mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-13 00:09:58 +00:00
813 lines
27 KiB
C++
813 lines
27 KiB
C++
/*
|
|
* ZeroTier One - Global Peer to Peer Ethernet
|
|
* Copyright (C) 2012-2013 ZeroTier Networks LLC
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#ifndef _ZT_N_PACKET_HPP
|
|
#define _ZT_N_PACKET_HPP
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
#include "Address.hpp"
|
|
#include "HMAC.hpp"
|
|
#include "Salsa20.hpp"
|
|
#include "Utils.hpp"
|
|
#include "Constants.hpp"
|
|
#include "Buffer.hpp"
|
|
|
|
#include "../ext/lz4/lz4.h"
|
|
|
|
/**
|
|
* Protocol version
|
|
*/
|
|
#define ZT_PROTO_VERSION 1
|
|
|
|
/**
|
|
* Maximum hop count allowed by packet structure (3 bits, 0-7)
|
|
*
|
|
* This is not necessarily the maximum hop counter after which
|
|
* relaying is no longer performed.
|
|
*/
|
|
#define ZT_PROTO_MAX_HOPS 7
|
|
|
|
/**
|
|
* Header flag indicating that a packet is encrypted with Salsa20
|
|
*
|
|
* If this is not set, then the packet's payload is in the clear and the
|
|
* HMAC is over this (since there is no ciphertext). Otherwise the HMAC is
|
|
* of the ciphertext after encryption.
|
|
*/
|
|
#define ZT_PROTO_FLAG_ENCRYPTED 0x80
|
|
|
|
/**
|
|
* Header flag indicating that a packet is fragmented
|
|
*
|
|
* If this flag is set, the receiver knows to expect more than one fragment.
|
|
* See Packet::Fragment for details.
|
|
*/
|
|
#define ZT_PROTO_FLAG_FRAGMENTED 0x40
|
|
|
|
/**
|
|
* Verb flag indicating payload is compressed with LZ4
|
|
*/
|
|
#define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80
|
|
|
|
// Indices of fields in normal packet header -- do not change as this
|
|
// might require both code rework and will break compatibility.
|
|
#define ZT_PACKET_IDX_IV 0
|
|
#define ZT_PACKET_IDX_DEST 8
|
|
#define ZT_PACKET_IDX_SOURCE 13
|
|
#define ZT_PACKET_IDX_FLAGS 18
|
|
#define ZT_PACKET_IDX_HMAC 19
|
|
#define ZT_PACKET_IDX_VERB 27
|
|
#define ZT_PACKET_IDX_PAYLOAD 28
|
|
|
|
/**
|
|
* ZeroTier packet buffer size
|
|
*
|
|
* This can be changed. This provides enough room for MTU-size packet
|
|
* payloads plus some overhead. The subtraction of sizeof(unsigned int)
|
|
* makes it an even multiple of 1024 (see Buffer), which might reduce
|
|
* memory use a little.
|
|
*/
|
|
#define ZT_PROTO_MAX_PACKET_LENGTH (3072 - sizeof(unsigned int))
|
|
|
|
/**
|
|
* Minimum viable packet length (also length of header)
|
|
*/
|
|
#define ZT_PROTO_MIN_PACKET_LENGTH ZT_PACKET_IDX_PAYLOAD
|
|
|
|
// Indexes of fields in fragment header -- also can't be changed without
|
|
// breaking compatibility.
|
|
#define ZT_PACKET_FRAGMENT_IDX_PACKET_ID 0
|
|
#define ZT_PACKET_FRAGMENT_IDX_DEST 8
|
|
#define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR 13
|
|
#define ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO 14
|
|
#define ZT_PACKET_FRAGMENT_IDX_HOPS 15
|
|
#define ZT_PACKET_FRAGMENT_IDX_PAYLOAD 16
|
|
|
|
/**
|
|
* Value found at ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR in fragments
|
|
*/
|
|
#define ZT_PACKET_FRAGMENT_INDICATOR ZT_ADDRESS_RESERVED_PREFIX
|
|
|
|
/**
|
|
* Minimum viable fragment length
|
|
*/
|
|
#define ZT_PROTO_MIN_FRAGMENT_LENGTH ZT_PACKET_FRAGMENT_IDX_PAYLOAD
|
|
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE 32
|
|
|
|
// Field incides for parsing verbs
|
|
#define ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION + 1)
|
|
#define ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION (ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION + 1)
|
|
#define ZT_PROTO_VERB_HELLO_IDX_REVISION (ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION + 1)
|
|
#define ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP (ZT_PROTO_VERB_HELLO_IDX_REVISION + 2)
|
|
#define ZT_PROTO_VERB_HELLO_IDX_IDENTITY (ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP + 8)
|
|
#define ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB + 1)
|
|
#define ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE (ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID + 8)
|
|
#define ZT_PROTO_VERB_ERROR_IDX_PAYLOAD (ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE + 1)
|
|
#define ZT_PROTO_VERB_OK_IDX_IN_RE_VERB (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID (ZT_PROTO_VERB_OK_IDX_IN_RE_VERB + 1)
|
|
#define ZT_PROTO_VERB_OK_IDX_PAYLOAD (ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID + 8)
|
|
#define ZT_PROTO_VERB_WHOIS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT (ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS + 5)
|
|
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN (ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT + 2)
|
|
#define ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS (ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN + 1)
|
|
#define ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID + 8)
|
|
#define ZT_PROTO_VERB_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE + 2)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID (ZT_PACKET_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID + 8)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC + 6)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI + 4)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM + ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS + 1)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR + 2)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC + 6)
|
|
#define ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE + 2)
|
|
|
|
// Field indices for parsing OK and ERROR payloads of replies
|
|
#define ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP (ZT_PROTO_VERB_OK_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY (ZT_PROTO_VERB_OK_IDX_PAYLOAD)
|
|
#define ZT_PROTO_VERB_WHOIS__ERROR__IDX_ZTADDRESS (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* ZeroTier packet
|
|
*
|
|
* Packet format:
|
|
* <[8] random initialization vector (doubles as 64-bit packet ID)>
|
|
* <[5] destination ZT address>
|
|
* <[5] source ZT address>
|
|
* <[1] flags (LS 5 bits) and ZT hop count (MS 3 bits)>
|
|
* <[8] first 8 bytes of 32-byte HMAC-SHA-256 MAC>
|
|
* [... -- begin encryption envelope -- ...]
|
|
* <[1] encrypted flags (MS 3 bits) and verb (LS 5 bits)>
|
|
* [... verb-specific payload ...]
|
|
*
|
|
* Packets smaller than 28 bytes are invalid and silently discarded.
|
|
*
|
|
* MAC is computed on ciphertext *after* encryption. See also:
|
|
*
|
|
* http://tonyarcieri.com/all-the-crypto-code-youve-ever-written-is-probably-broken
|
|
*
|
|
* For unencrypted packets, MAC is computed on plaintext. Only HELLO is ever
|
|
* sent in the clear, as it's the "here is my public key" message.
|
|
*/
|
|
class Packet : public Buffer<ZT_PROTO_MAX_PACKET_LENGTH>
|
|
{
|
|
public:
|
|
/**
|
|
* A packet fragment
|
|
*
|
|
* Fragments are sent if a packet is larger than UDP MTU. The first fragment
|
|
* is sent with its normal header with the fragmented flag set. Remaining
|
|
* fragments are sent this way.
|
|
*
|
|
* The fragmented bit indicates that there is at least one fragment. Fragments
|
|
* themselves contain the total, so the receiver must "learn" this from the
|
|
* first fragment it receives.
|
|
*
|
|
* Fragments are sent with the following format:
|
|
* <[8] packet ID of packet whose fragment this belongs to>
|
|
* <[5] destination ZT address>
|
|
* <[1] 0xff, a reserved address, signals that this isn't a normal packet>
|
|
* <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
|
|
* <[1] ZT hop count>
|
|
* <[...] fragment data>
|
|
*
|
|
* The protocol supports a maximum of 16 fragments. If a fragment is received
|
|
* before its main packet header, it should be cached for a brief period of
|
|
* time to see if its parent arrives. Loss of any fragment constitutes packet
|
|
* loss; there is no retransmission mechanism. The receiver must wait for full
|
|
* receipt to authenticate and decrypt; there is no per-fragment MAC. (But if
|
|
* fragments are corrupt, the MAC will fail for the whole assembled packet.)
|
|
*/
|
|
class Fragment : public Buffer<ZT_PROTO_MAX_PACKET_LENGTH>
|
|
{
|
|
public:
|
|
Fragment() :
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH>()
|
|
{
|
|
}
|
|
|
|
template<unsigned int C2>
|
|
Fragment(const Buffer<C2> &b)
|
|
throw(std::out_of_range) :
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(b)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Initialize from a packet
|
|
*
|
|
* @param p Original assembled packet
|
|
* @param fragStart Start of fragment (raw index in packet data)
|
|
* @param fragLen Length of fragment in bytes
|
|
* @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off)
|
|
* @param fragTotal Total number of fragments (including 0)
|
|
* @throws std::out_of_range Packet size would exceed buffer
|
|
*/
|
|
Fragment(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal)
|
|
throw(std::out_of_range)
|
|
{
|
|
init(p,fragStart,fragLen,fragNo,fragTotal);
|
|
}
|
|
|
|
/**
|
|
* Initialize from a packet
|
|
*
|
|
* @param p Original assembled packet
|
|
* @param fragStart Start of fragment (raw index in packet data)
|
|
* @param fragLen Length of fragment in bytes
|
|
* @param fragNo Which fragment (>= 1, since 0 is Packet with end chopped off)
|
|
* @param fragTotal Total number of fragments (including 0)
|
|
* @throws std::out_of_range Packet size would exceed buffer
|
|
*/
|
|
inline void init(const Packet &p,unsigned int fragStart,unsigned int fragLen,unsigned int fragNo,unsigned int fragTotal)
|
|
throw(std::out_of_range)
|
|
{
|
|
if ((fragStart + fragLen) > p.size())
|
|
throw std::out_of_range("Packet::Fragment: tried to construct fragment of packet past its length");
|
|
setSize(fragLen + ZT_PROTO_MIN_FRAGMENT_LENGTH);
|
|
|
|
// NOTE: this copies both the IV/packet ID and the destination address.
|
|
memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PACKET_ID,p.data() + ZT_PACKET_IDX_IV,13);
|
|
|
|
_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] = ZT_PACKET_FRAGMENT_INDICATOR;
|
|
_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] = (char)(((fragTotal & 0xf) << 4) | (fragNo & 0xf));
|
|
_b[ZT_PACKET_FRAGMENT_IDX_HOPS] = 0;
|
|
|
|
memcpy(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD,p.data() + fragStart,fragLen);
|
|
}
|
|
|
|
/**
|
|
* Get this fragment's destination
|
|
*
|
|
* @return Destination ZT address
|
|
*/
|
|
inline Address destination() const { return Address(_b + ZT_PACKET_FRAGMENT_IDX_DEST); }
|
|
|
|
/**
|
|
* @return True if fragment is of a valid length
|
|
*/
|
|
inline bool lengthValid() const { return (_l >= ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
|
|
|
|
/**
|
|
* @return ID of packet this is a fragment of
|
|
*/
|
|
inline uint64_t packetId() const { return at<uint64_t>(ZT_PACKET_FRAGMENT_IDX_PACKET_ID); }
|
|
|
|
/**
|
|
* @return Total number of fragments in packet
|
|
*/
|
|
inline unsigned int totalFragments() const { return (((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] >> 4) & 0xf); }
|
|
|
|
/**
|
|
* @return Fragment number of this fragment
|
|
*/
|
|
inline unsigned int fragmentNumber() const { return ((unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_NO] & 0xf); }
|
|
|
|
/**
|
|
* @return Fragment ZT hop count
|
|
*/
|
|
inline unsigned int hops() const { return (unsigned int)_b[ZT_PACKET_FRAGMENT_IDX_HOPS]; }
|
|
|
|
/**
|
|
* Increment this packet's hop count
|
|
*/
|
|
inline void incrementHops()
|
|
{
|
|
_b[ZT_PACKET_FRAGMENT_IDX_HOPS] = (_b[ZT_PACKET_FRAGMENT_IDX_HOPS] + 1) & ZT_PROTO_MAX_HOPS;
|
|
}
|
|
|
|
/**
|
|
* @return Fragment payload
|
|
*/
|
|
inline unsigned char *payload() { return (unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
|
|
inline const unsigned char *payload() const { return (const unsigned char *)(_b + ZT_PACKET_FRAGMENT_IDX_PAYLOAD); }
|
|
|
|
/**
|
|
* @return Length of payload in bytes
|
|
*/
|
|
inline unsigned int payloadLength() const { return ((_l > ZT_PACKET_FRAGMENT_IDX_PAYLOAD) ? (_l - ZT_PACKET_FRAGMENT_IDX_PAYLOAD) : 0); }
|
|
};
|
|
|
|
/**
|
|
* ZeroTier protocol verbs
|
|
*/
|
|
enum Verb /* Max value: 32 (5 bits) */
|
|
{
|
|
/* No operation, payload ignored, no reply */
|
|
VERB_NOP = 0,
|
|
|
|
/* Announcement of a node's existence:
|
|
* <[1] protocol version>
|
|
* <[1] software major version>
|
|
* <[1] software minor version>
|
|
* <[2] software revision>
|
|
* <[8] timestamp (ms since epoch)>
|
|
* <[...] binary serialized identity (see Identity)>
|
|
*
|
|
* OK payload:
|
|
* <[8] timestamp (echoed from original HELLO)>
|
|
*
|
|
* ERROR has no payload.
|
|
*/
|
|
VERB_HELLO = 1,
|
|
|
|
/* Error response:
|
|
* <[1] in-re verb>
|
|
* <[8] in-re packet ID>
|
|
* <[1] error code>
|
|
* <[...] error-dependent payload>
|
|
*/
|
|
VERB_ERROR = 2,
|
|
|
|
/* Success response:
|
|
* <[1] in-re verb>
|
|
* <[8] in-re packet ID>
|
|
* <[...] request-specific payload>
|
|
*/
|
|
VERB_OK = 3,
|
|
|
|
/* Query an identity by address:
|
|
* <[5] address to look up>
|
|
*
|
|
* OK response payload:
|
|
* <[...] binary serialized identity>
|
|
*
|
|
* Error payload will be address queried.
|
|
*/
|
|
VERB_WHOIS = 4,
|
|
|
|
/* Meet another node at a given protocol address:
|
|
* <[5] ZeroTier address of peer that might be found at this address>
|
|
* <[2] 16-bit protocol address port>
|
|
* <[1] protocol address length (4 for IPv4, 16 for IPv6)>
|
|
* <[...] protocol address (network byte order)>
|
|
*
|
|
* This is sent by a relaying node to initiate NAT traversal between two
|
|
* peers that are communicating by way of indirect relay. The relay will
|
|
* send this to both peers at the same time on a periodic basis, telling
|
|
* each where it might find the other on the network.
|
|
*
|
|
* Upon receipt, a peer sends a message such as NOP or HELLO to the other
|
|
* peer. Peers only "learn" one anothers' direct addresses when they
|
|
* successfully *receive* a message and authenticate it. Optionally, peers
|
|
* will usually preface these messages with one or more firewall openers
|
|
* to clear the path.
|
|
*
|
|
* Nodes should implement rate control, limiting the rate at which they
|
|
* respond to these packets to prevent their use in DDOS attacks. Nodes
|
|
* may also ignore these messages if a peer is not known or is not being
|
|
* actively communicated with.
|
|
*
|
|
* No OK or ERROR is generated.
|
|
*/
|
|
VERB_RENDEZVOUS = 5,
|
|
|
|
/* A ZT-to-ZT unicast ethernet frame:
|
|
* <[8] 64-bit network ID>
|
|
* <[2] 16-bit ethertype>
|
|
* <[...] ethernet payload>
|
|
*
|
|
* MAC addresses are derived from the packet's source and destination
|
|
* ZeroTier addresses. ZeroTier does not support VLANs or other extensions
|
|
* beyond core Ethernet.
|
|
*
|
|
* No OK or ERROR is generated.
|
|
*/
|
|
VERB_FRAME = 6,
|
|
|
|
/* A multicast frame:
|
|
* <[8] 64-bit network ID>
|
|
* <[6] destination multicast Ethernet address>
|
|
* <[4] multicast additional distinguishing information (ADI)>
|
|
* <[32] multicast propagation bloom filter>
|
|
* <[1] 8-bit strict propagation hop count>
|
|
* <[2] 16-bit average peer multicast bandwidth load>
|
|
* <[6] source Ethernet address>
|
|
* <[2] 16-bit ethertype>
|
|
* <[...] ethernet payload>
|
|
*
|
|
* No OK or ERROR is generated.
|
|
*/
|
|
VERB_MULTICAST_FRAME = 7,
|
|
|
|
/* Announce interest in multicast group(s):
|
|
* <[8] 64-bit network ID>
|
|
* <[6] multicast Ethernet address>
|
|
* <[4] multicast additional distinguishing information (ADI)>
|
|
* [... additional tuples of network/address/adi ...]
|
|
*
|
|
* OK is generated on successful receipt.
|
|
*/
|
|
VERB_MULTICAST_LIKE = 8
|
|
};
|
|
|
|
/**
|
|
* Error codes for VERB_ERROR
|
|
*/
|
|
enum ErrorCode
|
|
{
|
|
/* No error, not actually used in transit */
|
|
ERROR_NONE = 0,
|
|
|
|
/* Invalid request */
|
|
ERROR_INVALID_REQUEST = 1,
|
|
|
|
/* Bad/unsupported protocol version */
|
|
ERROR_BAD_PROTOCOL_VERSION = 2,
|
|
|
|
/* Unknown object queried (e.g. with WHOIS) */
|
|
ERROR_NOT_FOUND = 3,
|
|
|
|
/* HELLO pushed an identity whose address is already claimed */
|
|
ERROR_IDENTITY_COLLISION = 4,
|
|
|
|
/* Identity was not valid */
|
|
ERROR_IDENTITY_INVALID = 5,
|
|
|
|
/* Verb or use case not supported/enabled by this node */
|
|
ERROR_UNSUPPORTED_OPERATION = 6
|
|
};
|
|
|
|
/**
|
|
* @param v Verb
|
|
* @return String representation (e.g. HELLO, OK)
|
|
*/
|
|
static const char *verbString(Verb v)
|
|
throw();
|
|
|
|
/**
|
|
* @param e Error code
|
|
* @return String error name
|
|
*/
|
|
static const char *errorString(ErrorCode e)
|
|
throw();
|
|
|
|
template<unsigned int C2>
|
|
Packet(const Buffer<C2> &b)
|
|
throw(std::out_of_range) :
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(b)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Construct a new empty packet with a unique random packet ID
|
|
*
|
|
* Flags and hops will be zero. Other fields and data region are undefined.
|
|
* Use the header access methods (setDestination() and friends) to fill out
|
|
* the header. Payload should be appended; initial size is header size.
|
|
*/
|
|
Packet() :
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(ZT_PROTO_MIN_PACKET_LENGTH)
|
|
{
|
|
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
|
|
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
|
|
}
|
|
|
|
/**
|
|
* Construct a new empty packet with a unique random packet ID
|
|
*
|
|
* @param dest Destination ZT address
|
|
* @param source Source ZT address
|
|
* @param v Verb
|
|
*/
|
|
Packet(const Address &dest,const Address &source,const Verb v) :
|
|
Buffer<ZT_PROTO_MAX_PACKET_LENGTH>(ZT_PROTO_MIN_PACKET_LENGTH)
|
|
{
|
|
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
|
|
setDestination(dest);
|
|
setSource(source);
|
|
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
|
|
setVerb(v);
|
|
}
|
|
|
|
/**
|
|
* Reset this packet structure for reuse in place
|
|
*
|
|
* @param dest Destination ZT address
|
|
* @param source Source ZT address
|
|
* @param v Verb
|
|
*/
|
|
inline void reset(const Address &dest,const Address &source,const Verb v)
|
|
{
|
|
setSize(ZT_PROTO_MIN_PACKET_LENGTH);
|
|
Utils::getSecureRandom(_b + ZT_PACKET_IDX_IV,8);
|
|
setDestination(dest);
|
|
setSource(source);
|
|
_b[ZT_PACKET_IDX_FLAGS] = 0; // zero flags and hops
|
|
setVerb(v);
|
|
}
|
|
|
|
/**
|
|
* Set this packet's destination
|
|
*
|
|
* @param dest ZeroTier address of destination
|
|
*/
|
|
inline void setDestination(const Address &dest)
|
|
{
|
|
for(unsigned int i=0;i<ZT_ADDRESS_LENGTH;++i)
|
|
_b[i + ZT_PACKET_IDX_DEST] = dest[i];
|
|
}
|
|
|
|
/**
|
|
* Set this packet's source
|
|
*
|
|
* @param source ZeroTier address of source
|
|
*/
|
|
inline void setSource(const Address &source)
|
|
{
|
|
for(unsigned int i=0;i<ZT_ADDRESS_LENGTH;++i)
|
|
_b[i + ZT_PACKET_IDX_SOURCE] = source[i];
|
|
}
|
|
|
|
/**
|
|
* Get this packet's destination
|
|
*
|
|
* @return Destination ZT address
|
|
*/
|
|
inline Address destination() const { return Address(_b + ZT_PACKET_IDX_DEST); }
|
|
|
|
/**
|
|
* Get this packet's source
|
|
*
|
|
* @return Source ZT address
|
|
*/
|
|
inline Address source() const { return Address(_b + ZT_PACKET_IDX_SOURCE); }
|
|
|
|
/**
|
|
* @return True if packet is of valid length
|
|
*/
|
|
inline bool lengthValid() const { return (_l >= ZT_PROTO_MIN_PACKET_LENGTH); }
|
|
|
|
/**
|
|
* @return True if packet is encrypted
|
|
*/
|
|
inline bool encrypted() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_ENCRYPTED)); }
|
|
|
|
/**
|
|
* @return True if packet is fragmented (expect fragments)
|
|
*/
|
|
inline bool fragmented() const { return (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED)); }
|
|
|
|
/**
|
|
* Set this packet's fragmented flag
|
|
*
|
|
* @param f Fragmented flag value
|
|
*/
|
|
inline void setFragmented(bool f)
|
|
{
|
|
if (f)
|
|
_b[ZT_PACKET_IDX_FLAGS] |= (char)ZT_PROTO_FLAG_FRAGMENTED;
|
|
else _b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_FRAGMENTED);
|
|
}
|
|
|
|
/**
|
|
* @return True if compressed (result only valid if unencrypted)
|
|
*/
|
|
inline bool compressed() const { return (((unsigned char)_b[ZT_PACKET_IDX_VERB] & ZT_PROTO_VERB_FLAG_COMPRESSED)); }
|
|
|
|
/**
|
|
* @return ZeroTier forwarding hops (0 to 7)
|
|
*/
|
|
inline unsigned int hops() const { return ((unsigned int)_b[ZT_PACKET_IDX_FLAGS] & 0x07); }
|
|
|
|
/**
|
|
* Increment this packet's hop count
|
|
*/
|
|
inline void incrementHops()
|
|
{
|
|
_b[ZT_PACKET_IDX_FLAGS] = (char)((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8) | (((unsigned char)_b[ZT_PACKET_IDX_FLAGS] + 1) & 0x07);
|
|
}
|
|
|
|
/**
|
|
* Get this packet's unique ID (the IV field interpreted as uint64_t)
|
|
*
|
|
* @return Packet ID
|
|
*/
|
|
inline uint64_t packetId() const { return at<uint64_t>(ZT_PACKET_IDX_IV); }
|
|
|
|
/**
|
|
* Set packet verb
|
|
*
|
|
* This also has the side-effect of clearing any verb flags, such as
|
|
* compressed, and so must only be done during packet composition.
|
|
*
|
|
* @param v New packet verb
|
|
*/
|
|
inline void setVerb(Verb v) { _b[ZT_PACKET_IDX_VERB] = (char)v; }
|
|
|
|
/**
|
|
* @return Packet verb (not including flag bits)
|
|
*/
|
|
inline Verb verb() const { return (Verb)(_b[ZT_PACKET_IDX_VERB] & 0x1f); }
|
|
|
|
/**
|
|
* @return Length of packet payload
|
|
*/
|
|
inline unsigned int payloadLength() const throw() { return ((_l < ZT_PROTO_MIN_PACKET_LENGTH) ? 0 : (_l - ZT_PROTO_MIN_PACKET_LENGTH)); }
|
|
|
|
/**
|
|
* @return Packet payload
|
|
*/
|
|
inline unsigned char *payload() throw() { return (unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); }
|
|
inline const unsigned char *payload() const throw() { return (const unsigned char *)(_b + ZT_PACKET_IDX_PAYLOAD); }
|
|
|
|
/**
|
|
* Compute the HMAC of this packet's payload and set HMAC field
|
|
*
|
|
* For encrypted packets, this must be called after encryption.
|
|
*
|
|
* @param key 256-bit (32 byte) key
|
|
*/
|
|
inline void hmacSet(const void *key)
|
|
throw()
|
|
{
|
|
unsigned char mac[32];
|
|
unsigned char key2[32];
|
|
_mangleKey((const unsigned char *)key,key2);
|
|
HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0,mac);
|
|
memcpy(_b + ZT_PACKET_IDX_HMAC,mac,8);
|
|
}
|
|
|
|
/**
|
|
* Check the HMAC of this packet's payload
|
|
*
|
|
* For encrypted packets, this must be checked before decryption.
|
|
*
|
|
* @param key 256-bit (32 byte) key
|
|
*/
|
|
inline bool hmacVerify(const void *key) const
|
|
throw()
|
|
{
|
|
unsigned char mac[32];
|
|
unsigned char key2[32];
|
|
if (_l < ZT_PACKET_IDX_VERB)
|
|
return false; // incomplete packets fail
|
|
_mangleKey((const unsigned char *)key,key2);
|
|
HMAC::sha256(key2,sizeof(key2),_b + ZT_PACKET_IDX_VERB,_l - ZT_PACKET_IDX_VERB,mac);
|
|
return (!memcmp(_b + ZT_PACKET_IDX_HMAC,mac,8));
|
|
}
|
|
|
|
/**
|
|
* Encrypt this packet
|
|
*
|
|
* @param key 256-bit (32 byte) key
|
|
*/
|
|
inline void encrypt(const void *key)
|
|
throw()
|
|
{
|
|
_b[ZT_PACKET_IDX_FLAGS] |= ZT_PROTO_FLAG_ENCRYPTED;
|
|
unsigned char key2[32];
|
|
_mangleKey((const unsigned char *)key,key2);
|
|
Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV);
|
|
s20.encrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0);
|
|
}
|
|
|
|
/**
|
|
* Decrypt this packet
|
|
*
|
|
* @param key 256-bit (32 byte) key
|
|
*/
|
|
inline void decrypt(const void *key)
|
|
throw()
|
|
{
|
|
unsigned char key2[32];
|
|
_mangleKey((const unsigned char *)key,key2);
|
|
Salsa20 s20(key2,256,_b + ZT_PACKET_IDX_IV);
|
|
s20.decrypt(_b + ZT_PACKET_IDX_VERB,_b + ZT_PACKET_IDX_VERB,(_l >= ZT_PACKET_IDX_VERB) ? (_l - ZT_PACKET_IDX_VERB) : 0);
|
|
_b[ZT_PACKET_IDX_FLAGS] &= (char)(~ZT_PROTO_FLAG_ENCRYPTED);
|
|
}
|
|
|
|
/**
|
|
* Attempt to compress payload if not already (must be unencrypted)
|
|
*
|
|
* This requires that the payload at least contain the verb byte already
|
|
* set. The compressed flag in the verb is set if compression successfully
|
|
* results in a size reduction. If no size reduction occurs, compression
|
|
* is not done and the flag is left cleared.
|
|
*
|
|
* @return True if compression occurred
|
|
*/
|
|
inline bool compress()
|
|
throw()
|
|
{
|
|
unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH * 2];
|
|
if ((!compressed())&&(_l > (ZT_PACKET_IDX_PAYLOAD + 32))) {
|
|
int pl = (int)(_l - ZT_PACKET_IDX_PAYLOAD);
|
|
int cl = LZ4_compress((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,pl);
|
|
if ((cl > 0)&&(cl < pl)) {
|
|
_b[ZT_PACKET_IDX_VERB] |= (char)ZT_PROTO_VERB_FLAG_COMPRESSED;
|
|
memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,cl);
|
|
_l = (unsigned int)cl + ZT_PACKET_IDX_PAYLOAD;
|
|
return true;
|
|
}
|
|
}
|
|
_b[ZT_PACKET_IDX_VERB] &= (char)(~ZT_PROTO_VERB_FLAG_COMPRESSED);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Attempt to decompress payload if it is compressed (must be unencrypted)
|
|
*
|
|
* If payload is compressed, it is decompressed and the compressed verb
|
|
* flag is cleared. Otherwise nothing is done and true is returned.
|
|
*
|
|
* @return True if data is now decompressed and valid, false on error
|
|
*/
|
|
inline bool uncompress()
|
|
throw()
|
|
{
|
|
unsigned char buf[ZT_PROTO_MAX_PACKET_LENGTH];
|
|
if ((compressed())&&(_l >= ZT_PROTO_MIN_PACKET_LENGTH)) {
|
|
if (_l > ZT_PACKET_IDX_PAYLOAD) {
|
|
int ucl = LZ4_uncompress_unknownOutputSize((const char *)(_b + ZT_PACKET_IDX_PAYLOAD),(char *)buf,_l - ZT_PACKET_IDX_PAYLOAD,sizeof(buf));
|
|
if ((ucl > 0)&&(ucl <= (int)(capacity() - ZT_PACKET_IDX_PAYLOAD))) {
|
|
memcpy(_b + ZT_PACKET_IDX_PAYLOAD,buf,ucl);
|
|
_l = (unsigned int)ucl + ZT_PACKET_IDX_PAYLOAD;
|
|
} else return false;
|
|
}
|
|
_b[ZT_PACKET_IDX_VERB] &= ~ZT_PROTO_VERB_FLAG_COMPRESSED;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Deterministically mangle a 256-bit crypto key based on packet characteristics
|
|
*
|
|
* This takes the static agreed-upon input key and mangles it using
|
|
* info from the packet. This serves two purposes:
|
|
*
|
|
* (1) It reduces the (already minute) probability of a duplicate key /
|
|
* IV combo, which is good since keys are extremely long-lived. Another
|
|
* way of saying this is that it increases the effective IV size by
|
|
* using other parts of the packet as IV material.
|
|
* (2) It causes HMAC to fail should any of the following change: ordering
|
|
* of source and dest addresses, flags, IV, or packet size. HMAC has
|
|
* no explicit scheme for AAD (additional authenticated data).
|
|
*
|
|
* NOTE: this function will have to be changed if the order of any packet
|
|
* fields or their sizes/padding changes in the spec.
|
|
*
|
|
* @param in Input key (32 bytes)
|
|
* @param out Output buffer (32 bytes)
|
|
*/
|
|
inline void _mangleKey(const unsigned char *in,unsigned char *out) const
|
|
throw()
|
|
{
|
|
// Random IV (Salsa20 also uses the IV natively, but HMAC doesn't), and
|
|
// destination and source addresses. Using dest and source addresses
|
|
// gives us a (likely) different key space for a->b vs b->a.
|
|
for(unsigned int i=0;i<18;++i) // 8 + (ZT_ADDRESS_LENGTH * 2) == 18
|
|
out[i] = in[i] ^ (unsigned char)_b[i];
|
|
// Flags, but masking off hop count which is altered by forwarding nodes
|
|
out[18] = in[18] ^ ((unsigned char)_b[ZT_PACKET_IDX_FLAGS] & 0xf8);
|
|
// Raw packet size in bytes -- each raw packet size defines a possibly
|
|
// different space of keys.
|
|
out[19] = in[19] ^ (unsigned char)(_l & 0xff);
|
|
out[20] = in[20] ^ (unsigned char)((_l >> 8) & 0xff); // little endian
|
|
// Rest of raw key is used unchanged
|
|
for(unsigned int i=21;i<32;++i)
|
|
out[i] = in[i];
|
|
}
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|