ZeroTierOne/node/Node.cpp
2016-11-10 11:57:45 -08:00

1101 lines
34 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <stdint.h>
#include "../version.h"
#include "Constants.hpp"
#include "Node.hpp"
#include "RuntimeEnvironment.hpp"
#include "NetworkController.hpp"
#include "Switch.hpp"
#include "Multicaster.hpp"
#include "Topology.hpp"
#include "Buffer.hpp"
#include "Packet.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Cluster.hpp"
const struct sockaddr_storage ZT_SOCKADDR_NULL = {0};
namespace ZeroTier {
/****************************************************************************/
/* Public Node interface (C++, exposed via CAPI bindings) */
/****************************************************************************/
Node::Node(
uint64_t now,
void *uptr,
ZT_DataStoreGetFunction dataStoreGetFunction,
ZT_DataStorePutFunction dataStorePutFunction,
ZT_WirePacketSendFunction wirePacketSendFunction,
ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction,
ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction,
ZT_PathCheckFunction pathCheckFunction,
ZT_EventCallback eventCallback) :
_RR(this),
RR(&_RR),
_uPtr(uptr),
_dataStoreGetFunction(dataStoreGetFunction),
_dataStorePutFunction(dataStorePutFunction),
_wirePacketSendFunction(wirePacketSendFunction),
_virtualNetworkFrameFunction(virtualNetworkFrameFunction),
_virtualNetworkConfigFunction(virtualNetworkConfigFunction),
_pathCheckFunction(pathCheckFunction),
_eventCallback(eventCallback),
_networks(),
_networks_m(),
_prngStreamPtr(0),
_now(now),
_lastPingCheck(0),
_lastHousekeepingRun(0),
_relayPolicy(ZT_RELAY_POLICY_TRUSTED)
{
_online = false;
memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
// Use Salsa20 alone as a high-quality non-crypto PRNG
{
char foo[32];
Utils::getSecureRandom(foo,32);
_prng.init(foo,256,foo);
memset(_prngStream,0,sizeof(_prngStream));
_prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream));
}
{
std::string idtmp(dataStoreGet("identity.secret"));
if ((!idtmp.length())||(!RR->identity.fromString(idtmp))||(!RR->identity.hasPrivate())) {
TRACE("identity.secret not found, generating...");
RR->identity.generate();
idtmp = RR->identity.toString(true);
if (!dataStorePut("identity.secret",idtmp,true))
throw std::runtime_error("unable to write identity.secret");
}
RR->publicIdentityStr = RR->identity.toString(false);
RR->secretIdentityStr = RR->identity.toString(true);
idtmp = dataStoreGet("identity.public");
if (idtmp != RR->publicIdentityStr) {
if (!dataStorePut("identity.public",RR->publicIdentityStr,false))
throw std::runtime_error("unable to write identity.public");
}
}
try {
RR->sw = new Switch(RR);
RR->mc = new Multicaster(RR);
RR->topology = new Topology(RR);
RR->sa = new SelfAwareness(RR);
} catch ( ... ) {
delete RR->sa;
delete RR->topology;
delete RR->mc;
delete RR->sw;
throw;
}
if (RR->topology->amRoot())
_relayPolicy = ZT_RELAY_POLICY_ALWAYS;
postEvent(ZT_EVENT_UP);
}
Node::~Node()
{
Mutex::Lock _l(_networks_m);
_networks.clear(); // ensure that networks are destroyed before shutdow
delete RR->sa;
delete RR->topology;
delete RR->mc;
delete RR->sw;
#ifdef ZT_ENABLE_CLUSTER
delete RR->cluster;
#endif
}
ZT_ResultCode Node::processWirePacket(
uint64_t now,
const struct sockaddr_storage *localAddress,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile uint64_t *nextBackgroundTaskDeadline)
{
_now = now;
RR->sw->onRemotePacket(*(reinterpret_cast<const InetAddress *>(localAddress)),*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
uint64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile uint64_t *nextBackgroundTaskDeadline)
{
_now = now;
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
RR->sw->onLocalEthernet(nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
class _PingPeersThatNeedPing
{
public:
_PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now) :
lastReceiveFromUpstream(0),
RR(renv),
_now(now),
_world(RR->topology->world())
{
}
uint64_t lastReceiveFromUpstream; // tracks last time we got a packet from an 'upstream' peer like a root or a relay
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
bool upstream = false;
InetAddress stableEndpoint4,stableEndpoint6;
// If this is a world root, pick (if possible) both an IPv4 and an IPv6 stable endpoint to use if link isn't currently alive.
for(std::vector<World::Root>::const_iterator r(_world.roots().begin());r!=_world.roots().end();++r) {
if (r->identity == p->identity()) {
upstream = true;
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)r->stableEndpoints.size();++k) {
const InetAddress &addr = r->stableEndpoints[ptr++ % r->stableEndpoints.size()];
if (!stableEndpoint4) {
if (addr.ss_family == AF_INET)
stableEndpoint4 = addr;
}
if (!stableEndpoint6) {
if (addr.ss_family == AF_INET6)
stableEndpoint6 = addr;
}
}
break;
}
}
if (upstream) {
// "Upstream" devices are roots and relays and get special treatment -- they stay alive
// forever and we try to keep (if available) both IPv4 and IPv6 channels open to them.
bool needToContactIndirect = true;
if (p->doPingAndKeepalive(_now,AF_INET)) {
needToContactIndirect = false;
} else {
if (stableEndpoint4) {
needToContactIndirect = false;
p->sendHELLO(InetAddress(),stableEndpoint4,_now);
}
}
if (p->doPingAndKeepalive(_now,AF_INET6)) {
needToContactIndirect = false;
} else {
if (stableEndpoint6) {
needToContactIndirect = false;
p->sendHELLO(InetAddress(),stableEndpoint6,_now);
}
}
if (needToContactIndirect) {
// If this is an upstream and we have no stable endpoint for either IPv4 or IPv6,
// send a NOP indirectly if possible to see if we can get to this peer in any
// way whatsoever. This will e.g. find network preferred relays that lack
// stable endpoints by using root servers.
Packet outp(p->address(),RR->identity.address(),Packet::VERB_NOP);
RR->sw->send(outp,true);
}
lastReceiveFromUpstream = std::max(p->lastReceive(),lastReceiveFromUpstream);
} else if (p->isActive(_now)) {
// Normal nodes get their preferred link kept alive if the node has generated frame traffic recently
p->doPingAndKeepalive(_now,-1);
}
}
private:
const RuntimeEnvironment *RR;
uint64_t _now;
World _world;
};
ZT_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline)
{
_now = now;
Mutex::Lock bl(_backgroundTasksLock);
unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;
const uint64_t timeSinceLastPingCheck = now - _lastPingCheck;
if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) {
try {
_lastPingCheck = now;
// Get relays and networks that need config without leaving the mutex locked
std::vector< SharedPtr<Network> > needConfig;
{
Mutex::Lock _l(_networks_m);
for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n) {
if (((now - n->second->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!n->second->hasConfig()))
needConfig.push_back(n->second);
n->second->sendUpdatesToMembers();
}
}
for(std::vector< SharedPtr<Network> >::const_iterator n(needConfig.begin());n!=needConfig.end();++n)
(*n)->requestConfiguration();
// Do pings and keepalives
_PingPeersThatNeedPing pfunc(RR,now);
RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);
// Update online status, post status change as event
const bool oldOnline = _online;
_online = (((now - pfunc.lastReceiveFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amRoot()));
if (oldOnline != _online)
postEvent(_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
} else {
timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
}
if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
try {
_lastHousekeepingRun = now;
RR->topology->clean(now);
RR->sa->clean(now);
RR->mc->clean(now);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
try {
#ifdef ZT_ENABLE_CLUSTER
// If clustering is enabled we have to call cluster->doPeriodicTasks() very often, so we override normal timer deadline behavior
if (RR->cluster) {
RR->sw->doTimerTasks(now);
RR->cluster->doPeriodicTasks();
*nextBackgroundTaskDeadline = now + ZT_CLUSTER_PERIODIC_TASK_PERIOD; // this is really short so just tick at this rate
} else {
#endif
*nextBackgroundTaskDeadline = now + (uint64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
#ifdef ZT_ENABLE_CLUSTER
}
#endif
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::setRelayPolicy(enum ZT_RelayPolicy rp)
{
_relayPolicy = rp;
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(uint64_t nwid,void *uptr)
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> nw = _network(nwid);
if(!nw)
_networks.push_back(std::pair< uint64_t,SharedPtr<Network> >(nwid,SharedPtr<Network>(new Network(RR,nwid,uptr))));
std::sort(_networks.begin(),_networks.end()); // will sort by nwid since it's the first in a pair<>
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(uint64_t nwid,void **uptr)
{
std::vector< std::pair< uint64_t,SharedPtr<Network> > > newn;
Mutex::Lock _l(_networks_m);
for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n) {
if (n->first != nwid)
newn.push_back(*n);
else {
if (uptr)
*uptr = n->second->userPtr();
n->second->destroy();
}
}
_networks.swap(newn);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->worldId = RR->topology->worldId();
status->worldTimestamp = RR->topology->worldTimestamp();
status->publicIdentity = RR->publicIdentityStr.c_str();
status->secretIdentity = RR->secretIdentityStr.c_str();
status->online = _online ? 1 : 0;
}
ZT_PeerList *Node::peers() const
{
std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());
std::sort(peers.begin(),peers.end());
char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
if (!buf)
return (ZT_PeerList *)0;
ZT_PeerList *pl = (ZT_PeerList *)buf;
pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
pl->peerCount = 0;
for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {
ZT_Peer *p = &(pl->peers[pl->peerCount++]);
p->address = pi->second->address().toInt();
if (pi->second->remoteVersionKnown()) {
p->versionMajor = pi->second->remoteVersionMajor();
p->versionMinor = pi->second->remoteVersionMinor();
p->versionRev = pi->second->remoteVersionRevision();
} else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = pi->second->latency();
p->role = RR->topology->isRoot(pi->second->identity()) ? ZT_PEER_ROLE_ROOT : ZT_PEER_ROLE_LEAF;
std::vector< std::pair< SharedPtr<Path>,bool > > paths(pi->second->paths(_now));
SharedPtr<Path> bestp(pi->second->getBestPath(_now,false));
p->pathCount = 0;
for(std::vector< std::pair< SharedPtr<Path>,bool > >::iterator path(paths.begin());path!=paths.end();++path) {
memcpy(&(p->paths[p->pathCount].address),&(path->first->address()),sizeof(struct sockaddr_storage));
p->paths[p->pathCount].lastSend = path->first->lastOut();
p->paths[p->pathCount].lastReceive = path->first->lastIn();
p->paths[p->pathCount].expired = path->second;
p->paths[p->pathCount].preferred = (path->first == bestp) ? 1 : 0;
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust(path->first->address());
++p->pathCount;
}
}
return pl;
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> nw = _network(nwid);
if(nw) {
ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
nw->externalConfig(nc);
return nc;
}
return (ZT_VirtualNetworkConfig *)0;
}
ZT_VirtualNetworkList *Node::networks() const
{
Mutex::Lock _l(_networks_m);
char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
if (!buf)
return (ZT_VirtualNetworkList *)0;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n)
n->second->externalConfig(&(nl->networks[nl->networkCount++]));
return nl;
}
void Node::freeQueryResult(void *qr)
{
if (qr)
::free(qr);
}
int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr)
{
if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {
Mutex::Lock _l(_directPaths_m);
if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast<const InetAddress *>(addr))) == _directPaths.end()) {
_directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));
return 1;
}
}
return 0;
}
void Node::clearLocalInterfaceAddresses()
{
Mutex::Lock _l(_directPaths_m);
_directPaths.clear();
}
void Node::setNetconfMaster(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
RR->localNetworkController->init(RR->identity,this);
}
ZT_ResultCode Node::circuitTestBegin(ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *))
{
if (test->hopCount > 0) {
try {
Packet outp(Address(),RR->identity.address(),Packet::VERB_CIRCUIT_TEST);
RR->identity.address().appendTo(outp);
outp.append((uint16_t)((test->reportAtEveryHop != 0) ? 0x03 : 0x02));
outp.append((uint64_t)test->timestamp);
outp.append((uint64_t)test->testId);
outp.append((uint16_t)0); // originator credential length, updated later
if (test->credentialNetworkId) {
outp.append((uint8_t)0x01);
outp.append((uint64_t)test->credentialNetworkId);
outp.setAt<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 23,(uint16_t)9);
}
outp.append((uint16_t)0);
C25519::Signature sig(RR->identity.sign(reinterpret_cast<const char *>(outp.data()) + ZT_PACKET_IDX_PAYLOAD,outp.size() - ZT_PACKET_IDX_PAYLOAD));
outp.append((uint16_t)sig.size());
outp.append(sig.data,(unsigned int)sig.size());
outp.append((uint16_t)0); // originator doesn't need an extra credential, since it's the originator
for(unsigned int h=1;h<test->hopCount;++h) {
outp.append((uint8_t)0);
outp.append((uint8_t)(test->hops[h].breadth & 0xff));
for(unsigned int a=0;a<test->hops[h].breadth;++a)
Address(test->hops[h].addresses[a]).appendTo(outp);
}
for(unsigned int a=0;a<test->hops[0].breadth;++a) {
outp.newInitializationVector();
outp.setDestination(Address(test->hops[0].addresses[a]));
RR->sw->send(outp,true);
}
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL; // probably indicates FIFO too big for packet
}
}
{
test->_internalPtr = reinterpret_cast<void *>(reportCallback);
Mutex::Lock _l(_circuitTests_m);
if (std::find(_circuitTests.begin(),_circuitTests.end(),test) == _circuitTests.end())
_circuitTests.push_back(test);
}
return ZT_RESULT_OK;
}
void Node::circuitTestEnd(ZT_CircuitTest *test)
{
Mutex::Lock _l(_circuitTests_m);
for(;;) {
std::vector< ZT_CircuitTest * >::iterator ct(std::find(_circuitTests.begin(),_circuitTests.end(),test));
if (ct == _circuitTests.end())
break;
else _circuitTests.erase(ct);
}
}
ZT_ResultCode Node::clusterInit(
unsigned int myId,
const struct sockaddr_storage *zeroTierPhysicalEndpoints,
unsigned int numZeroTierPhysicalEndpoints,
int x,
int y,
int z,
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
void *sendFunctionArg,
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
void *addressToLocationFunctionArg)
{
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster)
return ZT_RESULT_ERROR_BAD_PARAMETER;
std::vector<InetAddress> eps;
for(unsigned int i=0;i<numZeroTierPhysicalEndpoints;++i)
eps.push_back(InetAddress(zeroTierPhysicalEndpoints[i]));
std::sort(eps.begin(),eps.end());
RR->cluster = new Cluster(RR,myId,eps,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg);
return ZT_RESULT_OK;
#else
return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION;
#endif
}
ZT_ResultCode Node::clusterAddMember(unsigned int memberId)
{
#ifdef ZT_ENABLE_CLUSTER
if (!RR->cluster)
return ZT_RESULT_ERROR_BAD_PARAMETER;
RR->cluster->addMember((uint16_t)memberId);
return ZT_RESULT_OK;
#else
return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION;
#endif
}
void Node::clusterRemoveMember(unsigned int memberId)
{
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster)
RR->cluster->removeMember((uint16_t)memberId);
#endif
}
void Node::clusterHandleIncomingMessage(const void *msg,unsigned int len)
{
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster)
RR->cluster->handleIncomingStateMessage(msg,len);
#endif
}
void Node::clusterStatus(ZT_ClusterStatus *cs)
{
if (!cs)
return;
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster)
RR->cluster->status(*cs);
else
#endif
memset(cs,0,sizeof(ZT_ClusterStatus));
}
/****************************************************************************/
/* Node methods used only within node/ */
/****************************************************************************/
std::string Node::dataStoreGet(const char *name)
{
char buf[1024];
std::string r;
unsigned long olen = 0;
do {
long n = _dataStoreGetFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,name,buf,sizeof(buf),(unsigned long)r.length(),&olen);
if (n <= 0)
return std::string();
r.append(buf,n);
} while (r.length() < olen);
return r;
}
bool Node::shouldUsePathForZeroTierTraffic(const InetAddress &localAddress,const InetAddress &remoteAddress)
{
if (!Path::isAddressValidForPath(remoteAddress))
return false;
{
Mutex::Lock _l(_networks_m);
for(std::vector< std::pair< uint64_t, SharedPtr<Network> > >::const_iterator i=_networks.begin();i!=_networks.end();++i) {
if (i->second->hasConfig()) {
for(unsigned int k=0;k<i->second->config().staticIpCount;++k) {
if (i->second->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
}
if (_pathCheckFunction)
return (_pathCheckFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,reinterpret_cast<const struct sockaddr_storage *>(&localAddress),reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0);
else return true;
}
#ifdef ZT_TRACE
void Node::postTrace(const char *module,unsigned int line,const char *fmt,...)
{
static Mutex traceLock;
va_list ap;
char tmp1[1024],tmp2[1024],tmp3[256];
Mutex::Lock _l(traceLock);
time_t now = (time_t)(_now / 1000ULL);
#ifdef __WINDOWS__
ctime_s(tmp3,sizeof(tmp3),&now);
char *nowstr = tmp3;
#else
char *nowstr = ctime_r(&now,tmp3);
#endif
unsigned long nowstrlen = (unsigned long)strlen(nowstr);
if (nowstr[nowstrlen-1] == '\n')
nowstr[--nowstrlen] = (char)0;
if (nowstr[nowstrlen-1] == '\r')
nowstr[--nowstrlen] = (char)0;
va_start(ap,fmt);
vsnprintf(tmp2,sizeof(tmp2),fmt,ap);
va_end(ap);
tmp2[sizeof(tmp2)-1] = (char)0;
Utils::snprintf(tmp1,sizeof(tmp1),"[%s] %s:%u %s",nowstr,module,line,tmp2);
postEvent(ZT_EVENT_TRACE,tmp1);
}
#endif // ZT_TRACE
uint64_t Node::prng()
{
unsigned int p = (++_prngStreamPtr % (sizeof(_prngStream) / sizeof(uint64_t)));
if (!p)
_prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream));
return _prngStream[p];
}
void Node::postCircuitTestReport(const ZT_CircuitTestReport *report)
{
std::vector< ZT_CircuitTest * > toNotify;
{
Mutex::Lock _l(_circuitTests_m);
for(std::vector< ZT_CircuitTest * >::iterator i(_circuitTests.begin());i!=_circuitTests.end();++i) {
if ((*i)->testId == report->testId)
toNotify.push_back(*i);
}
}
for(std::vector< ZT_CircuitTest * >::iterator i(toNotify.begin());i!=toNotify.end();++i)
(reinterpret_cast<void (*)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)>((*i)->_internalPtr))(reinterpret_cast<ZT_Node *>(this),*i,report);
}
void Node::setTrustedPaths(const struct sockaddr_storage *networks,const uint64_t *ids,unsigned int count)
{
RR->topology->setTrustedPaths(reinterpret_cast<const InetAddress *>(networks),ids,count);
}
void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
n->setConfiguration(nc,true);
} else {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
uint64_t configUpdateId = prng();
if (!configUpdateId) ++configUpdateId;
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
outp.append((uint8_t)1);
outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
outp.compress();
RR->sw->send(outp,true);
chunkIndex += chunkLen;
}
}
delete dconf;
} catch ( ... ) {
delete dconf;
throw;
}
}
}
void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
switch(errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound();
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied();
break;
default: break;
}
} else if (requestPacketId) {
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
}
outp.append(nwid);
RR->sw->send(outp,true);
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
/****************************************************************************/
/* CAPI bindings */
/****************************************************************************/
extern "C" {
enum ZT_ResultCode ZT_Node_new(
ZT_Node **node,
void *uptr,
uint64_t now,
ZT_DataStoreGetFunction dataStoreGetFunction,
ZT_DataStorePutFunction dataStorePutFunction,
ZT_WirePacketSendFunction wirePacketSendFunction,
ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction,
ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction,
ZT_PathCheckFunction pathCheckFunction,
ZT_EventCallback eventCallback)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(now,uptr,dataStoreGetFunction,dataStorePutFunction,wirePacketSendFunction,virtualNetworkFrameFunction,virtualNetworkConfigFunction,pathCheckFunction,eventCallback));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node)
{
try {
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
uint64_t now,
const struct sockaddr_storage *localAddress,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile uint64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(now,localAddress,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
uint64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile uint64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(now,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_setRelayPolicy(ZT_Node *node,enum ZT_RelayPolicy rp)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->setRelayPolicy(rp);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch ( ... ) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch ( ... ) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch ( ... ) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch ( ... ) {
return (ZT_VirtualNetworkList *)0;
}
}
void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
} catch ( ... ) {}
}
int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();
} catch ( ... ) {}
}
void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_circuitTestBegin(ZT_Node *node,ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *))
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->circuitTestBegin(test,reportCallback);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_circuitTestEnd(ZT_Node *node,ZT_CircuitTest *test)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->circuitTestEnd(test);
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_clusterInit(
ZT_Node *node,
unsigned int myId,
const struct sockaddr_storage *zeroTierPhysicalEndpoints,
unsigned int numZeroTierPhysicalEndpoints,
int x,
int y,
int z,
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
void *sendFunctionArg,
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
void *addressToLocationFunctionArg)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->clusterInit(myId,zeroTierPhysicalEndpoints,numZeroTierPhysicalEndpoints,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_clusterAddMember(ZT_Node *node,unsigned int memberId)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->clusterAddMember(memberId);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_clusterRemoveMember(ZT_Node *node,unsigned int memberId)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clusterRemoveMember(memberId);
} catch ( ... ) {}
}
void ZT_Node_clusterHandleIncomingMessage(ZT_Node *node,const void *msg,unsigned int len)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clusterHandleIncomingMessage(msg,len);
} catch ( ... ) {}
}
void ZT_Node_clusterStatus(ZT_Node *node,ZT_ClusterStatus *cs)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clusterStatus(cs);
} catch ( ... ) {}
}
void ZT_Node_setTrustedPaths(ZT_Node *node,const struct sockaddr_storage *networks,const uint64_t *ids,unsigned int count)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setTrustedPaths(networks,ids,count);
} catch ( ... ) {}
}
void ZT_version(int *major,int *minor,int *revision)
{
if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
}
} // extern "C"