mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-12 16:02:41 +00:00
602 lines
17 KiB
C++
602 lines
17 KiB
C++
/*
|
|
* ZeroTier One - Global Peer to Peer Ethernet
|
|
* Copyright (C) 2012-2013 ZeroTier Networks LLC
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#ifndef _ZT_UTILS_HPP
|
|
#define _ZT_UTILS_HPP
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <arpa/inet.h>
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
#include "../ext/lz4/lz4.h"
|
|
#include "../ext/lz4/lz4hc.h"
|
|
#include "../ext/huffandpuff/huffman.h"
|
|
|
|
#include "Constants.hpp"
|
|
|
|
/* Ethernet frame types that might be relevant to us */
|
|
#define ZT_ETHERTYPE_IPV4 0x0800
|
|
#define ZT_ETHERTYPE_ARP 0x0806
|
|
#define ZT_ETHERTYPE_RARP 0x8035
|
|
#define ZT_ETHERTYPE_ATALK 0x809b
|
|
#define ZT_ETHERTYPE_AARP 0x80f3
|
|
#define ZT_ETHERTYPE_IPX_A 0x8137
|
|
#define ZT_ETHERTYPE_IPX_B 0x8138
|
|
#define ZT_ETHERTYPE_IPV6 0x86dd
|
|
|
|
/**
|
|
* Maximum compression/decompression block size (do not change)
|
|
*/
|
|
#define ZT_COMPRESSION_BLOCK_SIZE 16777216
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* Miscellaneous utility functions and global constants
|
|
*/
|
|
class Utils
|
|
{
|
|
public:
|
|
/**
|
|
* @param etherType Ethernet type ID
|
|
* @return Name of Ethernet protocol (e.g. ARP, IPV4)
|
|
*/
|
|
static const char *etherTypeName(const unsigned int etherType);
|
|
|
|
/**
|
|
* @param data Data to convert to hex
|
|
* @param len Length of data
|
|
* @return Hexadecimal string
|
|
*/
|
|
static std::string hex(const void *data,unsigned int len);
|
|
static inline std::string hex(const std::string &data) { return hex(data.data(),data.length()); }
|
|
|
|
/**
|
|
* @param hex Hexadecimal ASCII code (non-hex chars are ignored)
|
|
* @return Binary data
|
|
*/
|
|
static std::string unhex(const char *hex);
|
|
static inline std::string unhex(const std::string &hex) { return unhex(hex.c_str()); }
|
|
|
|
/**
|
|
* @param hex Hexadecimal ASCII
|
|
* @param buf Buffer to fill
|
|
* @param len Length of buffer
|
|
* @return Number of characters actually written
|
|
*/
|
|
static unsigned int unhex(const char *hex,void *buf,unsigned int len);
|
|
|
|
/**
|
|
* @param buf Buffer to fill
|
|
* @param bytes Number of random bytes to generate
|
|
*/
|
|
static void getSecureRandom(void *buf,unsigned int bytes);
|
|
|
|
/**
|
|
* @tparam T Integer type to fill and return
|
|
* @return Random int using secure random source
|
|
*/
|
|
template<typename T>
|
|
static inline T randomInt()
|
|
{
|
|
T foo = 0; // prevents valgrind warnings
|
|
getSecureRandom(&foo,sizeof(foo));
|
|
return foo;
|
|
}
|
|
|
|
/**
|
|
* Set modes on a file to something secure
|
|
*
|
|
* This locks a file so that only the owner can access it. What it actually
|
|
* does varies by platform.
|
|
*
|
|
* @param path Path to lock
|
|
* @param isDir True if this is a directory
|
|
*/
|
|
static void lockDownFile(const char *path,bool isDir);
|
|
|
|
/**
|
|
* Get file last modification time
|
|
*
|
|
* Resolution is often only second, not millisecond, but the return is
|
|
* always in ms for comparison against now().
|
|
*
|
|
* @param path Path to file to get time
|
|
* @return Last modification time in ms since epoch or 0 if not found
|
|
*/
|
|
static uint64_t getLastModified(const char *path);
|
|
|
|
/**
|
|
* @param t64 Time in ms since epoch
|
|
* @return RFC1123 date string
|
|
*/
|
|
static std::string toRfc1123(uint64_t t64);
|
|
|
|
/**
|
|
* @param tstr Time in RFC1123 string format
|
|
* @return Time in ms since epoch
|
|
*/
|
|
static uint64_t fromRfc1123(const char *tstr);
|
|
static inline uint64_t fromRfc1123(const std::string &tstr) { return fromRfc1123(tstr.c_str()); }
|
|
|
|
/**
|
|
* String append output function object for use with compress/decompress
|
|
*/
|
|
class StringAppendOutput
|
|
{
|
|
public:
|
|
StringAppendOutput(std::string &s) : _s(s) {}
|
|
inline void operator()(const void *data,unsigned int len) { _s.append((const char *)data,len); }
|
|
private:
|
|
std::string &_s;
|
|
};
|
|
|
|
/**
|
|
* STDIO FILE append output function object for compress/decompress
|
|
*
|
|
* Throws std::runtime_error on write error.
|
|
*/
|
|
class FILEAppendOutput
|
|
{
|
|
public:
|
|
FILEAppendOutput(FILE *f) : _f(f) {}
|
|
inline void operator()(const void *data,unsigned int len)
|
|
throw(std::runtime_error)
|
|
{
|
|
if ((int)fwrite(data,1,len,_f) != (int)len)
|
|
throw std::runtime_error("write failed");
|
|
}
|
|
private:
|
|
FILE *_f;
|
|
};
|
|
|
|
/**
|
|
* Compress data
|
|
*
|
|
* O must be a function or function object that takes the following
|
|
* arguments: (const void *data,unsigned int len)
|
|
*
|
|
* @param in Input iterator that reads bytes (char, uint8_t, etc.)
|
|
* @param out Output iterator that writes bytes
|
|
*/
|
|
template<typename I,typename O>
|
|
static inline void compress(I begin,I end,O out)
|
|
{
|
|
char huffheap[HUFFHEAP_SIZE];
|
|
unsigned int bufLen = LZ4_compressBound(ZT_COMPRESSION_BLOCK_SIZE);
|
|
char *buf = new char[bufLen * 2];
|
|
char *buf2 = buf + bufLen;
|
|
|
|
try {
|
|
I inp(begin);
|
|
for(;;) {
|
|
unsigned int readLen = 0;
|
|
while ((readLen < ZT_COMPRESSION_BLOCK_SIZE)&&(inp != end)) {
|
|
buf[readLen++] = (char)*inp;
|
|
++inp;
|
|
}
|
|
if (!readLen)
|
|
break;
|
|
|
|
uint32_t l = hton((uint32_t)readLen);
|
|
out((const void *)&l,4); // original size
|
|
|
|
if (readLen < 32) { // don't bother compressing itty bitty blocks
|
|
l = 0; // stored
|
|
out((const void *)&l,4);
|
|
out((const void *)buf,readLen);
|
|
continue;
|
|
}
|
|
|
|
int lz4CompressedLen = LZ4_compressHC(buf,buf2,(int)readLen);
|
|
if ((lz4CompressedLen <= 0)||(lz4CompressedLen >= (int)readLen)) {
|
|
l = 0; // stored
|
|
out((const void *)&l,4);
|
|
out((const void *)buf,readLen);
|
|
continue;
|
|
}
|
|
|
|
unsigned long huffCompressedLen = huffman_compress((const unsigned char *)buf2,lz4CompressedLen,(unsigned char *)buf,bufLen,huffheap);
|
|
if ((!huffCompressedLen)||((int)huffCompressedLen >= lz4CompressedLen)) {
|
|
l = hton((uint32_t)lz4CompressedLen); // lz4 only
|
|
out((const void *)&l,4);
|
|
out((const void *)buf2,(unsigned int)lz4CompressedLen);
|
|
} else {
|
|
l = hton((uint32_t)0x80000000 | (uint32_t)huffCompressedLen); // lz4 with huffman
|
|
out((const void *)&l,4);
|
|
out((const void *)buf,(unsigned int)huffCompressedLen);
|
|
}
|
|
}
|
|
|
|
delete [] buf;
|
|
} catch ( ... ) {
|
|
delete [] buf;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decompress data
|
|
*
|
|
* O must be a function or function object that takes the following
|
|
* arguments: (const void *data,unsigned int len)
|
|
*
|
|
* @param in Input iterator that reads bytes (char, uint8_t, etc.)
|
|
* @param out Output iterator that writes bytes
|
|
* @return False on decompression error
|
|
*/
|
|
template<typename I,typename O>
|
|
static inline bool decompress(I begin,I end,O out)
|
|
{
|
|
char huffheap[HUFFHEAP_SIZE];
|
|
volatile char i32c[4];
|
|
void *const i32cp = (void *)i32c;
|
|
unsigned int bufLen = LZ4_compressBound(ZT_COMPRESSION_BLOCK_SIZE);
|
|
char *buf = new char[bufLen * 2];
|
|
char *buf2 = buf + bufLen;
|
|
|
|
try {
|
|
I inp(begin);
|
|
while (inp != end) {
|
|
i32c[0] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[1] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[2] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[3] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
unsigned int originalSize = ntoh(*((const uint32_t *)i32cp));
|
|
i32c[0] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[1] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[2] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
i32c[3] = (char)*inp; if (++inp == end) { delete [] buf; return false; }
|
|
uint32_t _compressedSize = ntoh(*((const uint32_t *)i32cp));
|
|
unsigned int compressedSize = _compressedSize & 0x7fffffff;
|
|
|
|
if (compressedSize) {
|
|
if (compressedSize > bufLen) {
|
|
delete [] buf;
|
|
return false;
|
|
}
|
|
unsigned int readLen = 0;
|
|
while ((readLen < compressedSize)&&(inp != end)) {
|
|
buf[readLen++] = (char)*inp;
|
|
++inp;
|
|
}
|
|
if (readLen != compressedSize) {
|
|
delete [] buf;
|
|
return false;
|
|
}
|
|
|
|
if ((_compressedSize & 0x80000000)) { // lz4 and huffman
|
|
unsigned long lz4CompressedSize = huffman_decompress((const unsigned char *)buf,compressedSize,(unsigned char *)buf2,bufLen,huffheap);
|
|
if (lz4CompressedSize) {
|
|
if (LZ4_uncompress_unknownOutputSize(buf2,buf,lz4CompressedSize,bufLen) != (int)originalSize) {
|
|
delete [] buf;
|
|
return false;
|
|
} else out((const void *)buf,(unsigned int)originalSize);
|
|
} else {
|
|
delete [] buf;
|
|
return false;
|
|
}
|
|
} else { // lz4 only
|
|
if (LZ4_uncompress_unknownOutputSize(buf,buf2,compressedSize,bufLen) != (int)originalSize) {
|
|
delete [] buf;
|
|
return false;
|
|
} else out((const void *)buf2,(unsigned int)originalSize);
|
|
}
|
|
} else { // stored
|
|
if (originalSize > bufLen) {
|
|
delete [] buf;
|
|
return false;
|
|
}
|
|
unsigned int readLen = 0;
|
|
while ((readLen < originalSize)&&(inp != end)) {
|
|
buf[readLen++] = (char)*inp;
|
|
++inp;
|
|
}
|
|
if (readLen != originalSize) {
|
|
delete [] buf;
|
|
return false;
|
|
}
|
|
|
|
out((const void *)buf,(unsigned int)originalSize);
|
|
}
|
|
}
|
|
|
|
delete [] buf;
|
|
return true;
|
|
} catch ( ... ) {
|
|
delete [] buf;
|
|
throw;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return Current time in milliseconds since epoch
|
|
*/
|
|
static inline uint64_t now()
|
|
throw()
|
|
{
|
|
struct timeval tv;
|
|
gettimeofday(&tv,(struct timezone *)0);
|
|
return ( (1000ULL * (uint64_t)tv.tv_sec) + (uint64_t)(tv.tv_usec / 1000) );
|
|
};
|
|
|
|
/**
|
|
* Read the full contents of a file into a string buffer
|
|
*
|
|
* The buffer isn't cleared, so if it already contains data the file's data will
|
|
* be appended.
|
|
*
|
|
* @param path Path of file to read
|
|
* @param buf Buffer to fill
|
|
* @return True if open and read successful
|
|
*/
|
|
static bool readFile(const char *path,std::string &buf);
|
|
|
|
/**
|
|
* Write a block of data to disk, replacing any current file contents
|
|
*
|
|
* @param path Path to write
|
|
* @param buf Buffer containing data
|
|
* @param len Length of buffer
|
|
* @return True if entire file was successfully written
|
|
*/
|
|
static bool writeFile(const char *path,const void *buf,unsigned int len);
|
|
|
|
/**
|
|
* Write a block of data to disk, replacing any current file contents
|
|
*
|
|
* @param path Path to write
|
|
* @param s Data to write
|
|
* @return True if entire file was successfully written
|
|
*/
|
|
static inline bool writeFile(const char *path,const std::string &s)
|
|
{
|
|
return writeFile(path,s.data(),s.length());
|
|
}
|
|
|
|
/**
|
|
* @param data Binary data to encode
|
|
* @param len Length of data
|
|
* @return Base64-encoded string
|
|
*/
|
|
static std::string base64Encode(const void *data,unsigned int len);
|
|
inline static std::string base64Encode(const std::string &data) { return base64Encode(data.data(),data.length()); }
|
|
|
|
/**
|
|
* @param data Base64-encoded string
|
|
* @param len Length of encoded string
|
|
* @return Decoded binary date
|
|
*/
|
|
static std::string base64Decode(const char *data,unsigned int len);
|
|
inline static std::string base64Decode(const std::string &data) { return base64Decode(data.data(),data.length()); }
|
|
|
|
/**
|
|
* Split a string by delimiter, with optional escape and quote characters
|
|
*
|
|
* @param s String to split
|
|
* @param sep One or more separators
|
|
* @param esc Zero or more escape characters
|
|
* @param quot Zero or more quote characters
|
|
* @return Vector of tokens
|
|
*/
|
|
static std::vector<std::string> split(const char *s,const char *const sep,const char *esc,const char *quot);
|
|
|
|
/**
|
|
* Trim whitespace from the start and end of a string
|
|
*
|
|
* @param s String to trim
|
|
* @return Trimmed string
|
|
*/
|
|
static std::string trim(const std::string &s);
|
|
|
|
/**
|
|
* Count the number of bits set in an integer
|
|
*
|
|
* @param v 32-bit integer
|
|
* @return Number of bits set in this integer (0-32)
|
|
*/
|
|
static inline uint32_t countBits(uint32_t v)
|
|
throw()
|
|
{
|
|
v = v - ((v >> 1) & (uint32_t)0x55555555);
|
|
v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
|
|
return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24);
|
|
}
|
|
|
|
/**
|
|
* Check if a memory buffer is all-zero
|
|
*
|
|
* @param p Memory to scan
|
|
* @param len Length of memory
|
|
* @return True if memory is all zero
|
|
*/
|
|
static inline bool isZero(const void *p,unsigned int len)
|
|
throw()
|
|
{
|
|
for(unsigned int i=0;i<len;++i) {
|
|
if (((const unsigned char *)p)[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Match two strings with bits masked netmask-style
|
|
*
|
|
* @param a First string
|
|
* @param abits Number of bits in first string
|
|
* @param b Second string
|
|
* @param bbits Number of bits in second string
|
|
* @return True if min(abits,bbits) match between a and b
|
|
*/
|
|
static inline bool matchNetmask(const void *a,unsigned int abits,const void *b,unsigned int bbits)
|
|
throw()
|
|
{
|
|
const unsigned char *aptr = (const unsigned char *)a;
|
|
const unsigned char *bptr = (const unsigned char *)b;
|
|
|
|
while ((abits >= 8)&&(bbits >= 8)) {
|
|
if (*aptr++ != *bptr++)
|
|
return false;
|
|
abits -= 8;
|
|
bbits -= 8;
|
|
}
|
|
|
|
unsigned char mask = 0xff << (8 - ((abits > bbits) ? bbits : abits));
|
|
return ((*aptr & mask) == (*aptr & mask));
|
|
}
|
|
|
|
/**
|
|
* Add a value to a bloom filter
|
|
*
|
|
* Note that bloom filter methods depend on n being evenly distributed, so
|
|
* it's the job of the caller to implement any hashing.
|
|
*
|
|
* @param bits Bloom filter data (must be filterSize / 8 bytes in length)
|
|
* @param filterSize Size of bloom filter in BITS
|
|
* @param n Number to add
|
|
*/
|
|
static inline void bloomAdd(void *bits,unsigned int filterSize,unsigned int n)
|
|
throw()
|
|
{
|
|
n %= filterSize;
|
|
((unsigned char *)bits)[n / 8] |= (0x80 >> (n % 8));
|
|
}
|
|
|
|
/**
|
|
* Test for a value in a bloom filter
|
|
*
|
|
* @param bits Bloom filter data (must be filterSize / 8 bytes in length)
|
|
* @param filterSize Size of bloom filter in BITS
|
|
* @param n Number to test
|
|
* @return True if number might be in filter
|
|
*/
|
|
static inline bool bloomContains(const void *bits,unsigned int filterSize,unsigned int n)
|
|
throw()
|
|
{
|
|
n %= filterSize;
|
|
return ((((const unsigned char *)bits)[n / 8] & (0x80 >> (n % 8))));
|
|
}
|
|
|
|
/**
|
|
* Compute CRC64
|
|
*
|
|
* @param crc Previous CRC (0 to start)
|
|
* @param s String to add to crc
|
|
* @param l Length of string in bytes
|
|
* @return New CRC
|
|
*/
|
|
static inline uint64_t crc64(uint64_t crc,const void *s,unsigned int l)
|
|
throw()
|
|
{
|
|
for(unsigned int i=0;i<l;++i)
|
|
crc = crc64Table[(uint8_t)crc ^ ((const uint8_t *)s)[i]] ^ (crc >> 8);
|
|
return crc;
|
|
}
|
|
|
|
static inline uint8_t hton(uint8_t n) throw() { return n; }
|
|
static inline int8_t hton(int8_t n) throw() { return n; }
|
|
static inline uint16_t hton(uint16_t n) throw() { return htons(n); }
|
|
static inline int16_t hton(int16_t n) throw() { return (int16_t)htons((uint16_t)n); }
|
|
static inline uint32_t hton(uint32_t n) throw() { return htonl(n); }
|
|
static inline int32_t hton(int32_t n) throw() { return (int32_t)htonl((uint32_t)n); }
|
|
static inline uint64_t hton(uint64_t n)
|
|
throw()
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
#ifdef __GNUC__
|
|
return __builtin_bswap64(n);
|
|
#else
|
|
return (
|
|
((n & 0x00000000000000FFULL) << 56) |
|
|
((n & 0x000000000000FF00ULL) << 40) |
|
|
((n & 0x0000000000FF0000ULL) << 24) |
|
|
((n & 0x00000000FF000000ULL) << 8) |
|
|
((n & 0x000000FF00000000ULL) >> 8) |
|
|
((n & 0x0000FF0000000000ULL) >> 24) |
|
|
((n & 0x00FF000000000000ULL) >> 40) |
|
|
((n & 0xFF00000000000000ULL) >> 56)
|
|
);
|
|
#endif
|
|
#else
|
|
return n;
|
|
#endif
|
|
}
|
|
static inline int64_t hton(int64_t n) throw() { return (int64_t)hton((uint64_t)n); }
|
|
|
|
static inline uint8_t ntoh(uint8_t n) throw() { return n; }
|
|
static inline int8_t ntoh(int8_t n) throw() { return n; }
|
|
static inline uint16_t ntoh(uint16_t n) throw() { return ntohs(n); }
|
|
static inline int16_t ntoh(int16_t n) throw() { return (int16_t)ntohs((uint16_t)n); }
|
|
static inline uint32_t ntoh(uint32_t n) throw() { return ntohl(n); }
|
|
static inline int32_t ntoh(int32_t n) throw() { return (int32_t)ntohl((uint32_t)n); }
|
|
static inline uint64_t ntoh(uint64_t n)
|
|
throw()
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
#ifdef __GNUC__
|
|
return __builtin_bswap64(n);
|
|
#else
|
|
return (
|
|
((n & 0x00000000000000FFULL) << 56) |
|
|
((n & 0x000000000000FF00ULL) << 40) |
|
|
((n & 0x0000000000FF0000ULL) << 24) |
|
|
((n & 0x00000000FF000000ULL) << 8) |
|
|
((n & 0x000000FF00000000ULL) >> 8) |
|
|
((n & 0x0000FF0000000000ULL) >> 24) |
|
|
((n & 0x00FF000000000000ULL) >> 40) |
|
|
((n & 0xFF00000000000000ULL) >> 56)
|
|
);
|
|
#endif
|
|
#else
|
|
return n;
|
|
#endif
|
|
}
|
|
static inline int64_t ntoh(int64_t n) throw() { return (int64_t)ntoh((uint64_t)n); }
|
|
|
|
/**
|
|
* Hexadecimal characters 0-f
|
|
*/
|
|
static const char HEXCHARS[16];
|
|
|
|
private:
|
|
static const uint64_t crc64Table[256];
|
|
static const char base64EncMap[64];
|
|
static const char base64DecMap[128];
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|
|
|