ZeroTierOne/node/NetworkConfig.hpp

564 lines
16 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ZT_NETWORKCONFIG_HPP
#define ZT_NETWORKCONFIG_HPP
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <vector>
#include <stdexcept>
#include <algorithm>
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "Buffer.hpp"
#include "InetAddress.hpp"
#include "MulticastGroup.hpp"
#include "Address.hpp"
#include "CertificateOfMembership.hpp"
#include "Dictionary.hpp"
/**
* Flag: allow passive bridging (experimental)
*/
#define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0000000000000001ULL
/**
* Flag: enable broadcast
*/
#define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0000000000000002ULL
/**
* Flag: enable IPv6 NDP emulation for certain V6 address patterns
*/
#define ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION 0x0000000000000004ULL
/**
* Device is a network preferred relay
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY 0x0000010000000000ULL
/**
* Device is an active bridge
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE 0x0000020000000000ULL
/**
* An anchor is a device that is willing to be one and has been online/stable for a long time on this network
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ANCHOR 0x0000040000000000ULL
namespace ZeroTier {
// Maximum size of a network config dictionary (can be increased)
#define ZT_NETWORKCONFIG_DICT_CAPACITY 8194
// Network config version
#define ZT_NETWORKCONFIG_VERSION 6
// Fields for meta-data sent with network config requests
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION "v"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION "pv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION "majv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION "minv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION "revv"
// These dictionary keys are short so they don't take up much room.
// network config version
#define ZT_NETWORKCONFIG_DICT_KEY_VERSION "v"
// network ID
#define ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID "nwid"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP "ts"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_REVISION "r"
// address of member
#define ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO "id"
// flags(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_FLAGS "f"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT "ml"
// network type (hex)
#define ZT_NETWORKCONFIG_DICT_KEY_TYPE "t"
// text
#define ZT_NETWORKCONFIG_DICT_KEY_NAME "n"
// binary serialized certificate of membership
#define ZT_NETWORKCONFIG_DICT_KEY_COM "C"
// specialists (binary array of uint64_t)
#define ZT_NETWORKCONFIG_DICT_KEY_SPECIALISTS "S"
// routes (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_ROUTES "RT"
// static IPs (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_STATIC_IPS "I"
// pinned address physical route mappings (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_PINNED "P"
// rules (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_RULES "R"
// Legacy fields -- these are obsoleted but are included when older clients query
// boolean (now a flag)
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING_OLD "pb"
// boolean (now a flag)
#define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST_OLD "eb"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC_OLD "v4s"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC_OLD "v6s"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE_OLD "p"
// integer(hex)[,integer(hex),...]
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES_OLD "et"
// string-serialized CertificateOfMembership
#define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP_OLD "com"
// node[,node,...]
#define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES_OLD "ab"
// node;IP/port[,node;IP/port]
#define ZT_NETWORKCONFIG_DICT_KEY_RELAYS_OLD "rl"
/**
* Network configuration received from network controller nodes
*
* This is a memcpy()'able structure and is safe (in a crash sense) to modify
* without locks.
*/
class NetworkConfig
{
public:
/**
* Network preferred relay with optional physical endpoint addresses
*
* This is used by the convenience relays() method.
*/
struct Relay
{
Address address;
InetAddress phy4,phy6;
};
/**
* Create an instance of a NetworkConfig for the test network ID
*
* The test network ID is defined as ZT_TEST_NETWORK_ID. This is a
* "fake" network with no real controller and default options.
*
* @param self This node's ZT address
* @return Configuration for test network ID
*/
static inline NetworkConfig createTestNetworkConfig(const Address &self)
{
NetworkConfig nc;
nc.networkId = ZT_TEST_NETWORK_ID;
nc.timestamp = 1;
nc.revision = 1;
nc.issuedTo = self;
nc.multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT;
nc.flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
nc.type = ZT_NETWORK_TYPE_PUBLIC;
nc.rules[0].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
nc.ruleCount = 1;
Utils::snprintf(nc.name,sizeof(nc.name),"ZT_TEST_NETWORK");
// Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no
// guarantee of uniqueness but collisions are unlikely.
uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x
if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255
if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0
nc.staticIps[0] = InetAddress(Utils::hton(ip),8);
// Assign an RFC4193-compliant IPv6 address -- will never collide
nc.staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt());
nc.staticIpCount = 2;
return nc;
}
NetworkConfig()
{
memset(this,0,sizeof(NetworkConfig));
}
NetworkConfig(const NetworkConfig &nc)
{
memcpy(this,&nc,sizeof(NetworkConfig));
}
inline NetworkConfig &operator=(const NetworkConfig &nc)
{
memcpy(this,&nc,sizeof(NetworkConfig));
return *this;
}
/**
* @param etherType Ethernet frame type to check
* @return True if allowed on this network
*/
inline bool permitsEtherType(unsigned int etherType) const
{
unsigned int et = 0;
for(unsigned int i=0;i<ruleCount;++i) {
ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f);
if (rt == ZT_NETWORK_RULE_MATCH_ETHERTYPE) {
et = rules[i].v.etherType;
} else if (rt == ZT_NETWORK_RULE_ACTION_ACCEPT) {
if ((!et)||(et == etherType))
return true;
et = 0;
}
}
return false;
}
/**
* Write this network config to a dictionary for transport
*
* @param d Dictionary
* @param includeLegacy If true, include legacy fields for old node versions
* @return True if dictionary was successfully created, false if e.g. overflow
*/
bool toDictionary(Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> &d,bool includeLegacy) const;
/**
* Read this network config from a dictionary
*
* @param d Dictionary
* @return True if dictionary was valid and network config successfully initialized
*/
bool fromDictionary(const Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> &d);
/**
* @return True if passive bridging is allowed (experimental)
*/
inline bool allowPassiveBridging() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0); }
/**
* @return True if broadcast (ff:ff:ff:ff:ff:ff) address should work on this network
*/
inline bool enableBroadcast() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST) != 0); }
/**
* @return True if IPv6 NDP emulation should be allowed for certain "magic" IPv6 address patterns
*/
inline bool ndpEmulation() const throw() { return ((this->flags & ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION) != 0); }
/**
* @return Network type is public (no access control)
*/
inline bool isPublic() const throw() { return (this->type == ZT_NETWORK_TYPE_PUBLIC); }
/**
* @return Network type is private (certificate access control)
*/
inline bool isPrivate() const throw() { return (this->type == ZT_NETWORK_TYPE_PRIVATE); }
/**
* @return ZeroTier addresses of devices on this network designated as active bridges
*/
inline std::vector<Address> activeBridges() const
{
std::vector<Address> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
r.push_back(Address(specialists[i]));
}
return r;
}
/**
* @return ZeroTier addresses of "anchor" devices on this network
*/
inline std::vector<Address> anchors() const
{
std::vector<Address> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ANCHOR) != 0)
r.push_back(Address(specialists[i]));
}
return r;
}
/**
* Get pinned physical address for a given ZeroTier address, if any
*
* @param zt ZeroTier address
* @param af Address family (e.g. AF_INET) or 0 for the first we find of any type
* @return Physical address, if any
*/
inline InetAddress findPinnedAddress(const Address &zt,unsigned int af) const
{
for(unsigned int i=0;i<pinnedCount;++i) {
if (pinned[i].zt == zt) {
if ((af == 0)||((unsigned int)pinned[i].phy.ss_family == af))
return pinned[i].phy;
}
}
return InetAddress();
}
/**
* This gets network preferred relays with their static physical address if one is defined
*
* @return Network-preferred relays for this network (if none, only roots will be used)
*/
inline std::vector<Relay> relays() const
{
std::vector<Relay> r;
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
r.push_back(Relay());
r.back().address = specialists[i];
r.back().phy4 = findPinnedAddress(r.back().address,AF_INET);
r.back().phy6 = findPinnedAddress(r.back().address,AF_INET6);
}
}
return r;
}
/**
* @param fromPeer Peer attempting to bridge other Ethernet peers onto network
* @return True if this network allows bridging
*/
inline bool permitsBridging(const Address &fromPeer) const
{
if ((flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0)
return true;
for(unsigned int i=0;i<specialistCount;++i) {
if ((fromPeer == specialists[i])&&((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0))
return true;
}
return false;
}
/**
* Iterate through relays efficiently
*
* @param ptr Value-result parameter -- start by initializing with zero, then call until return is null
* @return Address of relay or NULL if no more
*/
Address nextRelay(unsigned int &ptr) const
{
while (ptr < specialistCount) {
if ((specialists[ptr] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
return Address(specialists[ptr++]);
} else {
++ptr;
}
}
return Address();
}
/**
* @param zt ZeroTier address
* @return True if this address is a relay
*/
bool isRelay(const Address &zt) const
{
for(unsigned int i=0;i<specialistCount;++i) {
if ((zt == specialists[i])&&((specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0))
return true;
}
return false;
}
/**
* @return True if this network config is non-NULL
*/
inline operator bool() const throw() { return (networkId != 0); }
inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); }
inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); }
/*
inline void dump() const
{
printf("networkId==%.16llx\n",networkId);
printf("timestamp==%llu\n",timestamp);
printf("revision==%llu\n",revision);
printf("issuedTo==%.10llx\n",issuedTo.toInt());
printf("multicastLimit==%u\n",multicastLimit);
printf("flags=%.8lx\n",(unsigned long)flags);
printf("specialistCount==%u\n",specialistCount);
for(unsigned int i=0;i<specialistCount;++i)
printf(" specialists[%u]==%.16llx\n",i,specialists[i]);
printf("routeCount==%u\n",routeCount);
for(unsigned int i=0;i<routeCount;++i) {
printf(" routes[i].target==%s\n",reinterpret_cast<const InetAddress *>(&(routes[i].target))->toString().c_str());
printf(" routes[i].via==%s\n",reinterpret_cast<const InetAddress *>(&(routes[i].via))->toIpString().c_str());
printf(" routes[i].flags==%.4x\n",(unsigned int)routes[i].flags);
printf(" routes[i].metric==%u\n",(unsigned int)routes[i].metric);
}
printf("staticIpCount==%u\n",staticIpCount);
for(unsigned int i=0;i<staticIpCount;++i)
printf(" staticIps[i]==%s\n",staticIps[i].toString().c_str());
printf("pinnedCount==%u\n",pinnedCount);
for(unsigned int i=0;i<pinnedCount;++i) {
printf(" pinned[i].zt==%s\n",pinned[i].zt.toString().c_str());
printf(" pinned[i].phy==%s\n",pinned[i].phy.toString().c_str());
}
printf("ruleCount==%u\n",ruleCount);
printf("name==%s\n",name);
printf("com==%s\n",com.toString().c_str());
}
*/
/**
* Add a specialist or mask flags if already present
*
* This masks the existing flags if the specialist is already here or adds
* it otherwise.
*
* @param a Address of specialist
* @param f Flags (OR of specialist role/type flags)
* @return True if successfully masked or added
*/
inline bool addSpecialist(const Address &a,const uint64_t f)
{
const uint64_t aint = a.toInt();
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & 0xffffffffffULL) == aint) {
specialists[i] |= f;
return true;
}
}
if (specialistCount < ZT_MAX_NETWORK_SPECIALISTS) {
specialists[specialistCount++] = f | aint;
return true;
}
return false;
}
/**
* Network ID that this configuration applies to
*/
uint64_t networkId;
/**
* Controller-side time of config generation/issue
*/
uint64_t timestamp;
/**
* Controller-side revision counter for this configuration
*/
uint64_t revision;
/**
* Address of device to which this config is issued
*/
Address issuedTo;
/**
* Flags (64-bit)
*/
uint64_t flags;
/**
* Maximum number of recipients per multicast (not including active bridges)
*/
unsigned int multicastLimit;
/**
* Number of specialists
*/
unsigned int specialistCount;
/**
* Number of routes
*/
unsigned int routeCount;
/**
* Number of ZT-managed static IP assignments
*/
unsigned int staticIpCount;
/**
* Number of pinned devices (devices with physical address hints)
*/
unsigned int pinnedCount;
/**
* Number of rule table entries
*/
unsigned int ruleCount;
/**
* Specialist devices
*
* For each entry the least significant 40 bits are the device's ZeroTier
* address and the most significant 24 bits are flags indicating its role.
*/
uint64_t specialists[ZT_MAX_NETWORK_SPECIALISTS];
/**
* Statically defined "pushed" routes (including default gateways)
*/
ZT_VirtualNetworkRoute routes[ZT_MAX_NETWORK_ROUTES];
/**
* Static IP assignments
*/
InetAddress staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES];
/**
* Pinned devices with physical address hints
*
* These can be used to specify a physical address where a given device
* can be reached. It's usually used with network relays (specialists).
*/
struct {
Address zt;
InetAddress phy;
} pinned[ZT_MAX_NETWORK_PINNED];
/**
* Rules table
*/
ZT_VirtualNetworkRule rules[ZT_MAX_NETWORK_RULES];
/**
* Network type (currently just public or private)
*/
ZT_VirtualNetworkType type;
/**
* Network short name or empty string if not defined
*/
char name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1];
/**
* Certficiate of membership (for private networks)
*/
CertificateOfMembership com;
};
} // namespace ZeroTier
#endif