mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-11 15:33:07 +00:00
388 lines
14 KiB
C++
388 lines
14 KiB
C++
/*
|
|
* Copyright (c)2013-2020 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2025-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#include "Constants.hpp"
|
|
#include "AES.hpp"
|
|
|
|
#ifdef ZT_AES_NEON
|
|
|
|
namespace ZeroTier {
|
|
|
|
namespace {
|
|
|
|
ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
|
|
{
|
|
uint8x16_t r0, r1, t0, t1;
|
|
r0 = vld1q_u8(b);
|
|
const uint8x16_t z = veorq_u8(h, h);
|
|
y = veorq_u8(r0, y);
|
|
y = vrbitq_u8(y);
|
|
const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
|
|
t0 = vextq_u8(y, y, 8);
|
|
__asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
|
|
__asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
|
|
__asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
|
|
__asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
|
|
t0 = veorq_u8(t0, t1);
|
|
t1 = vextq_u8(z, t0, 8);
|
|
r0 = veorq_u8(r0, t1);
|
|
t1 = vextq_u8(t0, z, 8);
|
|
r1 = veorq_u8(r1, t1);
|
|
__asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
|
|
t1 = vextq_u8(t0, z, 8);
|
|
r1 = veorq_u8(r1, t1);
|
|
t1 = vextq_u8(z, t0, 8);
|
|
r0 = veorq_u8(r0, t1);
|
|
__asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
|
|
return vrbitq_u8(veorq_u8(r0, t0));
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
void AES::GMAC::p_armUpdate(const uint8_t *in, unsigned int len) noexcept
|
|
{
|
|
uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
|
|
const uint8x16_t h = _aes.p_k.neon.h;
|
|
|
|
if (_rp) {
|
|
for(;;) {
|
|
if (!len)
|
|
return;
|
|
--len;
|
|
_r[_rp++] = *(in++);
|
|
if (_rp == 16) {
|
|
y = s_clmul_armneon_crypto(h, y, _r);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (len >= 16) {
|
|
y = s_clmul_armneon_crypto(h, y, in);
|
|
in += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
|
|
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
_r[i] = in[i];
|
|
_rp = len; // len is always less than 16 here
|
|
}
|
|
|
|
void AES::GMAC::p_armFinish(uint8_t tag[16]) noexcept
|
|
{
|
|
uint64_t tmp[2];
|
|
uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
|
|
const uint8x16_t h = _aes.p_k.neon.h;
|
|
|
|
if (_rp) {
|
|
while (_rp < 16)
|
|
_r[_rp++] = 0;
|
|
y = s_clmul_armneon_crypto(h, y, _r);
|
|
}
|
|
|
|
tmp[0] = Utils::hton((uint64_t)_len << 3U);
|
|
tmp[1] = 0;
|
|
y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
|
|
|
|
Utils::copy< 12 >(tmp, _iv);
|
|
#if __BYTE_ORDER == __BIG_ENDIAN
|
|
reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
|
|
#else
|
|
reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
|
|
#endif
|
|
_aes.encrypt(tmp, tmp);
|
|
|
|
uint8x16_t yy = y;
|
|
Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
|
|
Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
|
|
}
|
|
|
|
void AES::CTR::p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
|
|
{
|
|
uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
|
|
const uint32x4_t one = {0,0,0,1};
|
|
|
|
uint8x16_t k0 = _aes.p_k.neon.ek[0];
|
|
uint8x16_t k1 = _aes.p_k.neon.ek[1];
|
|
uint8x16_t k2 = _aes.p_k.neon.ek[2];
|
|
uint8x16_t k3 = _aes.p_k.neon.ek[3];
|
|
uint8x16_t k4 = _aes.p_k.neon.ek[4];
|
|
uint8x16_t k5 = _aes.p_k.neon.ek[5];
|
|
uint8x16_t k6 = _aes.p_k.neon.ek[6];
|
|
uint8x16_t k7 = _aes.p_k.neon.ek[7];
|
|
uint8x16_t k8 = _aes.p_k.neon.ek[8];
|
|
uint8x16_t k9 = _aes.p_k.neon.ek[9];
|
|
uint8x16_t k10 = _aes.p_k.neon.ek[10];
|
|
uint8x16_t k11 = _aes.p_k.neon.ek[11];
|
|
uint8x16_t k12 = _aes.p_k.neon.ek[12];
|
|
uint8x16_t k13 = _aes.p_k.neon.ek[13];
|
|
uint8x16_t k14 = _aes.p_k.neon.ek[14];
|
|
|
|
unsigned int totalLen = _len;
|
|
if ((totalLen & 15U) != 0) {
|
|
for (;;) {
|
|
if (unlikely(!len)) {
|
|
vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
|
|
_len = totalLen;
|
|
return;
|
|
}
|
|
--len;
|
|
out[totalLen++] = *(in++);
|
|
if ((totalLen & 15U) == 0) {
|
|
uint8_t *const otmp = out + (totalLen - 16);
|
|
uint8x16_t d0 = vrev32q_u8(dd);
|
|
uint8x16_t pt = vld1q_u8(otmp);
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
vst1q_u8(otmp, veorq_u8(pt, d0));
|
|
dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
out += totalLen;
|
|
_len = totalLen + len;
|
|
|
|
if (likely(len >= 64)) {
|
|
const uint32x4_t four = vshlq_n_u32(one, 2);
|
|
uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
|
|
uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
|
|
for (;;) {
|
|
len -= 64;
|
|
uint8x16_t d0 = vrev32q_u8(dd);
|
|
uint8x16_t d1 = vrev32q_u8(dd1);
|
|
uint8x16_t d2 = vrev32q_u8(dd2);
|
|
uint8x16_t d3 = vrev32q_u8(dd3);
|
|
uint8x16_t pt0 = vld1q_u8(in);
|
|
uint8x16_t pt1 = vld1q_u8(in + 16);
|
|
uint8x16_t pt2 = vld1q_u8(in + 32);
|
|
uint8x16_t pt3 = vld1q_u8(in + 48);
|
|
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
|
|
d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
|
|
d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
|
|
d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
|
|
d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
|
|
d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
|
|
|
|
d0 = veorq_u8(pt0, d0);
|
|
d1 = veorq_u8(pt1, d1);
|
|
d2 = veorq_u8(pt2, d2);
|
|
d3 = veorq_u8(pt3, d3);
|
|
|
|
vst1q_u8(out, d0);
|
|
vst1q_u8(out + 16, d1);
|
|
vst1q_u8(out + 32, d2);
|
|
vst1q_u8(out + 48, d3);
|
|
|
|
out += 64;
|
|
in += 64;
|
|
|
|
dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
|
|
if (unlikely(len < 64))
|
|
break;
|
|
dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
|
|
dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
|
|
dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
|
|
}
|
|
}
|
|
|
|
while (len >= 16) {
|
|
len -= 16;
|
|
uint8x16_t d0 = vrev32q_u8(dd);
|
|
uint8x16_t pt = vld1q_u8(in);
|
|
in += 16;
|
|
dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
vst1q_u8(out, veorq_u8(pt, d0));
|
|
out += 16;
|
|
}
|
|
|
|
// Any remaining input is placed in _out. This will be picked up and crypted
|
|
// on subsequent calls to crypt() or finish() as it'll mean _len will not be
|
|
// an even multiple of 16.
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
out[i] = in[i];
|
|
|
|
vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
|
|
}
|
|
|
|
#define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
|
|
#define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
|
|
#define ZT_INIT_ARMNEON_CRYPTO_NK 8
|
|
#define ZT_INIT_ARMNEON_CRYPTO_NB 4
|
|
#define ZT_INIT_ARMNEON_CRYPTO_NR 14
|
|
|
|
void AES::p_init_armneon_crypto(const uint8_t *key) noexcept
|
|
{
|
|
static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
|
|
0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
|
|
0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
|
|
|
|
uint64_t h[2];
|
|
uint32_t *const w = reinterpret_cast<uint32_t *>(p_k.neon.ek);
|
|
|
|
for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
|
|
const unsigned int j = i * 4;
|
|
w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
|
|
}
|
|
|
|
for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
|
|
uint32_t t = w[i - 1];
|
|
const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
|
|
if (imod == 0) {
|
|
t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
|
|
} else if (imod == 4) {
|
|
t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
|
|
}
|
|
w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
|
|
}
|
|
|
|
for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
|
|
w[i] = Utils::hton(w[i]);
|
|
|
|
p_k.neon.dk[0] = p_k.neon.ek[14];
|
|
for (int i=1;i<14;++i)
|
|
p_k.neon.dk[i] = vaesimcq_u8(p_k.neon.ek[14 - i]);
|
|
p_k.neon.dk[14] = p_k.neon.ek[0];
|
|
|
|
p_encrypt_armneon_crypto(Utils::ZERO256, h);
|
|
Utils::copy<16>(&(p_k.neon.h), h);
|
|
p_k.neon.h = vrbitq_u8(p_k.neon.h);
|
|
p_k.sw.h[0] = Utils::ntoh(h[0]);
|
|
p_k.sw.h[1] = Utils::ntoh(h[1]);
|
|
}
|
|
|
|
void AES::p_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
|
|
{
|
|
uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[0]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[1]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[2]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[3]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[4]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[5]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[6]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[7]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[8]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[9]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[10]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[11]));
|
|
tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[12]));
|
|
tmp = veorq_u8(vaeseq_u8(tmp, p_k.neon.ek[13]), p_k.neon.ek[14]);
|
|
vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
|
|
}
|
|
|
|
void AES::p_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
|
|
{
|
|
uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[0]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[1]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[2]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[3]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[4]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[5]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[6]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[7]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[8]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[9]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[10]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[11]));
|
|
tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[12]));
|
|
tmp = veorq_u8(vaesdq_u8(tmp, p_k.neon.dk[13]), p_k.neon.dk[14]);
|
|
vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
|
|
}
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif // ZT_AES_NEON
|