mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-11 15:33:07 +00:00
821 lines
26 KiB
C++
821 lines
26 KiB
C++
/*
|
|
* ZeroTier One - Network Virtualization Everywhere
|
|
* Copyright (C) 2011-2015 ZeroTier, Inc.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* --
|
|
*
|
|
* ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
*
|
|
* If you would like to embed ZeroTier into a commercial application or
|
|
* redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
* LLC. Start here: http://www.zerotier.com/
|
|
*/
|
|
|
|
#ifndef ZT_PHY_HPP
|
|
#define ZT_PHY_HPP
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <list>
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
|
|
#include <WinSock2.h>
|
|
#include <WS2tcpip.h>
|
|
#include <Windows.h>
|
|
|
|
#define ZT_PHY_SOCKFD_TYPE SOCKET
|
|
#define ZT_PHY_SOCKFD_NULL (INVALID_SOCKET)
|
|
#define ZT_PHY_SOCKFD_VALID(s) ((s) != INVALID_SOCKET)
|
|
#define ZT_PHY_CLOSE_SOCKET(s) ::closesocket(s)
|
|
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
|
|
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
|
|
|
|
#else // not Windows
|
|
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/select.h>
|
|
#include <sys/socket.h>
|
|
#include <arpa/inet.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#define ZT_PHY_SOCKFD_TYPE int
|
|
#define ZT_PHY_SOCKFD_NULL (-1)
|
|
#define ZT_PHY_SOCKFD_VALID(s) ((s) > -1)
|
|
#define ZT_PHY_CLOSE_SOCKET(s) ::close(s)
|
|
#define ZT_PHY_MAX_SOCKETS (FD_SETSIZE)
|
|
#define ZT_PHY_SOCKADDR_STORAGE_TYPE struct sockaddr_storage
|
|
|
|
#endif // Windows or not
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* Opaque socket type
|
|
*/
|
|
typedef void PhySocket;
|
|
|
|
/**
|
|
* Simple templated non-blocking sockets implementation
|
|
*
|
|
* Yes there is boost::asio and libuv, but I like small binaries and I hate
|
|
* build dependencies. Both drag in a whole bunch of pasta with them.
|
|
*
|
|
* This implementation takes four functions or function objects as template
|
|
* paramters:
|
|
*
|
|
* ON_DATAGRAM_FUNCTION(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
|
|
* ON_TCP_CONNECT_FUNCTION(PhySocket *sock,void **uptr,bool success)
|
|
* ON_TCP_ACCEPT_FUNCTION(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
|
|
* ON_TCP_CLOSE_FUNCTION(PhySocket *sock,void **uptr)
|
|
* ON_TCP_DATA_FUNCTION(PhySocket *sock,void **uptr,void *data,unsigned long len)
|
|
* ON_TCP_WRITABLE_FUNCTION(PhySocket *sock,void **uptr)
|
|
*
|
|
* These templates typically refer to function objects. Templates are used to
|
|
* avoid the call overhead of indirection, which is surprisingly high for high
|
|
* bandwidth applications pushing a lot of packets.
|
|
*
|
|
* The 'sock' pointer above is an opaque pointer to a socket. Each socket
|
|
* has a 'uptr' user-settable/modifiable pointer associated with it, which
|
|
* can be set on bind/connect calls and is passed as a void ** to permit
|
|
* resetting at any time. The ACCEPT handler takes two sets of sock and
|
|
* uptr: sockL and uptrL for the listen socket, and sockN and uptrN for
|
|
* the new TCP connection socket that has just been created.
|
|
*
|
|
* Handlers are always called. On outgoing TCP connection, CONNECT is always
|
|
* called on either success or failure followed by DATA and/or WRITABLE as
|
|
* indicated. On socket close, handlers are called unless close() is told
|
|
* explicitly not to call handlers. It is safe to close a socket within a
|
|
* handler, and in that case close() can be told not to call handlers to
|
|
* prevent recursion.
|
|
*
|
|
* This isn't thread-safe with the exception of whack(), which is safe to
|
|
* call from another thread to abort poll().
|
|
*/
|
|
template <
|
|
typename ON_DATAGRAM_FUNCTION,
|
|
typename ON_TCP_CONNECT_FUNCTION,
|
|
typename ON_TCP_ACCEPT_FUNCTION,
|
|
typename ON_TCP_CLOSE_FUNCTION,
|
|
typename ON_TCP_DATA_FUNCTION,
|
|
typename ON_TCP_WRITABLE_FUNCTION >
|
|
class Phy
|
|
{
|
|
private:
|
|
ON_DATAGRAM_FUNCTION _datagramHandler;
|
|
ON_TCP_CONNECT_FUNCTION _tcpConnectHandler;
|
|
ON_TCP_ACCEPT_FUNCTION _tcpAcceptHandler;
|
|
ON_TCP_CLOSE_FUNCTION _tcpCloseHandler;
|
|
ON_TCP_DATA_FUNCTION _tcpDataHandler;
|
|
ON_TCP_WRITABLE_FUNCTION _tcpWritableHandler;
|
|
|
|
enum PhySocketType
|
|
{
|
|
ZT_PHY_SOCKET_TCP_OUT_PENDING = 0x00,
|
|
ZT_PHY_SOCKET_TCP_OUT_CONNECTED = 0x01,
|
|
ZT_PHY_SOCKET_TCP_IN = 0x02,
|
|
ZT_PHY_SOCKET_TCP_LISTEN = 0x03,
|
|
ZT_PHY_SOCKET_RAW = 0x04,
|
|
ZT_PHY_SOCKET_UDP = 0x05
|
|
};
|
|
|
|
struct PhySocketImpl
|
|
{
|
|
PhySocketType type;
|
|
ZT_PHY_SOCKFD_TYPE sock;
|
|
void *uptr; // user-settable pointer
|
|
ZT_PHY_SOCKADDR_STORAGE_TYPE saddr; // remote for TCP_OUT and TCP_IN, local for TCP_LISTEN, RAW, and UDP
|
|
};
|
|
|
|
std::list<PhySocketImpl> _socks;
|
|
fd_set _readfds;
|
|
fd_set _writefds;
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
fd_set _exceptfds;
|
|
#endif
|
|
long _nfds;
|
|
|
|
ZT_PHY_SOCKFD_TYPE _whackReceiveSocket;
|
|
ZT_PHY_SOCKFD_TYPE _whackSendSocket;
|
|
|
|
bool _noDelay;
|
|
|
|
public:
|
|
/**
|
|
* @param datagramHandler Function or function object to handle UDP or RAW datagrams
|
|
* @param tcpConnectHandler Handler for outgoing TCP connection attempts (success or failure)
|
|
* @param tcpAcceptHandler Handler for incoming TCP connections
|
|
* @param tcpDataHandler Handler for incoming TCP data
|
|
* @param tcpWritableHandler Handler to be called when TCP sockets are writable (if notification is on)
|
|
* @param noDelay If true, disable Nagle algorithm on new TCP sockets
|
|
*/
|
|
Phy(
|
|
ON_DATAGRAM_FUNCTION datagramHandler,
|
|
ON_TCP_CONNECT_FUNCTION tcpConnectHandler,
|
|
ON_TCP_ACCEPT_FUNCTION tcpAcceptHandler,
|
|
ON_TCP_CLOSE_FUNCTION tcpCloseHandler,
|
|
ON_TCP_DATA_FUNCTION tcpDataHandler,
|
|
ON_TCP_WRITABLE_FUNCTION tcpWritableHandler,
|
|
bool noDelay) :
|
|
_datagramHandler(datagramHandler),
|
|
_tcpConnectHandler(tcpConnectHandler),
|
|
_tcpAcceptHandler(tcpAcceptHandler),
|
|
_tcpCloseHandler(tcpCloseHandler),
|
|
_tcpDataHandler(tcpDataHandler),
|
|
_tcpWritableHandler(tcpWritableHandler)
|
|
{
|
|
FD_ZERO(&_readfds);
|
|
FD_ZERO(&_writefds);
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
FD_ZERO(&_exceptfds);
|
|
|
|
SOCKET pipes[2];
|
|
{ // hack copied from StackOverflow, behaves a bit like pipe() on *nix systems
|
|
struct sockaddr_in inaddr;
|
|
struct sockaddr addr;
|
|
SOCKET lst=::socket(AF_INET, SOCK_STREAM,IPPROTO_TCP);
|
|
if (lst == INVALID_SOCKET)
|
|
throw std::runtime_error("unable to create pipes for select() abort");
|
|
memset(&inaddr, 0, sizeof(inaddr));
|
|
memset(&addr, 0, sizeof(addr));
|
|
inaddr.sin_family = AF_INET;
|
|
inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
inaddr.sin_port = 0;
|
|
int yes=1;
|
|
setsockopt(lst,SOL_SOCKET,SO_REUSEADDR,(char*)&yes,sizeof(yes));
|
|
bind(lst,(struct sockaddr *)&inaddr,sizeof(inaddr));
|
|
listen(lst,1);
|
|
int len=sizeof(inaddr);
|
|
getsockname(lst, &addr,&len);
|
|
pipes[0]=::socket(AF_INET, SOCK_STREAM,0);
|
|
if (pipes[0] == INVALID_SOCKET)
|
|
throw std::runtime_error("unable to create pipes for select() abort");
|
|
connect(pipes[0],&addr,len);
|
|
pipes[1]=accept(lst,0,0);
|
|
closesocket(lst);
|
|
}
|
|
#else // not Windows
|
|
int pipes[2];
|
|
if (::pipe(pipes))
|
|
throw std::runtime_error("unable to create pipes for select() abort");
|
|
#endif // Windows or not
|
|
|
|
_nfds = (pipes[0] > pipes[1]) ? (long)pipes[0] : (long)pipes[1];
|
|
_whackReceiveSocket = pipes[0];
|
|
_whackSendSocket = pipes[1];
|
|
_noDelay = noDelay;
|
|
}
|
|
|
|
~Phy()
|
|
{
|
|
while (!_socks.empty())
|
|
this->close((PhySocket *)&(_socks.front()),true);
|
|
ZT_PHY_CLOSE_SOCKET(_whackReceiveSocket);
|
|
ZT_PHY_CLOSE_SOCKET(_whackSendSocket);
|
|
}
|
|
|
|
/**
|
|
* Cause poll() to stop waiting immediately
|
|
*/
|
|
inline void whack()
|
|
{
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
::send(_whackSendSocket,(const char *)this,1,0);
|
|
#else
|
|
::write(_whackSendSocket,(PhySocket *)this,1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @return Number of open sockets
|
|
*/
|
|
inline unsigned long count() const throw() { return _socks.size(); }
|
|
|
|
/**
|
|
* @return Maximum number of sockets allowed
|
|
*/
|
|
inline unsigned long maxCount() const throw() { return ZT_PHY_MAX_SOCKETS; }
|
|
|
|
/**
|
|
* Bind a UDP socket
|
|
*
|
|
* @param localAddress Local endpoint address and port
|
|
* @param uptr Initial value of user pointer associated with this socket (default: NULL)
|
|
* @param bufferSize Desired socket receive/send buffer size -- will set as close to this as possible (default: 0, leave alone)
|
|
* @return Socket or NULL on failure to bind
|
|
*/
|
|
inline PhySocket *udpBind(const struct sockaddr *localAddress,void *uptr = (void *)0,int bufferSize = 0)
|
|
{
|
|
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
|
|
return (PhySocket *)0;
|
|
|
|
ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_DGRAM,0);
|
|
if (!ZT_PHY_SOCKFD_VALID(s))
|
|
return (PhySocket *)0;
|
|
|
|
if (bufferSize > 0) {
|
|
int bs = bufferSize;
|
|
while (bs >= 65536) {
|
|
int tmpbs = bs;
|
|
if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
|
|
break;
|
|
bs -= 16384;
|
|
}
|
|
bs = bufferSize;
|
|
while (bs >= 65536) {
|
|
int tmpbs = bs;
|
|
if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&tmpbs,sizeof(tmpbs)) == 0)
|
|
break;
|
|
bs -= 16384;
|
|
}
|
|
}
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
{
|
|
BOOL f;
|
|
if (localAddress->sa_family == AF_INET6) {
|
|
f = TRUE; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
|
|
f = FALSE; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,(const char *)&f,sizeof(f));
|
|
}
|
|
f = FALSE; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
|
|
f = TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char *)&f,sizeof(f));
|
|
}
|
|
#else // not Windows
|
|
{
|
|
int f;
|
|
if (localAddress->sa_family == AF_INET6) {
|
|
f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
|
|
#ifdef IPV6_MTU_DISCOVER
|
|
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
|
|
#endif
|
|
}
|
|
f = 0; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
|
|
f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f));
|
|
#ifdef IP_DONTFRAG
|
|
f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
|
|
#endif
|
|
#ifdef IP_MTU_DISCOVER
|
|
f = 0; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
|
|
#endif
|
|
}
|
|
#endif // Windows or not
|
|
|
|
if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
{ u_long iMode=1; ioctlsocket(s,FIONBIO,&iMode); }
|
|
#else
|
|
fcntl(s,F_SETFL,O_NONBLOCK);
|
|
#endif
|
|
|
|
try {
|
|
_socks.push_back(PhySocketImpl());
|
|
} catch ( ... ) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
PhySocketImpl &sws = _socks.back();
|
|
|
|
if ((long)s > _nfds)
|
|
_nfds = (long)s;
|
|
FD_SET(s,&_readfds);
|
|
sws.type = ZT_PHY_SOCKET_UDP;
|
|
sws.sock = s;
|
|
sws.uptr = uptr;
|
|
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
|
|
memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
|
|
|
|
return (PhySocket *)&sws;
|
|
}
|
|
|
|
/**
|
|
* Send a UDP packet
|
|
*
|
|
* @param sock UDP socket
|
|
* @param remoteAddress Destination address (must be correct type for socket)
|
|
* @param data Data to send
|
|
* @param len Length of packet
|
|
* @return True if packet appears to have been sent successfully
|
|
*/
|
|
inline bool udpSend(PhySocket *sock,const struct sockaddr *remoteAddress,const void *data,unsigned long len)
|
|
{
|
|
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
|
|
return ((long)::sendto(sws.sock,data,len,0,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in)) == (long)len);
|
|
}
|
|
|
|
/**
|
|
* Bind a local listen socket to listen for new TCP connections
|
|
*
|
|
* @param localAddress Local address and port
|
|
* @param uptr Initial value of uptr for new socket (default: NULL)
|
|
* @return Socket or NULL on failure to bind
|
|
*/
|
|
inline PhySocket *tcpListen(const struct sockaddr *localAddress,void *uptr = (void *)0)
|
|
{
|
|
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
|
|
return (PhySocket *)0;
|
|
|
|
ZT_PHY_SOCKFD_TYPE s = ::socket(localAddress->sa_family,SOCK_STREAM,0);
|
|
if (!ZT_PHY_SOCKFD_VALID(s))
|
|
return (PhySocket *)0;
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
{
|
|
BOOL f;
|
|
f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
|
|
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
|
|
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
|
|
u_long iMode=1;
|
|
ioctlsocket(s,FIONBIO,&iMode);
|
|
}
|
|
#else
|
|
{
|
|
int f;
|
|
f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
|
|
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
|
|
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
|
|
fcntl(s,F_SETFL,O_NONBLOCK);
|
|
}
|
|
#endif
|
|
|
|
if (::bind(s,localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
|
|
if (::listen(s,1024)) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
|
|
try {
|
|
_socks.push_back(PhySocketImpl());
|
|
} catch ( ... ) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
PhySocketImpl &sws = _socks.back();
|
|
|
|
if ((long)s > _nfds)
|
|
_nfds = (long)s;
|
|
FD_SET(s,&_readfds);
|
|
sws.type = ZT_PHY_SOCKET_TCP_LISTEN;
|
|
sws.sock = s;
|
|
sws.uptr = uptr;
|
|
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
|
|
memcpy(&(sws.saddr),localAddress,(localAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
|
|
|
|
return (PhySocket *)&sws;
|
|
}
|
|
|
|
/**
|
|
* Start a non-blocking connect; CONNECT handler is called on success or failure
|
|
*
|
|
* A return value of NULL indicates a synchronous failure such as a
|
|
* failure to open a socket. The TCP connection handler is not called
|
|
* in this case.
|
|
*
|
|
* It is possible on some platforms for an "instant connect" to occur,
|
|
* such as when connecting to a loopback address. In this case, the
|
|
* 'connected' result parameter will be set to 'true' and if the
|
|
* 'callConnectHandler' flag is true (the default) the TCP connect
|
|
* handler will be called before the function returns.
|
|
*
|
|
* These semantics can be a bit confusing, but they're less so than
|
|
* the underlying semantics of asynchronous TCP connect.
|
|
*
|
|
* @param remoteAddress Remote address
|
|
* @param connected Result parameter: set to whether an "instant connect" has occurred (true if yes)
|
|
* @param uptr Initial value of uptr for new socket (default: NULL)
|
|
* @param callConnectHandler If true, call TCP connect handler even if result is known before function exit (default: true)
|
|
* @return New socket or NULL on failure
|
|
*/
|
|
inline PhySocket *tcpConnect(const struct sockaddr *remoteAddress,bool &connected,void *uptr = (void *)0,bool callConnectHandler = true)
|
|
{
|
|
if (_socks.size() >= ZT_PHY_MAX_SOCKETS)
|
|
return (PhySocket *)0;
|
|
|
|
ZT_PHY_SOCKFD_TYPE s = ::socket(remoteAddress->sa_family,SOCK_STREAM,0);
|
|
if (!ZT_PHY_SOCKFD_VALID(s)) {
|
|
connected = false;
|
|
return (PhySocket *)0;
|
|
}
|
|
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
{
|
|
BOOL f;
|
|
f = TRUE; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(const char *)&f,sizeof(f));
|
|
f = TRUE; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(const char *)&f,sizeof(f));
|
|
f = (_noDelay ? TRUE : FALSE); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
|
|
u_long iMode=1;
|
|
ioctlsocket(s,FIONBIO,&iMode);
|
|
}
|
|
#else
|
|
{
|
|
int f;
|
|
f = 1; ::setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
|
|
f = 1; ::setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
|
|
f = (_noDelay ? 1 : 0); setsockopt(s,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f));
|
|
fcntl(s,F_SETFL,O_NONBLOCK);
|
|
}
|
|
#endif
|
|
|
|
connected = true;
|
|
if (::connect(s,remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in))) {
|
|
connected = false;
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
if (WSAGetLastError() != WSAEWOULDBLOCK) {
|
|
#else
|
|
if (errno != EINPROGRESS) {
|
|
#endif
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
} // else connection is proceeding asynchronously...
|
|
}
|
|
|
|
try {
|
|
_socks.push_back(PhySocketImpl());
|
|
} catch ( ... ) {
|
|
ZT_PHY_CLOSE_SOCKET(s);
|
|
return (PhySocket *)0;
|
|
}
|
|
PhySocketImpl &sws = _socks.back();
|
|
|
|
if ((long)s > _nfds)
|
|
_nfds = (long)s;
|
|
if (connected) {
|
|
FD_SET(s,&_readfds);
|
|
sws.type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
|
|
} else {
|
|
FD_SET(s,&_writefds);
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
FD_SET(s,&_exceptfds);
|
|
#endif
|
|
sws.type = ZT_PHY_SOCKET_TCP_OUT_PENDING;
|
|
}
|
|
sws.sock = s;
|
|
sws.uptr = uptr;
|
|
memset(&(sws.saddr),0,sizeof(struct sockaddr_storage));
|
|
memcpy(&(sws.saddr),remoteAddress,(remoteAddress->sa_family == AF_INET6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in));
|
|
|
|
if ((callConnectHandler)&&(connected)) {
|
|
try {
|
|
_tcpConnectHandler((PhySocket *)&sws,&(sws.uptr),true);
|
|
} catch ( ... ) {}
|
|
}
|
|
|
|
return (PhySocket *)&sws;
|
|
}
|
|
|
|
/**
|
|
* Attempt to send data to a TCP connection (non-blocking)
|
|
*
|
|
* If -1 is returned, the socket should no longer be used as it is now
|
|
* destroyed. If callCloseHandler is true, the close handler will be
|
|
* called before the function returns.
|
|
*
|
|
* @param sock An open TCP socket (other socket types will fail)
|
|
* @param data Data to send
|
|
* @param len Length of data
|
|
* @param callCloseHandler If true, call close handler on socket closing failure condition
|
|
* @return Number of bytes actually sent or -1 on fatal error (socket closure)
|
|
*/
|
|
inline long tcpSend(PhySocket *sock,const void *data,unsigned long len,bool callCloseHandler)
|
|
{
|
|
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
|
|
long n = (long)::send(sws.sock,data,len,0);
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
if (n == SOCKET_ERROR) {
|
|
switch(WSAGetLastError()) {
|
|
case WSAEINTR:
|
|
case WSAEWOULDBLOCK:
|
|
return 0;
|
|
default:
|
|
this->close(sock,callCloseHandler);
|
|
return -1;
|
|
}
|
|
}
|
|
#else // not Windows
|
|
if (n < 0) {
|
|
switch(errno) {
|
|
#ifdef EAGAIN
|
|
case EAGAIN:
|
|
#endif
|
|
#if defined(EWOULDBLOCK) && ( !defined(EAGAIN) || (EWOULDBLOCK != EAGAIN) )
|
|
case EWOULDBLOCK:
|
|
#endif
|
|
#ifdef EINTR
|
|
case EINTR:
|
|
#endif
|
|
return 0;
|
|
default:
|
|
this->close(sock,callCloseHandler);
|
|
return -1;
|
|
}
|
|
}
|
|
#endif // Windows or not
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Set whether we want to be notified via the TCP writability handler when a socket is writable
|
|
*
|
|
* Call whack() if this is being done from another thread and you want
|
|
* it to take effect immediately. Otherwise it is only guaranteed to
|
|
* take effect on the next poll().
|
|
*
|
|
* @param sock TCP connection socket (other types are not valid)
|
|
* @param notifyWritable Want writable notifications?
|
|
*/
|
|
inline const void tcpSetNotifyWritable(PhySocket *sock,bool notifyWritable)
|
|
{
|
|
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
|
|
if (notifyWritable) {
|
|
FD_SET(sws.sock,&_writefds);
|
|
} else {
|
|
FD_CLR(sws.sock,&_writefds);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Wait for activity and handle one or more events
|
|
*
|
|
* Note that this is not guaranteed to wait up to 'timeout' even
|
|
* if nothing happens, as whack() or other events such as signals
|
|
* may cause premature termination.
|
|
*
|
|
* @param timeout Timeout in milliseconds or 0 for none (forever)
|
|
*/
|
|
inline void poll(unsigned long timeout)
|
|
{
|
|
char buf[131072];
|
|
struct sockaddr_storage ss;
|
|
struct timeval tv;
|
|
fd_set rfds,wfds,efds;
|
|
|
|
memcpy(&rfds,&_readfds,sizeof(rfds));
|
|
memcpy(&wfds,&_writefds,sizeof(wfds));
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
memcpy(&efds,&_exceptfds,sizeof(efds));
|
|
#else
|
|
FD_ZERO(&efds);
|
|
#endif
|
|
|
|
tv.tv_sec = (long)(timeout / 1000);
|
|
tv.tv_usec = (long)((timeout % 1000) * 1000);
|
|
if (::select((int)_nfds + 1,&rfds,&wfds,&efds,(timeout > 0) ? &tv : (struct timeval *)0) <= 0)
|
|
return;
|
|
|
|
if (FD_ISSET(_whackReceiveSocket,&rfds)) {
|
|
char tmp[16];
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
::recv(_whackReceiveSocket,tmp,16,0);
|
|
#else
|
|
::read(_whackReceiveSocket,tmp,16);
|
|
#endif
|
|
}
|
|
|
|
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin()),nexts;s!=_socks.end();s=nexts) {
|
|
nexts = s; ++nexts; // we can delete the linked list item, so traverse now
|
|
|
|
switch (s->type) {
|
|
|
|
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
if (FD_ISSET(s->sock,&efds))
|
|
this->close((PhySocket *)&(*s),true);
|
|
else // ... if
|
|
#endif
|
|
if (FD_ISSET(s->sock,&wfds)) {
|
|
socklen_t slen = sizeof(ss);
|
|
if (::getpeername(s->sock,(struct sockaddr *)&ss,&slen) != 0) {
|
|
this->close((PhySocket *)&(*s),true);
|
|
} else {
|
|
s->type = ZT_PHY_SOCKET_TCP_OUT_CONNECTED;
|
|
FD_SET(s->sock,&_readfds);
|
|
FD_CLR(s->sock,&_writefds);
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
FD_CLR(s->sock,&_exceptfds);
|
|
#endif
|
|
try {
|
|
_tcpConnectHandler((PhySocket *)&(*s),&(s->uptr),true);
|
|
} catch ( ... ) {}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
|
|
case ZT_PHY_SOCKET_TCP_IN:
|
|
if (FD_ISSET(s->sock,&rfds)) {
|
|
long n = (long)::recv(s->sock,buf,sizeof(buf),0);
|
|
if (n <= 0) {
|
|
this->close((PhySocket *)&(*s),true);
|
|
} else {
|
|
try {
|
|
_tcpDataHandler((PhySocket *)&(*s),&(s->uptr),(void *)buf,(unsigned long)n);
|
|
} catch ( ... ) {}
|
|
}
|
|
}
|
|
if ((FD_ISSET(s->sock,&wfds))&&(FD_ISSET(s->sock,&_writefds))) {
|
|
try {
|
|
_tcpWritableHandler((PhySocket *)&(*s),&(s->uptr));
|
|
} catch ( ... ) {}
|
|
}
|
|
break;
|
|
|
|
case ZT_PHY_SOCKET_TCP_LISTEN:
|
|
if (FD_ISSET(s->sock,&rfds)) {
|
|
memset(&ss,0,sizeof(ss));
|
|
socklen_t slen = sizeof(ss);
|
|
ZT_PHY_SOCKFD_TYPE newSock = ::accept(s->sock,(struct sockaddr *)&ss,&slen);
|
|
if (ZT_PHY_SOCKFD_VALID(newSock)) {
|
|
if (_socks.size() >= ZT_PHY_MAX_SOCKETS) {
|
|
ZT_PHY_CLOSE_SOCKET(newSock);
|
|
} else {
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
{ BOOL f = (_noDelay ? TRUE : FALSE); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
|
|
{ u_long iMode=1; ioctlsocket(newSock,FIONBIO,&iMode); }
|
|
#else
|
|
{ int f = (_noDelay ? 1 : 0); setsockopt(newSock,IPPROTO_TCP,TCP_NODELAY,(char *)&f,sizeof(f)); }
|
|
fcntl(newSock,F_SETFL,O_NONBLOCK);
|
|
#endif
|
|
_socks.push_back(PhySocketImpl());
|
|
PhySocketImpl &sws = _socks.back();
|
|
FD_SET(newSock,&_readfds);
|
|
if ((long)newSock > _nfds)
|
|
_nfds = (long)newSock;
|
|
sws.type = ZT_PHY_SOCKET_TCP_IN;
|
|
sws.sock = newSock;
|
|
sws.uptr = (void *)0;
|
|
memcpy(&(sws.saddr),&ss,sizeof(struct sockaddr_storage));
|
|
try {
|
|
_tcpAcceptHandler((PhySocket *)&(*s),(PhySocket *)&(_socks.back()),&(s->uptr),&(sws.uptr),(const struct sockaddr *)&(sws.saddr));
|
|
} catch ( ... ) {}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ZT_PHY_SOCKET_UDP:
|
|
if (FD_ISSET(s->sock,&rfds)) {
|
|
memset(&ss,0,sizeof(ss));
|
|
socklen_t slen = sizeof(ss);
|
|
long n = (long)::recvfrom(s->sock,buf,sizeof(buf),0,(struct sockaddr *)&ss,&slen);
|
|
if (n > 0) {
|
|
try {
|
|
_datagramHandler((PhySocket *)&(*s),&(s->uptr),(const struct sockaddr *)&ss,(void *)buf,(unsigned long)n);
|
|
} catch ( ... ) {}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param sock Socket to close
|
|
* @param callHandlers If true, call handlers for TCP connect (success: false) or close (default: true)
|
|
*/
|
|
inline void close(PhySocket *sock,bool callHandlers = true)
|
|
{
|
|
if (!sock)
|
|
return;
|
|
PhySocketImpl &sws = *(reinterpret_cast<PhySocketImpl *>(sock));
|
|
|
|
FD_CLR(sws.sock,&_readfds);
|
|
FD_CLR(sws.sock,&_writefds);
|
|
#if defined(_WIN32) || defined(_WIN64)
|
|
FD_CLR(sws.sock,&_exceptfds);
|
|
#endif
|
|
|
|
ZT_PHY_CLOSE_SOCKET(sws.sock);
|
|
|
|
switch(sws.type) {
|
|
case ZT_PHY_SOCKET_TCP_OUT_PENDING:
|
|
if (callHandlers) {
|
|
try {
|
|
_tcpConnectHandler(sock,&(sws.uptr),false);
|
|
} catch ( ... ) {}
|
|
}
|
|
break;
|
|
case ZT_PHY_SOCKET_TCP_OUT_CONNECTED:
|
|
case ZT_PHY_SOCKET_TCP_IN:
|
|
if (callHandlers) {
|
|
try {
|
|
_tcpCloseHandler(sock,&(sws.uptr));
|
|
} catch ( ... ) {}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
long oldSock = (long)sws.sock;
|
|
|
|
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();++s) {
|
|
if (reinterpret_cast<PhySocket *>(&(*s)) == sock) {
|
|
_socks.erase(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (oldSock >= _nfds) {
|
|
long nfds = (long)_whackSendSocket;
|
|
if ((long)_whackReceiveSocket > nfds)
|
|
nfds = (long)_whackReceiveSocket;
|
|
for(typename std::list<PhySocketImpl>::iterator s(_socks.begin());s!=_socks.end();++s) {
|
|
if ((long)s->sock > nfds)
|
|
nfds = (long)s->sock;
|
|
}
|
|
_nfds = nfds;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Typedefs for using regular naked functions as template parameters to Phy<>
|
|
typedef void (*Phy_OnDatagramFunctionPtr)(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len);
|
|
typedef void (*Phy_OnTcpConnectFunction)(PhySocket *sock,void **uptr,bool success);
|
|
typedef void (*Phy_OnTcpAcceptFunction)(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from);
|
|
typedef void (*Phy_OnTcpCloseFunction)(PhySocket *sock,void **uptr);
|
|
typedef void (*Phy_OnTcpDataFunction)(PhySocket *sock,void **uptr,void *data,unsigned long len);
|
|
typedef void (*Phy_OnTcpWritableFunction)(PhySocket *sock,void **uptr);
|
|
|
|
/**
|
|
* Phy<> typedef'd to use simple naked function pointers
|
|
*/
|
|
typedef Phy<Phy_OnDatagramFunctionPtr,Phy_OnTcpConnectFunction,Phy_OnTcpAcceptFunction,Phy_OnTcpCloseFunction,Phy_OnTcpDataFunction,Phy_OnTcpWritableFunction> SimpleFunctionPhy;
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|