: no-cache\r\nPragma: no-cache\r\nContent-Type: %s\r\nContent-Length: %lu\r\nConnection: close\r\n\r\n",
scode,
scodestr,
contentType.c_str(),
(unsigned long)data.length());
{
Mutex::Lock _l(tc->writeq_m);
tc->writeq = tmpn;
if (tc->parser.method != HTTP_HEAD)
tc->writeq.append(data);
}
_phy.setNotifyWritable(tc->sock, true);
}
inline void onHttpResponseFromClient(TcpConnection* tc)
{
_phy.close(tc->sock);
}
bool shouldBindInterface(const char* ifname, const InetAddress& ifaddr)
{
#if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux)
if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt#
if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar
#endif
#ifdef __APPLE__
if ((ifname[0] == 'f') && (ifname[1] == 'e') && (ifname[2] == 't') && (ifname[3] == 'h')) return false; // ... as is feth#
if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt#
if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 'u') && (ifname[1] == 't') && (ifname[2] == 'u') && (ifname[3] == 'n')) return false; // ... as is utun#
#endif
#ifdef __FreeBSD__
if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt#
#endif
{
Mutex::Lock _l(_localConfig_m);
for(std::vector<std::string>::const_iterator p(_interfacePrefixBlacklist.begin());p!=_interfacePrefixBlacklist.end();++p) {
if (!strncmp(p->c_str(),ifname,p->length()))
return false;
}
}
{
// Check global blacklists
const std::vector<InetAddress> *gbl = (const std::vector<InetAddress> *)0;
if (ifaddr.ss_family == AF_INET) {
gbl = &_globalV4Blacklist;
} else if (ifaddr.ss_family == AF_INET6) {
gbl = &_globalV6Blacklist;
}
if (gbl) {
Mutex::Lock _l(_localConfig_m);
for(std::vector<InetAddress>::const_iterator a(gbl->begin());a!=gbl->end();++a) {
if (a->containsAddress(ifaddr))
return false;
}
}
}
{
Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::const_iterator n(_nets.begin());n!=_nets.end();++n) {
if (n->second.tap) {
std::vector<InetAddress> ips(n->second.tap->ips());
for(std::vector<InetAddress>::const_iterator i(ips.begin());i!=ips.end();++i) {
if (i->ipsEqual(ifaddr))
return false;
}
#ifdef _WIN32
if (n->second.tap->friendlyName() == ifname)
return false;
#endif
}
}
}
return true;
}
unsigned int _getRandomPort()
{
unsigned int randp = 0;
Utils::getSecureRandom(&randp,sizeof(randp));
randp = 20000 + (randp % 45500);
for(int i=0;;++i) {
if (i > 1000) {
return 0;
} else if (++randp >= 65536) {
randp = 20000;
}
if (_trialBind(randp))
break;
}
return randp;
}
bool _trialBind(unsigned int port)
{
struct sockaddr_in in4;
struct sockaddr_in6 in6;
PhySocket *tb;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in4),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
memset(&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0,0);
if (tb) {
_phy.close(tb,false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&in6),(void *)0);
if (tb) {
_phy.close(tb,false);
return true;
}
}
return false;
}
};
static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf)
{ return reinterpret_cast<OneServiceImpl *>(uptr)->nodeVirtualNetworkConfigFunction(nwid,nuptr,op,nwconf); }
static void SnodeEventCallback(ZT_Node *node,void *uptr,void *tptr,enum ZT_Event event,const void *metaData)
{ reinterpret_cast<OneServiceImpl *>(uptr)->nodeEventCallback(event,metaData); }
static void SnodeStatePutFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],const void *data,int len)
{ reinterpret_cast<OneServiceImpl *>(uptr)->nodeStatePutFunction(type,id,data,len); }
static int SnodeStateGetFunction(ZT_Node *node,void *uptr,void *tptr,enum ZT_StateObjectType type,const uint64_t id[2],void *data,unsigned int maxlen)
{ return reinterpret_cast<OneServiceImpl *>(uptr)->nodeStateGetFunction(type,id,data,maxlen); }
static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,void *tptr,int64_t localSocket,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{ return reinterpret_cast<OneServiceImpl *>(uptr)->nodeWirePacketSendFunction(localSocket,addr,data,len,ttl); }
static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{ reinterpret_cast<OneServiceImpl *>(uptr)->nodeVirtualNetworkFrameFunction(nwid,nuptr,sourceMac,destMac,etherType,vlanId,data,len); }
static int SnodePathCheckFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int64_t localSocket,const struct sockaddr_storage *remoteAddr)
{ return reinterpret_cast<OneServiceImpl *>(uptr)->nodePathCheckFunction(ztaddr,localSocket,remoteAddr); }
static int SnodePathLookupFunction(ZT_Node *node,void *uptr,void *tptr,uint64_t ztaddr,int family,struct sockaddr_storage *result)
{ return reinterpret_cast<OneServiceImpl *>(uptr)->nodePathLookupFunction(ztaddr,family,result); }
static void StapFrameHandler(void *uptr,void *tptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
{ reinterpret_cast<OneServiceImpl *>(uptr)->tapFrameHandler(nwid,from,to,etherType,vlanId,data,len); }
static int ShttpOnMessageBegin(http_parser *parser)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
tc->messageSize = 0;
tc->url.clear();
tc->status.clear();
tc->headers.clear();
tc->readq.clear();
return 0;
}
static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->url.append(ptr,length);
return 0;
}
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2)
static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length)
#else
static int ShttpOnStatus(http_parser *parser)
#endif
{ return 0; }
static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length())) {
tc->headers[tc->currentHeaderField] = tc->currentHeaderValue;
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
}
for(size_t i=0;i<length;++i)
tc->currentHeaderField.push_back(OSUtils::toLower(ptr[i]));
return 0;
}
static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->currentHeaderValue.append(ptr,length);
return 0;
}
static int ShttpOnHeadersComplete(http_parser *parser)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length()))
tc->headers[tc->currentHeaderField] = tc->currentHeaderValue;
return 0;
}
static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->readq.append(ptr,length);
return 0;
}
static int ShttpOnMessageComplete(http_parser *parser)
{
TcpConnection *tc = reinterpret_cast<TcpConnection *>(parser->data);
if (tc->type == TcpConnection::TCP_HTTP_INCOMING) {
tc->parent->onHttpRequestToServer(tc);
} else {
tc->parent->onHttpResponseFromClient(tc);
}
return 0;
}
} // anonymous namespace
std::string OneService::platformDefaultHomePath()
{
return OSUtils::platformDefaultHomePath();
}
OneService *OneService::newInstance(const char *hp,unsigned int port) { return new OneServiceImpl(hp,port); }
OneService::~OneService() {}
} // namespace ZeroTier