ZeroTierOne/service/OneService.cpp
2024-09-26 08:52:29 -04:00

4112 lines
168 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <algorithm>
#include <condition_variable>
#include <exception>
#include <list>
#include <map>
#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <thread>
#include <vector>
#ifdef __FreeBSD__
#include <pthread_np.h>
#include <sched.h>
#endif
#include "../include/ZeroTierOne.h"
#include "../node/Bond.hpp"
#include "../node/Constants.hpp"
#include "../node/Identity.hpp"
#include "../node/InetAddress.hpp"
#include "../node/MAC.hpp"
#include "../node/Mutex.hpp"
#include "../node/Node.hpp"
#include "../node/PacketMultiplexer.hpp"
#include "../node/Peer.hpp"
#include "../node/Poly1305.hpp"
#include "../node/SHA512.hpp"
#include "../node/Salsa20.hpp"
#include "../node/Utils.hpp"
#include "../node/World.hpp"
#include "../osdep/Binder.hpp"
#include "../osdep/BlockingQueue.hpp"
#include "../osdep/Http.hpp"
#include "../osdep/ManagedRoute.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Phy.hpp"
#include "../osdep/PortMapper.hpp"
#include "../version.h"
#include "OneService.hpp"
#include "SoftwareUpdater.hpp"
#include <cpp-httplib/httplib.h>
#if ZT_SSO_ENABLED
#include <zeroidc.h>
#endif
#ifdef __WINDOWS__
#include <iphlpapi.h>
#include <netioapi.h>
#include <shlobj.h>
#include <windows.h>
#include <winsock2.h>
// #include <unistd.h>
#define stat _stat
#else
#include <ifaddrs.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#endif
#ifdef __APPLE__
#include "../osdep/MacDNSHelper.hpp"
#elif defined(__WINDOWS__)
#include "../osdep/WinDNSHelper.hpp"
#include "../osdep/WinFWHelper.hpp"
#endif
#ifdef ZT_USE_SYSTEM_HTTP_PARSER
#include <http_parser.h>
#else
#include "../ext/http-parser/http_parser.h"
#endif
#include "../node/Metrics.hpp"
#if ZT_VAULT_SUPPORT
extern "C" {
#include <curl/curl.h>
}
#endif
#include <inja/inja.hpp>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
#include "../controller/EmbeddedNetworkController.hpp"
#include "../controller/PostgreSQL.hpp"
#include "../controller/Redis.hpp"
#include "../osdep/EthernetTap.hpp"
#ifdef __WINDOWS__
#include "../osdep/WindowsEthernetTap.hpp"
#endif
#ifndef ZT_SOFTWARE_UPDATE_DEFAULT
#define ZT_SOFTWARE_UPDATE_DEFAULT "disable"
#endif
// Sanity limits for HTTP
#define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64)
#define ZT_MAX_HTTP_CONNECTIONS 65536
// Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also
// bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi.
#define ZT_IF_METRIC 5000
// How often to check for new multicast subscriptions on a tap device
#define ZT_TAP_CHECK_MULTICAST_INTERVAL 5000
// TCP fallback relay (run by ZeroTier, Inc. -- this will eventually go away)
#ifndef ZT_SDK
#define ZT_TCP_FALLBACK_RELAY "204.80.128.1/443"
#endif
// Frequency at which we re-resolve the TCP fallback relay
#define ZT_TCP_FALLBACK_RERESOLVE_DELAY 86400000
// Attempt to engage TCP fallback after this many ms of no reply to packets sent to global-scope IPs
#define ZT_TCP_FALLBACK_AFTER 60000
// How often to check for local interface addresses
#define ZT_LOCAL_INTERFACE_CHECK_INTERVAL 60000
// Maximum write buffer size for outgoing TCP connections (sanity limit)
#define ZT_TCP_MAX_WRITEQ_SIZE 33554432
// TCP activity timeout
#define ZT_TCP_ACTIVITY_TIMEOUT 60000
#if ZT_VAULT_SUPPORT
size_t curlResponseWrite(void* ptr, size_t size, size_t nmemb, std::string* data)
{
data->append((char*)ptr, size * nmemb);
return size * nmemb;
}
#endif
namespace ZeroTier {
std::string ssoResponseTemplate = R"""(
<!doctype html>
<html class="no-js" lang="">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<title>Network SSO Login {{ networkId }}</title>
<meta name="description" content="">
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
html,body {
background: #eeeeee;
margin: 0;
padding: 0;
font-family: "System Sans Serif";
font-weight: normal;
font-size: 12pt;
height: 100%;
width: 100%;
}
.container {
position: absolute;
left: 50%;
top: 50%;
-webkit-transform: translate(-50%, -50%);
transform: translate(-50%, -50%);
}
.iconwrapper {
margin: 10px 10px 10px 10px;
}
</style>
</head>
<body>
<div class="container">
<div class="iconwrapper">
<svg id="Layer_1" width="225px" height="225px" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 225 225"><defs><style>.cls-1{fill:#fdb25d;}.cls-2{fill:none;stroke:#000;stroke-miterlimit:10;stroke-width:6.99px;}</style></defs><rect class="cls-1" width="225" height="225" rx="35.74"/><line class="cls-2" x1="25.65" y1="32.64" x2="199.35" y2="32.64"/><line class="cls-2" x1="112.5" y1="201.02" x2="112.5" y2="32.64"/><circle class="cls-2" cx="112.5" cy="115.22" r="56.54"/></svg>
</div>
<div class="text">{{ messageText }}</div>
</div>
</body>
</html>
)""";
bool bearerTokenValid(const std::string authHeader, const std::string& checkToken)
{
std::vector<std::string> tokens = OSUtils::split(authHeader.c_str(), " ", NULL, NULL);
if (tokens.size() != 2) {
return false;
}
std::string bearer = tokens[0];
std::string token = tokens[1];
std::transform(bearer.begin(), bearer.end(), bearer.begin(), [](unsigned char c) { return std::tolower(c); });
if (bearer != "bearer") {
return false;
}
if (token != checkToken) {
return false;
}
return true;
}
#if ZT_DEBUG == 1
std::string dump_headers(const httplib::Headers& headers)
{
std::string s;
char buf[BUFSIZ];
for (auto it = headers.begin(); it != headers.end(); ++it) {
const auto& x = *it;
snprintf(buf, sizeof(buf), "%s: %s\n", x.first.c_str(), x.second.c_str());
s += buf;
}
return s;
}
std::string http_log(const httplib::Request& req, const httplib::Response& res)
{
std::string s;
char buf[BUFSIZ];
s += "================================\n";
snprintf(buf, sizeof(buf), "%s %s %s", req.method.c_str(), req.version.c_str(), req.path.c_str());
s += buf;
std::string query;
for (auto it = req.params.begin(); it != req.params.end(); ++it) {
const auto& x = *it;
snprintf(buf, sizeof(buf), "%c%s=%s", (it == req.params.begin()) ? '?' : '&', x.first.c_str(), x.second.c_str());
query += buf;
}
snprintf(buf, sizeof(buf), "%s\n", query.c_str());
s += buf;
s += dump_headers(req.headers);
s += "--------------------------------\n";
snprintf(buf, sizeof(buf), "%d %s\n", res.status, res.version.c_str());
s += buf;
s += dump_headers(res.headers);
s += "\n";
if (! res.body.empty()) {
s += res.body;
}
s += "\n";
return s;
}
#endif
// Configured networks
class NetworkState {
public:
NetworkState()
: _webPort(9993)
, _tap((EthernetTap*)0)
#if ZT_SSO_ENABLED
, _idc(nullptr)
#endif
{
// Real defaults are in network 'up' code in network event handler
_settings.allowManaged = true;
_settings.allowGlobal = false;
_settings.allowDefault = false;
_settings.allowDNS = false;
memset(&_config, 0, sizeof(ZT_VirtualNetworkConfig));
}
~NetworkState()
{
this->_managedRoutes.clear();
this->_tap.reset();
#if ZT_SSO_ENABLED
if (_idc) {
zeroidc::zeroidc_stop(_idc);
zeroidc::zeroidc_delete(_idc);
_idc = nullptr;
}
#endif
}
void setWebPort(unsigned int port)
{
_webPort = port;
}
void setTap(std::shared_ptr<EthernetTap> tap)
{
this->_tap = tap;
}
std::shared_ptr<EthernetTap> tap() const
{
return _tap;
}
OneService::NetworkSettings settings() const
{
return _settings;
}
void setSettings(const OneService::NetworkSettings& settings)
{
_settings = settings;
}
void setAllowManaged(bool allow)
{
_settings.allowManaged = allow;
}
bool allowManaged() const
{
return _settings.allowManaged;
}
void setAllowGlobal(bool allow)
{
_settings.allowGlobal = allow;
}
bool allowGlobal() const
{
return _settings.allowGlobal;
}
void setAllowDefault(bool allow)
{
_settings.allowDefault = allow;
}
bool allowDefault() const
{
return _settings.allowDefault;
}
void setAllowDNS(bool allow)
{
_settings.allowDNS = allow;
}
bool allowDNS() const
{
return _settings.allowDNS;
}
std::vector<InetAddress> allowManagedWhitelist() const
{
return _settings.allowManagedWhitelist;
}
void addToAllowManagedWhiteList(const InetAddress& addr)
{
_settings.allowManagedWhitelist.push_back(addr);
}
const ZT_VirtualNetworkConfig& config()
{
return _config;
}
void setConfig(const ZT_VirtualNetworkConfig* nwc)
{
memcpy(&_config, nwc, sizeof(ZT_VirtualNetworkConfig));
if (_config.ssoEnabled && _config.ssoVersion == 1) {
#if ZT_SSO_ENABLED
if (_idc == nullptr) {
assert(_config.issuerURL != nullptr);
assert(_config.ssoClientID != nullptr);
assert(_config.centralAuthURL != nullptr);
assert(_config.ssoProvider != nullptr);
_idc = zeroidc::zeroidc_new(_config.issuerURL, _config.ssoClientID, _config.centralAuthURL, _config.ssoProvider, _webPort);
if (_idc == nullptr) {
fprintf(stderr, "idc is null\n");
return;
}
}
zeroidc::zeroidc_set_nonce_and_csrf(_idc, _config.ssoState, _config.ssoNonce);
char* url = zeroidc::zeroidc_get_auth_url(_idc);
memcpy(_config.authenticationURL, url, strlen(url));
_config.authenticationURL[strlen(url)] = 0;
zeroidc::free_cstr(url);
if (zeroidc::zeroidc_is_running(_idc) && nwc->status == ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED) {
zeroidc::zeroidc_kick_refresh_thread(_idc);
}
#endif
}
}
std::vector<InetAddress>& managedIps()
{
return _managedIps;
}
void setManagedIps(const std::vector<InetAddress>& managedIps)
{
_managedIps = managedIps;
}
std::map<InetAddress, SharedPtr<ManagedRoute> >& managedRoutes()
{
return _managedRoutes;
}
char* doTokenExchange(const char* code)
{
char* ret = nullptr;
#if ZT_SSO_ENABLED
if (_idc == nullptr) {
fprintf(stderr, "ainfo or idc null\n");
return ret;
}
ret = zeroidc::zeroidc_token_exchange(_idc, code);
zeroidc::zeroidc_set_nonce_and_csrf(_idc, _config.ssoState, _config.ssoNonce);
char* url = zeroidc::zeroidc_get_auth_url(_idc);
memcpy(_config.authenticationURL, url, strlen(url));
_config.authenticationURL[strlen(url)] = 0;
zeroidc::free_cstr(url);
#endif
return ret;
}
uint64_t getExpiryTime()
{
#if ZT_SSO_ENABLED
if (_idc == nullptr) {
fprintf(stderr, "idc is null\n");
return 0;
}
return zeroidc::zeroidc_get_exp_time(_idc);
#else
return 0;
#endif
}
private:
unsigned int _webPort;
std::shared_ptr<EthernetTap> _tap;
ZT_VirtualNetworkConfig _config; // memcpy() of raw config from core
std::vector<InetAddress> _managedIps;
std::map<InetAddress, SharedPtr<ManagedRoute> > _managedRoutes;
OneService::NetworkSettings _settings;
#if ZT_SSO_ENABLED
zeroidc::ZeroIDC* _idc;
#endif
};
namespace {
static const InetAddress NULL_INET_ADDR;
// Fake TLS hello for TCP tunnel outgoing connections (TUNNELED mode)
static const char ZT_TCP_TUNNEL_HELLO[9] = {
0x17, 0x03, 0x03, 0x00, 0x04, (char)ZEROTIER_ONE_VERSION_MAJOR, (char)ZEROTIER_ONE_VERSION_MINOR, (char)((ZEROTIER_ONE_VERSION_REVISION >> 8) & 0xff), (char)(ZEROTIER_ONE_VERSION_REVISION & 0xff)
};
static std::string _trimString(const std::string& s)
{
unsigned long end = (unsigned long)s.length();
while (end) {
char c = s[end - 1];
if ((c == ' ') || (c == '\r') || (c == '\n') || (! c) || (c == '\t'))
--end;
else
break;
}
unsigned long start = 0;
while (start < end) {
char c = s[start];
if ((c == ' ') || (c == '\r') || (c == '\n') || (! c) || (c == '\t'))
++start;
else
break;
}
return s.substr(start, end - start);
}
static void _networkToJson(nlohmann::json& nj, NetworkState& ns)
{
char tmp[256];
const char *nstatus = "", *ntype = "";
switch (ns.config().status) {
case ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION:
nstatus = "REQUESTING_CONFIGURATION";
break;
case ZT_NETWORK_STATUS_OK:
nstatus = "OK";
break;
case ZT_NETWORK_STATUS_ACCESS_DENIED:
nstatus = "ACCESS_DENIED";
break;
case ZT_NETWORK_STATUS_NOT_FOUND:
nstatus = "NOT_FOUND";
break;
case ZT_NETWORK_STATUS_PORT_ERROR:
nstatus = "PORT_ERROR";
break;
case ZT_NETWORK_STATUS_CLIENT_TOO_OLD:
nstatus = "CLIENT_TOO_OLD";
break;
case ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED:
nstatus = "AUTHENTICATION_REQUIRED";
break;
}
switch (ns.config().type) {
case ZT_NETWORK_TYPE_PRIVATE:
ntype = "PRIVATE";
break;
case ZT_NETWORK_TYPE_PUBLIC:
ntype = "PUBLIC";
break;
}
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", ns.config().nwid);
nj["id"] = tmp;
nj["nwid"] = tmp;
OSUtils::ztsnprintf(
tmp,
sizeof(tmp),
"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",
(unsigned int)((ns.config().mac >> 40) & 0xff),
(unsigned int)((ns.config().mac >> 32) & 0xff),
(unsigned int)((ns.config().mac >> 24) & 0xff),
(unsigned int)((ns.config().mac >> 16) & 0xff),
(unsigned int)((ns.config().mac >> 8) & 0xff),
(unsigned int)(ns.config().mac & 0xff));
nj["mac"] = tmp;
nj["name"] = ns.config().name;
nj["status"] = nstatus;
nj["type"] = ntype;
nj["mtu"] = ns.config().mtu;
nj["dhcp"] = (bool)(ns.config().dhcp != 0);
nj["bridge"] = (bool)(ns.config().bridge != 0);
nj["broadcastEnabled"] = (bool)(ns.config().broadcastEnabled != 0);
nj["portError"] = ns.config().portError;
nj["netconfRevision"] = ns.config().netconfRevision;
nj["portDeviceName"] = ns.tap()->deviceName();
OneService::NetworkSettings localSettings = ns.settings();
nj["allowManaged"] = localSettings.allowManaged;
nj["allowGlobal"] = localSettings.allowGlobal;
nj["allowDefault"] = localSettings.allowDefault;
nj["allowDNS"] = localSettings.allowDNS;
nlohmann::json aa = nlohmann::json::array();
for (unsigned int i = 0; i < ns.config().assignedAddressCount; ++i) {
aa.push_back(reinterpret_cast<const InetAddress*>(&(ns.config().assignedAddresses[i]))->toString(tmp));
}
nj["assignedAddresses"] = aa;
nlohmann::json ra = nlohmann::json::array();
for (unsigned int i = 0; i < ns.config().routeCount; ++i) {
nlohmann::json rj;
rj["target"] = reinterpret_cast<const InetAddress*>(&(ns.config().routes[i].target))->toString(tmp);
if (ns.config().routes[i].via.ss_family == ns.config().routes[i].target.ss_family)
rj["via"] = reinterpret_cast<const InetAddress*>(&(ns.config().routes[i].via))->toIpString(tmp);
else
rj["via"] = nlohmann::json();
rj["flags"] = (int)ns.config().routes[i].flags;
rj["metric"] = (int)ns.config().routes[i].metric;
ra.push_back(rj);
}
nj["routes"] = ra;
nlohmann::json mca = nlohmann::json::array();
for (unsigned int i = 0; i < ns.config().multicastSubscriptionCount; ++i) {
nlohmann::json m;
m["mac"] = MAC(ns.config().multicastSubscriptions[i].mac).toString(tmp);
m["adi"] = ns.config().multicastSubscriptions[i].adi;
mca.push_back(m);
}
nj["multicastSubscriptions"] = mca;
nlohmann::json m;
m["domain"] = ns.config().dns.domain;
m["servers"] = nlohmann::json::array();
for (int j = 0; j < ZT_MAX_DNS_SERVERS; ++j) {
InetAddress a(ns.config().dns.server_addr[j]);
if (a.isV4() || a.isV6()) {
char buf[256];
m["servers"].push_back(a.toIpString(buf));
}
}
nj["dns"] = m;
if (ns.config().ssoEnabled) {
const char* authURL = ns.config().authenticationURL;
// fprintf(stderr, "Auth URL: %s\n", authURL);
nj["authenticationURL"] = authURL;
nj["authenticationExpiryTime"] = (ns.getExpiryTime() * 1000);
nj["ssoEnabled"] = ns.config().ssoEnabled;
}
}
static void _peerToJson(nlohmann::json& pj, const ZT_Peer* peer, SharedPtr<Bond>& bond, bool isTunneled)
{
char tmp[256];
const char* prole = "";
switch (peer->role) {
case ZT_PEER_ROLE_LEAF:
prole = "LEAF";
break;
case ZT_PEER_ROLE_MOON:
prole = "MOON";
break;
case ZT_PEER_ROLE_PLANET:
prole = "PLANET";
break;
}
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.10llx", peer->address);
pj["address"] = tmp;
pj["versionMajor"] = peer->versionMajor;
pj["versionMinor"] = peer->versionMinor;
pj["versionRev"] = peer->versionRev;
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", peer->versionMajor, peer->versionMinor, peer->versionRev);
pj["version"] = tmp;
pj["latency"] = peer->latency;
pj["role"] = prole;
pj["isBonded"] = peer->isBonded;
pj["tunneled"] = isTunneled;
if (bond && peer->isBonded) {
pj["bondingPolicyCode"] = peer->bondingPolicy;
pj["bondingPolicyStr"] = Bond::getPolicyStrByCode(peer->bondingPolicy);
pj["numAliveLinks"] = peer->numAliveLinks;
pj["numTotalLinks"] = peer->numTotalLinks;
pj["failoverInterval"] = bond->getFailoverInterval();
pj["downDelay"] = bond->getDownDelay();
pj["upDelay"] = bond->getUpDelay();
pj["packetsPerLink"] = bond->getPacketsPerLink();
}
nlohmann::json pa = nlohmann::json::array();
for (unsigned int i = 0; i < peer->pathCount; ++i) {
int64_t lastSend = peer->paths[i].lastSend;
int64_t lastReceive = peer->paths[i].lastReceive;
nlohmann::json j;
j["address"] = reinterpret_cast<const InetAddress*>(&(peer->paths[i].address))->toString(tmp);
j["lastSend"] = (lastSend < 0) ? 0 : lastSend;
j["lastReceive"] = (lastReceive < 0) ? 0 : lastReceive;
j["trustedPathId"] = peer->paths[i].trustedPathId;
j["active"] = (bool)(peer->paths[i].expired == 0);
j["expired"] = (bool)(peer->paths[i].expired != 0);
j["preferred"] = (bool)(peer->paths[i].preferred != 0);
j["localSocket"] = peer->paths[i].localSocket;
j["localPort"] = peer->paths[i].localPort;
if (bond && peer->isBonded) {
uint64_t now = OSUtils::now();
j["ifname"] = std::string(peer->paths[i].ifname);
j["latencyMean"] = peer->paths[i].latencyMean;
j["latencyVariance"] = peer->paths[i].latencyVariance;
j["packetLossRatio"] = peer->paths[i].packetLossRatio;
j["packetErrorRatio"] = peer->paths[i].packetErrorRatio;
j["assignedFlowCount"] = peer->paths[i].assignedFlowCount;
j["lastInAge"] = (now - lastReceive);
j["lastOutAge"] = (now - lastSend);
j["bonded"] = peer->paths[i].bonded;
j["eligible"] = peer->paths[i].eligible;
j["givenLinkSpeed"] = peer->paths[i].linkSpeed;
j["relativeQuality"] = peer->paths[i].relativeQuality;
}
pa.push_back(j);
}
pj["paths"] = pa;
}
static void _moonToJson(nlohmann::json& mj, const World& world)
{
char tmp[4096];
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", world.id());
mj["id"] = tmp;
mj["timestamp"] = world.timestamp();
mj["signature"] = Utils::hex(world.signature().data, ZT_ECC_SIGNATURE_LEN, tmp);
mj["updatesMustBeSignedBy"] = Utils::hex(world.updatesMustBeSignedBy().data, ZT_ECC_PUBLIC_KEY_SET_LEN, tmp);
nlohmann::json ra = nlohmann::json::array();
for (std::vector<World::Root>::const_iterator r(world.roots().begin()); r != world.roots().end(); ++r) {
nlohmann::json rj;
rj["identity"] = r->identity.toString(false, tmp);
nlohmann::json eps = nlohmann::json::array();
for (std::vector<InetAddress>::const_iterator a(r->stableEndpoints.begin()); a != r->stableEndpoints.end(); ++a)
eps.push_back(a->toString(tmp));
rj["stableEndpoints"] = eps;
ra.push_back(rj);
}
mj["roots"] = ra;
mj["waiting"] = false;
}
class OneServiceImpl;
static int SnodeVirtualNetworkConfigFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwconf);
static void SnodeEventCallback(ZT_Node* node, void* uptr, void* tptr, enum ZT_Event event, const void* metaData);
static void SnodeStatePutFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len);
static int SnodeStateGetFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen);
static int SnodeWirePacketSendFunction(ZT_Node* node, void* uptr, void* tptr, int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl);
static void SnodeVirtualNetworkFrameFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len);
static int SnodePathCheckFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int64_t localSocket, const struct sockaddr_storage* remoteAddr);
static int SnodePathLookupFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int family, struct sockaddr_storage* result);
static void StapFrameHandler(void* uptr, void* tptr, uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len);
static int ShttpOnMessageBegin(http_parser* parser);
static int ShttpOnUrl(http_parser* parser, const char* ptr, size_t length);
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2)
static int ShttpOnStatus(http_parser* parser, const char* ptr, size_t length);
#else
static int ShttpOnStatus(http_parser* parser);
#endif
static int ShttpOnHeaderField(http_parser* parser, const char* ptr, size_t length);
static int ShttpOnValue(http_parser* parser, const char* ptr, size_t length);
static int ShttpOnHeadersComplete(http_parser* parser);
static int ShttpOnBody(http_parser* parser, const char* ptr, size_t length);
static int ShttpOnMessageComplete(http_parser* parser);
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 1)
static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnStatus, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete };
#else
static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete };
#endif
/**
* A TCP connection and related state and buffers
*/
struct TcpConnection {
enum {
TCP_UNCATEGORIZED_INCOMING, // uncategorized incoming connection
TCP_HTTP_INCOMING,
TCP_HTTP_OUTGOING,
TCP_TUNNEL_OUTGOING // TUNNELED mode proxy outbound connection
} type;
OneServiceImpl* parent;
PhySocket* sock;
InetAddress remoteAddr;
uint64_t lastReceive;
// Used for inbound HTTP connections
http_parser parser;
unsigned long messageSize;
std::string currentHeaderField;
std::string currentHeaderValue;
std::string url;
std::string status;
std::map<std::string, std::string> headers;
std::string readq;
std::string writeq;
Mutex writeq_m;
};
struct PacketRecord {
uint64_t now;
int64_t sock;
struct sockaddr_storage from;
unsigned int size;
uint8_t data[ZT_MAX_MTU];
};
class OneServiceImpl : public OneService {
public:
// begin member variables --------------------------------------------------
const std::string _homePath;
std::string _authToken;
std::string _metricsToken;
std::string _controllerDbPath;
const std::string _networksPath;
const std::string _moonsPath;
EmbeddedNetworkController* _controller;
Phy<OneServiceImpl*> _phy;
Node* _node;
SoftwareUpdater* _updater;
bool _updateAutoApply;
httplib::Server _controlPlane;
httplib::Server _controlPlaneV6;
std::thread _serverThread;
std::thread _serverThreadV6;
bool _serverThreadRunning;
bool _serverThreadRunningV6;
BlockingQueue<PacketRecord*> _rxPacketQueue;
std::vector<PacketRecord*> _rxPacketVector;
std::vector<std::thread> _rxPacketThreads;
Mutex _rxPacketVector_m, _rxPacketThreads_m;
bool _multicoreEnabled;
bool _cpuPinningEnabled;
unsigned int _concurrency;
bool _allowTcpFallbackRelay;
bool _forceTcpRelay;
bool _allowSecondaryPort;
bool _enableWebServer;
unsigned int _primaryPort;
unsigned int _secondaryPort;
unsigned int _tertiaryPort;
volatile unsigned int _udpPortPickerCounter;
// Local configuration and memo-ized information from it
json _localConfig;
Hashtable<uint64_t, std::vector<InetAddress> > _v4Hints;
Hashtable<uint64_t, std::vector<InetAddress> > _v6Hints;
Hashtable<uint64_t, std::vector<InetAddress> > _v4Blacklists;
Hashtable<uint64_t, std::vector<InetAddress> > _v6Blacklists;
std::vector<InetAddress> _globalV4Blacklist;
std::vector<InetAddress> _globalV6Blacklist;
std::vector<InetAddress> _allowManagementFrom;
std::vector<std::string> _interfacePrefixBlacklist;
Mutex _localConfig_m;
std::vector<InetAddress> explicitBind;
/*
* To attempt to handle NAT/gateway craziness we use three local UDP ports:
*
* [0] is the normal/default port, usually 9993
* [1] is a port derived from our ZeroTier address
* [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings
*
* [2] exists because on some gateways trying to do regular NAT-t interferes
* destructively with uPnP port mapping behavior in very weird buggy ways.
* It's only used if uPnP/NAT-PMP is enabled in this build.
*/
unsigned int _ports[3];
Binder _binder;
// Time we last received a packet from a global address
uint64_t _lastDirectReceiveFromGlobal;
#ifdef ZT_TCP_FALLBACK_RELAY
InetAddress _fallbackRelayAddress;
uint64_t _lastSendToGlobalV4;
#endif
// Last potential sleep/wake event
uint64_t _lastRestart;
// Deadline for the next background task service function
volatile int64_t _nextBackgroundTaskDeadline;
std::map<uint64_t, NetworkState> _nets;
Mutex _nets_m;
// Active TCP/IP connections
std::vector<TcpConnection*> _tcpConnections;
Mutex _tcpConnections_m;
TcpConnection* _tcpFallbackTunnel;
// Termination status information
ReasonForTermination _termReason;
std::string _fatalErrorMessage;
Mutex _termReason_m;
// uPnP/NAT-PMP port mapper if enabled
bool _portMappingEnabled; // local.conf settings
#ifdef ZT_USE_MINIUPNPC
PortMapper* _portMapper;
#endif
// HashiCorp Vault Settings
#if ZT_VAULT_SUPPORT
bool _vaultEnabled;
std::string _vaultURL;
std::string _vaultToken;
std::string _vaultPath; // defaults to cubbyhole/zerotier/identity.secret for per-access key storage
#endif
// Set to false to force service to stop
volatile bool _run;
Mutex _run_m;
RedisConfig* _rc;
std::string _ssoRedirectURL;
// end member variables ----------------------------------------------------
OneServiceImpl(const char* hp, unsigned int port)
: _homePath((hp) ? hp : ".")
, _controllerDbPath(_homePath + ZT_PATH_SEPARATOR_S "controller.d")
, _networksPath(_homePath + ZT_PATH_SEPARATOR_S "networks.d")
, _moonsPath(_homePath + ZT_PATH_SEPARATOR_S "moons.d")
, _controller((EmbeddedNetworkController*)0)
, _phy(this, false, true)
, _node((Node*)0)
, _updater((SoftwareUpdater*)0)
, _updateAutoApply(false)
, _controlPlane()
, _controlPlaneV6()
, _serverThread()
, _serverThreadV6()
, _serverThreadRunning(false)
, _serverThreadRunningV6(false)
, _forceTcpRelay(false)
, _primaryPort(port)
, _udpPortPickerCounter(0)
, _lastDirectReceiveFromGlobal(0)
#ifdef ZT_TCP_FALLBACK_RELAY
, _fallbackRelayAddress(ZT_TCP_FALLBACK_RELAY)
, _lastSendToGlobalV4(0)
#endif
, _lastRestart(0)
, _nextBackgroundTaskDeadline(0)
, _tcpFallbackTunnel((TcpConnection*)0)
, _termReason(ONE_STILL_RUNNING)
, _portMappingEnabled(true)
#ifdef ZT_USE_MINIUPNPC
, _portMapper((PortMapper*)0)
#endif
#ifdef ZT_VAULT_SUPPORT
, _vaultEnabled(false)
, _vaultURL()
, _vaultToken()
, _vaultPath("cubbyhole/zerotier")
#endif
, _run(true)
, _rc(NULL)
, _ssoRedirectURL()
{
_ports[0] = 0;
_ports[1] = 0;
_ports[2] = 0;
prometheus::simpleapi::saver.set_registry(prometheus::simpleapi::registry_ptr);
prometheus::simpleapi::saver.set_delay(std::chrono::seconds(5));
prometheus::simpleapi::saver.set_out_file(_homePath + ZT_PATH_SEPARATOR + "metrics.prom");
#if ZT_VAULT_SUPPORT
curl_global_init(CURL_GLOBAL_DEFAULT);
#endif
}
virtual ~OneServiceImpl()
{
#ifdef __WINDOWS__
WinFWHelper::removeICMPRules();
#endif
_rxPacketQueue.stop();
_rxPacketThreads_m.lock();
for (auto t = _rxPacketThreads.begin(); t != _rxPacketThreads.end(); ++t) {
t->join();
}
_rxPacketThreads_m.unlock();
_binder.closeAll(_phy);
#if ZT_VAULT_SUPPORT
curl_global_cleanup();
#endif
_controlPlane.stop();
if (_serverThreadRunning) {
_serverThread.join();
}
_controlPlaneV6.stop();
if (_serverThreadRunningV6) {
_serverThreadV6.join();
}
_rxPacketVector_m.lock();
while (! _rxPacketVector.empty()) {
delete _rxPacketVector.back();
_rxPacketVector.pop_back();
}
_rxPacketVector_m.unlock();
#ifdef ZT_USE_MINIUPNPC
delete _portMapper;
#endif
delete _controller;
delete _rc;
}
void setUpMultithreading()
{
#if defined(__APPLE__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__WINDOWS__)
return;
#endif
_node->initMultithreading(_concurrency, _cpuPinningEnabled);
bool pinning = _cpuPinningEnabled;
}
virtual ReasonForTermination run()
{
try {
{
const std::string authTokenPath(_homePath + ZT_PATH_SEPARATOR_S "authtoken.secret");
if (! OSUtils::readFile(authTokenPath.c_str(), _authToken)) {
unsigned char foo[24];
Utils::getSecureRandom(foo, sizeof(foo));
_authToken = "";
for (unsigned int i = 0; i < sizeof(foo); ++i)
_authToken.push_back("abcdefghijklmnopqrstuvwxyz0123456789"[(unsigned long)foo[i] % 36]);
if (! OSUtils::writeFile(authTokenPath.c_str(), _authToken)) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "authtoken.secret could not be written (try running with -U to prevent dropping of privileges)";
return _termReason;
}
else {
OSUtils::lockDownFile(authTokenPath.c_str(), false);
}
}
_authToken = _trimString(_authToken);
}
{
const std::string metricsTokenPath(_homePath + ZT_PATH_SEPARATOR_S "metricstoken.secret");
if (! OSUtils::readFile(metricsTokenPath.c_str(), _metricsToken)) {
unsigned char foo[24];
Utils::getSecureRandom(foo, sizeof(foo));
_metricsToken = "";
for (unsigned int i = 0; i < sizeof(foo); ++i)
_metricsToken.push_back("abcdefghijklmnopqrstuvwxyz0123456789"[(unsigned long)foo[i] % 36]);
if (! OSUtils::writeFile(metricsTokenPath.c_str(), _metricsToken)) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "metricstoken.secret could not be written (try running with -U to prevent dropping of privileges)";
return _termReason;
}
else {
OSUtils::lockDownFile(metricsTokenPath.c_str(), false);
}
}
_metricsToken = _trimString(_metricsToken);
}
{
struct ZT_Node_Callbacks cb;
cb.version = 0;
cb.stateGetFunction = SnodeStateGetFunction;
cb.statePutFunction = SnodeStatePutFunction;
cb.wirePacketSendFunction = SnodeWirePacketSendFunction;
cb.virtualNetworkFrameFunction = SnodeVirtualNetworkFrameFunction;
cb.virtualNetworkConfigFunction = SnodeVirtualNetworkConfigFunction;
cb.eventCallback = SnodeEventCallback;
cb.pathCheckFunction = SnodePathCheckFunction;
cb.pathLookupFunction = SnodePathLookupFunction;
_node = new Node(this, (void*)0, &cb, OSUtils::now());
}
// local.conf
readLocalSettings();
applyLocalConfig();
// Save original port number to show it if bind error
const int _configuredPort = _primaryPort;
// Make sure we can use the primary port, and hunt for one if configured to do so
const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random
for (int k = 0; k < portTrials; ++k) {
if (_primaryPort == 0) {
unsigned int randp = 0;
Utils::getSecureRandom(&randp, sizeof(randp));
_primaryPort = 20000 + (randp % 45500);
}
if (_trialBind(_primaryPort)) {
_ports[0] = _primaryPort;
}
else {
_primaryPort = 0;
}
}
if (_ports[0] == 0) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = std::string("cannot bind to local control interface port ") + std::to_string(_configuredPort);
return _termReason;
}
// Save primary port to a file so CLIs and GUIs can learn it easily
char portstr[64];
OSUtils::ztsnprintf(portstr, sizeof(portstr), "%u", _ports[0]);
OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "zerotier-one.port").c_str(), std::string(portstr));
// Attempt to bind to a secondary port.
// This exists because there are buggy NATs out there that fail if more
// than one device behind the same NAT tries to use the same internal
// private address port number. Buggy NATs are a running theme.
//
// This used to pick the secondary port based on the node ID until we
// discovered another problem: buggy routers and malicious traffic
// "detection". A lot of routers have such things built in these days
// and mis-detect ZeroTier traffic as malicious and block it resulting
// in a node that appears to be in a coma. Secondary ports are now
// randomized on startup.
if (_allowSecondaryPort) {
if (_secondaryPort) {
_ports[1] = _secondaryPort;
}
else {
_ports[1] = _getRandomPort();
}
}
#ifdef ZT_USE_MINIUPNPC
if (_portMappingEnabled) {
// If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't
// use the other two ports for that because some NATs do really funky
// stuff with ports that are explicitly mapped that breaks things.
if (_tertiaryPort) {
_ports[2] = _tertiaryPort;
}
else {
_ports[2] = _tertiaryPort = _getRandomPort();
}
if (_ports[2]) {
char uniqueName[64];
OSUtils::ztsnprintf(uniqueName, sizeof(uniqueName), "ZeroTier/%.10llx@%u", _node->address(), _ports[2]);
_portMapper = new PortMapper(_ports[2], uniqueName);
}
}
#endif
// Delete legacy iddb.d if present (cleanup)
OSUtils::rmDashRf((_homePath + ZT_PATH_SEPARATOR_S "iddb.d").c_str());
// Network controller is now enabled by default for desktop and server
_controller = new EmbeddedNetworkController(_node, _homePath.c_str(), _controllerDbPath.c_str(), _ports[0], _rc);
if (! _ssoRedirectURL.empty()) {
_controller->setSSORedirectURL(_ssoRedirectURL);
}
_node->setNetconfMaster((void*)_controller);
startHTTPControlPlane();
// Join existing networks in networks.d
{
std::vector<std::string> networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str()));
for (std::vector<std::string>::iterator f(networksDotD.begin()); f != networksDotD.end(); ++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16) && (f->substr(16) == ".conf"))
_node->join(Utils::hexStrToU64(f->substr(0, dot).c_str()), (void*)0, (void*)0);
}
}
// Orbit existing moons in moons.d
{
std::vector<std::string> moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str()));
for (std::vector<std::string>::iterator f(moonsDotD.begin()); f != moonsDotD.end(); ++f) {
std::size_t dot = f->find_last_of('.');
if ((dot == 16) && (f->substr(16) == ".moon"))
_node->orbit((void*)0, Utils::hexStrToU64(f->substr(0, dot).c_str()), 0);
}
}
// Main I/O loop
_nextBackgroundTaskDeadline = 0;
int64_t clockShouldBe = OSUtils::now();
_lastRestart = clockShouldBe;
int64_t lastTapMulticastGroupCheck = 0;
int64_t lastBindRefresh = 0;
int64_t lastUpdateCheck = clockShouldBe;
int64_t lastCleanedPeersDb = 0;
int64_t lastLocalConfFileCheck = OSUtils::now();
int64_t lastOnline = lastLocalConfFileCheck;
for (;;) {
_run_m.lock();
if (! _run) {
_run_m.unlock();
_termReason_m.lock();
_termReason = ONE_NORMAL_TERMINATION;
_termReason_m.unlock();
break;
}
else {
_run_m.unlock();
}
const int64_t now = OSUtils::now();
// Attempt to detect sleep/wake events by detecting delay overruns
bool restarted = false;
if ((now > clockShouldBe) && ((now - clockShouldBe) > 10000)) {
_lastRestart = now;
restarted = true;
}
// Check for updates (if enabled)
if ((_updater) && ((now - lastUpdateCheck) > 10000)) {
lastUpdateCheck = now;
if (_updater->check(now) && _updateAutoApply)
_updater->apply();
}
// Reload local.conf if anything changed recently
if ((now - lastLocalConfFileCheck) >= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) {
lastLocalConfFileCheck = now;
struct stat result;
if (stat((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), &result) == 0) {
int64_t mod_time = result.st_mtime * 1000;
if ((now - mod_time) <= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) {
readLocalSettings();
applyLocalConfig();
}
}
}
// Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default)
if (((now - lastBindRefresh) >= (_node->bondController()->inUse() ? ZT_BINDER_REFRESH_PERIOD / 4 : ZT_BINDER_REFRESH_PERIOD)) || restarted) {
// If secondary port is not configured to a constant value and we've been offline for a while,
// bind a new secondary port. This is a workaround for a "coma" issue caused by buggy NATs that stop
// working on one port after a while.
if (_secondaryPort == 0) {
if (_node->online()) {
lastOnline = now;
}
else if (now - lastOnline > (ZT_PEER_PING_PERIOD * 2) || restarted) {
lastOnline = now; // don't keep changing the port before we have a chance to connect
_ports[1] = _getRandomPort();
#if ZT_DEBUG == 1
fprintf(stderr, "Randomized secondary port. Now it's %d\n", _ports[1]);
#endif
}
}
unsigned int p[3];
unsigned int pc = 0;
for (int i = 0; i < 3; ++i) {
if (_ports[i])
p[pc++] = _ports[i];
}
if (! _forceTcpRelay) {
// Only bother binding UDP ports if we aren't forcing TCP-relay mode
_binder.refresh(_phy, p, pc, explicitBind, *this);
}
lastBindRefresh = now;
// Sync information about physical network interfaces
_node->clearLocalInterfaceAddresses();
#ifdef ZT_USE_MINIUPNPC
if (_portMapper) {
std::vector<InetAddress> mappedAddresses(_portMapper->get());
for (std::vector<InetAddress>::const_iterator ext(mappedAddresses.begin()); ext != mappedAddresses.end(); ++ext)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage*>(&(*ext)));
}
#endif
std::vector<InetAddress> boundAddrs(_binder.allBoundLocalInterfaceAddresses());
for (std::vector<InetAddress>::const_iterator i(boundAddrs.begin()); i != boundAddrs.end(); ++i) {
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage*>(&(*i)));
}
{
Mutex::Lock _l(_nets_m);
for (std::map<uint64_t, NetworkState>::iterator n(_nets.begin()); n != _nets.end(); ++n) {
if (n->second.tap())
syncManagedStuff(n->second, false, true, false);
}
}
}
// Run background task processor in core if it's time to do so
int64_t dl = _nextBackgroundTaskDeadline;
if (dl <= now) {
_node->processBackgroundTasks((void*)0, now, &_nextBackgroundTaskDeadline);
dl = _nextBackgroundTaskDeadline;
}
// Close TCP fallback tunnel if we have direct UDP
if (! _forceTcpRelay && (_tcpFallbackTunnel) && ((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2))) {
_phy.close(_tcpFallbackTunnel->sock);
}
// Sync multicast group memberships
if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) {
lastTapMulticastGroupCheck = now;
std::vector<std::pair<uint64_t, std::pair<std::vector<MulticastGroup>, std::vector<MulticastGroup> > > > mgChanges;
{
Mutex::Lock _l(_nets_m);
mgChanges.reserve(_nets.size() + 1);
for (std::map<uint64_t, NetworkState>::const_iterator n(_nets.begin()); n != _nets.end(); ++n) {
if (n->second.tap()) {
mgChanges.push_back(std::pair<uint64_t, std::pair<std::vector<MulticastGroup>, std::vector<MulticastGroup> > >(n->first, std::pair<std::vector<MulticastGroup>, std::vector<MulticastGroup> >()));
n->second.tap()->scanMulticastGroups(mgChanges.back().second.first, mgChanges.back().second.second);
}
}
}
for (std::vector<std::pair<uint64_t, std::pair<std::vector<MulticastGroup>, std::vector<MulticastGroup> > > >::iterator c(mgChanges.begin()); c != mgChanges.end(); ++c) {
for (std::vector<MulticastGroup>::iterator m(c->second.first.begin()); m != c->second.first.end(); ++m)
_node->multicastSubscribe((void*)0, c->first, m->mac().toInt(), m->adi());
for (std::vector<MulticastGroup>::iterator m(c->second.second.begin()); m != c->second.second.end(); ++m)
_node->multicastUnsubscribe(c->first, m->mac().toInt(), m->adi());
}
}
// Clean peers.d periodically
if ((now - lastCleanedPeersDb) >= 3600000) {
lastCleanedPeersDb = now;
OSUtils::cleanDirectory((_homePath + ZT_PATH_SEPARATOR_S "peers.d").c_str(), now - 2592000000LL); // delete older than 30 days
}
const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 500;
clockShouldBe = now + (int64_t)delay;
_phy.poll(delay);
}
}
catch (std::exception& e) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = std::string("unexpected exception in main thread: ") + e.what();
}
catch (int e) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
switch (e) {
case ZT_EXCEPTION_OUT_OF_BOUNDS: {
_fatalErrorMessage = "out of bounds exception";
break;
}
case ZT_EXCEPTION_OUT_OF_MEMORY: {
_fatalErrorMessage = "out of memory";
break;
}
case ZT_EXCEPTION_PRIVATE_KEY_REQUIRED: {
_fatalErrorMessage = "private key required";
break;
}
case ZT_EXCEPTION_INVALID_ARGUMENT: {
_fatalErrorMessage = "invalid argument";
break;
}
case ZT_EXCEPTION_INVALID_IDENTITY: {
_fatalErrorMessage = "invalid identity loaded from disk. Please remove identity.public and identity.secret from " + _homePath + " and try again";
break;
}
case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE: {
_fatalErrorMessage = "invalid serialized data: invalid type";
break;
}
case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW: {
_fatalErrorMessage = "invalid serialized data: overflow";
break;
}
case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN: {
_fatalErrorMessage = "invalid serialized data: invalid cryptographic token";
break;
}
case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING: {
_fatalErrorMessage = "invalid serialized data: bad encoding";
break;
}
default: {
_fatalErrorMessage = "unexpected exception code: " + std::to_string(e);
break;
}
}
}
catch (...) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = "unexpected exception in main thread: unknown exception";
}
try {
Mutex::Lock _l(_tcpConnections_m);
while (! _tcpConnections.empty())
_phy.close((*_tcpConnections.begin())->sock);
}
catch (...) {
}
{
Mutex::Lock _l(_nets_m);
_nets.clear();
}
delete _updater;
_updater = (SoftwareUpdater*)0;
delete _node;
_node = (Node*)0;
return _termReason;
}
void readLocalSettings()
{
// Read local configuration
std::map<InetAddress, ZT_PhysicalPathConfiguration> ppc;
// LEGACY: support old "trustedpaths" flat file
FILE* trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(), "r");
if (trustpaths) {
fprintf(stderr, "WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S);
char buf[1024];
while (fgets(buf, sizeof(buf), trustpaths)) {
int fno = 0;
char* saveptr = (char*)0;
uint64_t trustedPathId = 0;
InetAddress trustedPathNetwork;
for (char* f = Utils::stok(buf, "=\r\n \t", &saveptr); (f); f = Utils::stok((char*)0, "=\r\n \t", &saveptr)) {
if (fno == 0) {
trustedPathId = Utils::hexStrToU64(f);
}
else if (fno == 1) {
trustedPathNetwork = InetAddress(f);
}
else
break;
++fno;
}
if ((trustedPathId != 0) && ((trustedPathNetwork.ss_family == AF_INET) || (trustedPathNetwork.ss_family == AF_INET6)) && (trustedPathNetwork.netmaskBits() > 0)) {
ppc[trustedPathNetwork].trustedPathId = trustedPathId;
ppc[trustedPathNetwork].mtu = 0; // use default
}
}
fclose(trustpaths);
}
// Read local config file
Mutex::Lock _l2(_localConfig_m);
std::string lcbuf;
if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), lcbuf)) {
if (lcbuf.length() > 0) {
try {
_localConfig = OSUtils::jsonParse(lcbuf);
if (! _localConfig.is_object()) {
fprintf(stderr, "ERROR: unable to parse local.conf (root element is not a JSON object)" ZT_EOL_S);
exit(1);
}
}
catch (...) {
fprintf(stderr, "ERROR: unable to parse local.conf (invalid JSON)" ZT_EOL_S);
exit(1);
}
}
}
// Make a copy so lookups don't modify in place;
json lc(_localConfig);
// Get any trusted paths in local.conf (we'll parse the rest of physical[] elsewhere)
json& physical = lc["physical"];
if (physical.is_object()) {
for (json::iterator phy(physical.begin()); phy != physical.end(); ++phy) {
InetAddress net(OSUtils::jsonString(phy.key(), "").c_str());
if (net) {
if (phy.value().is_object()) {
uint64_t tpid;
if ((tpid = OSUtils::jsonInt(phy.value()["trustedPathId"], 0ULL)) != 0ULL) {
if ((net.ss_family == AF_INET) || (net.ss_family == AF_INET6))
ppc[net].trustedPathId = tpid;
}
ppc[net].mtu = (int)OSUtils::jsonInt(phy.value()["mtu"], 0ULL); // 0 means use default
}
}
}
}
json& settings = lc["settings"];
if (settings.is_object()) {
// Allow controller DB path to be put somewhere else
const std::string cdbp(OSUtils::jsonString(settings["controllerDbPath"], ""));
if (cdbp.length() > 0)
_controllerDbPath = cdbp;
_ssoRedirectURL = OSUtils::jsonString(settings["ssoRedirectURL"], "");
#ifdef ZT_CONTROLLER_USE_LIBPQ
// TODO: Redis config
json& redis = settings["redis"];
if (redis.is_object() && _rc == NULL) {
_rc = new RedisConfig;
_rc->hostname = OSUtils::jsonString(redis["hostname"], "");
_rc->port = OSUtils::jsonInt(redis["port"], 0);
_rc->password = OSUtils::jsonString(redis["password"], "");
_rc->clusterMode = OSUtils::jsonBool(redis["clusterMode"], false);
}
#endif
// Bind to wildcard instead of to specific interfaces (disables full tunnel capability)
json& bind = settings["bind"];
if (bind.is_array()) {
for (unsigned long i = 0; i < bind.size(); ++i) {
const std::string ips(OSUtils::jsonString(bind[i], ""));
if (ips.length() > 0) {
InetAddress ip(ips.c_str());
if ((ip.ss_family == AF_INET) || (ip.ss_family == AF_INET6))
explicitBind.push_back(ip);
}
}
}
}
// Set trusted paths if there are any
if (! ppc.empty()) {
for (std::map<InetAddress, ZT_PhysicalPathConfiguration>::iterator i(ppc.begin()); i != ppc.end(); ++i)
_node->setPhysicalPathConfiguration(reinterpret_cast<const struct sockaddr_storage*>(&(i->first)), &(i->second));
}
}
virtual ReasonForTermination reasonForTermination() const
{
Mutex::Lock _l(_termReason_m);
return _termReason;
}
virtual std::string fatalErrorMessage() const
{
Mutex::Lock _l(_termReason_m);
return _fatalErrorMessage;
}
virtual std::string portDeviceName(uint64_t nwid) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t, NetworkState>::const_iterator n(_nets.find(nwid));
if ((n != _nets.end()) && (n->second.tap()))
return n->second.tap()->deviceName();
else
return std::string();
}
#ifdef ZT_SDK
virtual std::string givenHomePath()
{
return _homePath;
}
void getRoutes(uint64_t nwid, void* routeArray, unsigned int* numRoutes)
{
Mutex::Lock _l(_nets_m);
NetworkState& n = _nets[nwid];
*numRoutes = *numRoutes < n.config().routeCount ? *numRoutes : n.config().routeCount;
for (unsigned int i = 0; i < *numRoutes; i++) {
ZT_VirtualNetworkRoute* vnr = (ZT_VirtualNetworkRoute*)routeArray;
memcpy(&vnr[i], &(n.config().routes[i]), sizeof(ZT_VirtualNetworkRoute));
}
}
virtual Node* getNode()
{
return _node;
}
#endif // ZT_SDK
virtual void terminate()
{
_run_m.lock();
_run = false;
_run_m.unlock();
_phy.whack();
}
virtual bool getNetworkSettings(const uint64_t nwid, NetworkSettings& settings) const
{
Mutex::Lock _l(_nets_m);
std::map<uint64_t, NetworkState>::const_iterator n(_nets.find(nwid));
if (n == _nets.end())
return false;
settings = n->second.settings();
return true;
}
virtual bool setNetworkSettings(const uint64_t nwid, const NetworkSettings& settings)
{
char nlcpath[4096];
OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _networksPath.c_str(), nwid);
FILE* out = fopen(nlcpath, "w");
if (out) {
fprintf(out, "allowManaged=%d\n", (int)settings.allowManaged);
fprintf(out, "allowGlobal=%d\n", (int)settings.allowGlobal);
fprintf(out, "allowDefault=%d\n", (int)settings.allowDefault);
fprintf(out, "allowDNS=%d\n", (int)settings.allowDNS);
fclose(out);
}
return true;
}
// Internal HTTP Control Plane
void startHTTPControlPlane()
{
// control plane endpoints
std::string bondShowPath = "/bond/show/([0-9a-fA-F]{10})";
std::string bondRotatePath = "/bond/rotate/([0-9a-fA-F]{10})";
std::string setBondMtuPath = "/bond/setmtu/([0-9]{1,6})/([a-zA-Z0-9_]{1,16})/([0-9a-fA-F\\.\\:]{1,39})";
std::string configPath = "/config";
std::string configPostPath = "/config/settings";
std::string healthPath = "/health";
std::string moonListPath = "/moon";
std::string moonPath = "/moon/([0-9a-fA-F]{10})";
std::string networkListPath = "/network";
std::string networkPath = "/network/([0-9a-fA-F]{16})";
std::string peerListPath = "/peer";
std::string peerPath = "/peer/([0-9a-fA-F]{10})";
std::string statusPath = "/status";
std::string metricsPath = "/metrics";
std::vector<std::string> noAuthEndpoints { "/sso", "/health" };
auto setContent = [=](const httplib::Request& req, httplib::Response& res, std::string content) {
if (req.has_param("jsonp")) {
if (content.length() > 0) {
res.set_content(req.get_param_value("jsonp") + "(" + content + ");", "application/javascript");
}
else {
res.set_content(req.get_param_value("jsonp") + "(null);", "application/javascript");
}
}
else {
if (content.length() > 0) {
res.set_content(content, "application/json");
}
else {
res.set_content("{}", "application/json");
}
}
};
//
// static file server for app ui'
//
if (_enableWebServer) {
static std::string appUiPath = "/app";
static char appUiDir[16384];
sprintf(appUiDir, "%s%s", _homePath.c_str(), appUiPath.c_str());
auto ret = _controlPlane.set_mount_point(appUiPath, appUiDir);
_controlPlaneV6.set_mount_point(appUiPath, appUiDir);
if (! ret) {
fprintf(stderr, "Mounting app directory failed. Creating it. Path: %s - Dir: %s\n", appUiPath.c_str(), appUiDir);
if (! OSUtils::mkdir(appUiDir)) {
fprintf(stderr, "Could not create app directory either. Path: %s - Dir: %s\n", appUiPath.c_str(), appUiDir);
}
else {
ret = _controlPlane.set_mount_point(appUiPath, appUiDir);
_controlPlaneV6.set_mount_point(appUiPath, appUiDir);
if (! ret) {
fprintf(stderr, "Really could not create and mount directory. Path: %s - Dir: %s\nWeb apps won't work.\n", appUiPath.c_str(), appUiDir);
}
}
}
if (ret) {
// fallback to /index.html for paths that don't exist for SPAs
auto indexFallbackGet = [](const httplib::Request& req, httplib::Response& res) {
// fprintf(stderr, "fallback \n");
auto match = req.matches[1];
if (match.matched) {
// fallback
char indexHtmlPath[16384];
sprintf(indexHtmlPath, "%s/%s/%s", appUiDir, match.str().c_str(), "index.html");
// fprintf(stderr, "fallback path %s\n", indexHtmlPath);
std::string indexHtml;
if (! OSUtils::readFile(indexHtmlPath, indexHtml)) {
res.status = 500;
return;
}
res.set_content(indexHtml.c_str(), "text/html");
}
else {
res.status = 500;
return;
}
};
auto slashRedirect = [](const httplib::Request& req, httplib::Response& res) {
// fprintf(stderr, "redirect \n");
// add .html
std::string htmlFile;
char htmlPath[16384];
sprintf(htmlPath, "%s%s%s", appUiDir, (req.path).substr(appUiPath.length()).c_str(), ".html");
// fprintf(stderr, "path: %s\n", htmlPath);
if (OSUtils::readFile(htmlPath, htmlFile)) {
res.set_content(htmlFile.c_str(), "text/html");
return;
}
else {
res.status = 301;
res.set_header("location", req.path + "/");
}
};
// auto missingAssetGet = [&, setContent](const httplib::Request &req, httplib::Response &res) {
// fprintf(stderr, "missing \n");
// res.status = 404;
// std::string html = "oops";
// res.set_content(html, "text/plain");
// res.set_header("Content-Type", "text/plain");
// return;
// };
// auto fix no trailing slash by adding .html or redirecting to path/
_controlPlane.Get(appUiPath + R"((/[\w|-]+)+$)", slashRedirect);
_controlPlaneV6.Get(appUiPath + R"((/[\w|-]+)+$)", slashRedirect);
// // 404 missing assets for *.ext paths
// s.Get(appUiPath + R"(/\.\w+$)", missingAssetGet);
// sv6.Get(appUiPath + R"(/\.\w+$)", missingAssetGet);
// fallback to index.html for unknown paths/files
_controlPlane.Get(appUiPath + R"((/[\w|-]+)(/[\w|-]+)*/$)", indexFallbackGet);
_controlPlaneV6.Get(appUiPath + R"((/[\w|-]+)(/[\w|-]+)*/$)", indexFallbackGet);
}
}
auto authCheck = [=](const httplib::Request& req, httplib::Response& res) {
if (req.path == "/metrics") {
if (req.has_header("x-zt1-auth")) {
std::string token = req.get_header_value("x-zt1-auth");
if (token == _metricsToken || token == _authToken) {
return httplib::Server::HandlerResponse::Unhandled;
}
}
else if (req.has_param("auth")) {
std::string token = req.get_param_value("auth");
if (token == _metricsToken || token == _authToken) {
return httplib::Server::HandlerResponse::Unhandled;
}
}
else if (req.has_header("authorization")) {
std::string auth = req.get_header_value("authorization");
if (bearerTokenValid(auth, _metricsToken) || bearerTokenValid(auth, _authToken)) {
return httplib::Server::HandlerResponse::Unhandled;
}
}
setContent(req, res, "{}");
res.status = 401;
return httplib::Server::HandlerResponse::Handled;
}
else {
std::string r = req.remote_addr;
InetAddress remoteAddr(r.c_str());
bool ipAllowed = false;
bool isAuth = false;
// If localhost, allow
if (remoteAddr.ipScope() == InetAddress::IP_SCOPE_LOOPBACK) {
ipAllowed = true;
}
if (! ipAllowed) {
for (auto i = _allowManagementFrom.begin(); i != _allowManagementFrom.end(); ++i) {
if (i->containsAddress(remoteAddr)) {
ipAllowed = true;
break;
}
}
}
if (ipAllowed) {
// auto-pass endpoints in `noAuthEndpoints`. No auth token required
if (std::find(noAuthEndpoints.begin(), noAuthEndpoints.end(), req.path) != noAuthEndpoints.end()) {
isAuth = true;
}
// Web Apps base path
if (req.path.rfind("/app", 0) == 0) { // starts with /app
isAuth = true;
}
if (! isAuth) {
// check auth token
if (req.has_header("x-zt1-auth")) {
std::string token = req.get_header_value("x-zt1-auth");
if (token == _authToken) {
isAuth = true;
}
}
else if (req.has_param("auth")) {
std::string token = req.get_param_value("auth");
if (token == _authToken) {
isAuth = true;
}
}
else if (req.has_header("authorization")) {
std::string auth = req.get_header_value("authorization");
isAuth = bearerTokenValid(auth, _authToken);
}
}
}
if (ipAllowed && isAuth) {
return httplib::Server::HandlerResponse::Unhandled;
}
setContent(req, res, "{}");
res.status = 401;
return httplib::Server::HandlerResponse::Handled;
}
};
auto bondShow = [&, setContent](const httplib::Request& req, httplib::Response& res) {
if (! _node->bondController()->inUse()) {
setContent(req, res, "");
res.status = 400;
return;
}
ZT_PeerList* pl = _node->peers();
if (pl) {
bool foundBond = false;
auto id = req.matches[1];
auto out = json::object();
uint64_t wantp = Utils::hexStrToU64(id.str().c_str());
for (unsigned long i = 0; i < pl->peerCount; ++i) {
if (pl->peers[i].address == wantp) {
SharedPtr<Bond> bond = _node->bondController()->getBondByPeerId(wantp);
if (bond) {
_peerToJson(out, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0));
setContent(req, res, out.dump());
foundBond = true;
}
else {
setContent(req, res, "");
res.status = 400;
}
break;
}
}
if (! foundBond) {
setContent(req, res, "");
res.status = 400;
}
}
_node->freeQueryResult((void*)pl);
};
_controlPlane.Get(bondShowPath, bondShow);
_controlPlaneV6.Get(bondShowPath, bondShow);
auto bondRotate = [&, setContent](const httplib::Request& req, httplib::Response& res) {
if (! _node->bondController()->inUse()) {
setContent(req, res, "");
res.status = 400;
return;
}
auto bondID = req.matches[1];
uint64_t id = Utils::hexStrToU64(bondID.str().c_str());
SharedPtr<Bond> bond = _node->bondController()->getBondByPeerId(id);
if (bond) {
if (bond->abForciblyRotateLink()) {
res.status = 200;
}
else {
res.status = 400;
}
}
else {
fprintf(stderr, "unable to find bond to peer %llx\n", (unsigned long long)id);
res.status = 400;
}
setContent(req, res, "{}");
};
_controlPlane.Post(bondRotatePath, bondRotate);
_controlPlane.Put(bondRotatePath, bondRotate);
_controlPlaneV6.Post(bondRotatePath, bondRotate);
_controlPlaneV6.Put(bondRotatePath, bondRotate);
auto setMtu = [&, setContent](const httplib::Request& req, httplib::Response& res) {
if (! _node->bondController()->inUse()) {
setContent(req, res, "Bonding layer isn't active yet");
res.status = 400;
return;
}
uint32_t mtu = atoi(req.matches[1].str().c_str());
if (mtu < 68 || mtu > 65535) {
setContent(req, res, "Specified MTU is not reasonable");
res.status = 400;
return;
}
res.status = _node->bondController()->setAllMtuByTuple(mtu, req.matches[2].str().c_str(), req.matches[3].str().c_str()) ? 200 : 400;
if (res.status == 400) {
setContent(req, res, "Unable to find specified link");
return;
}
setContent(req, res, "{}");
};
_controlPlane.Post(setBondMtuPath, setMtu);
_controlPlane.Put(setBondMtuPath, setMtu);
_controlPlaneV6.Post(setBondMtuPath, setMtu);
_controlPlaneV6.Put(setBondMtuPath, setMtu);
auto getConfig = [&, setContent](const httplib::Request& req, httplib::Response& res) {
std::string config;
{
Mutex::Lock lc(_localConfig_m);
config = _localConfig.dump();
}
if (config == "null") {
config = "{}";
}
setContent(req, res, config);
};
_controlPlane.Get(configPath, getConfig);
_controlPlaneV6.Get(configPath, getConfig);
auto configPost = [&, setContent](const httplib::Request& req, httplib::Response& res) {
json j(OSUtils::jsonParse(req.body));
if (j.is_object()) {
Mutex::Lock lcl(_localConfig_m);
json lc(_localConfig);
for (json::const_iterator s(j.begin()); s != j.end(); ++s) {
lc["settings"][s.key()] = s.value();
}
std::string lcStr = OSUtils::jsonDump(lc, 4);
if (OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), lcStr)) {
_localConfig = lc;
}
}
setContent(req, res, "{}");
};
_controlPlane.Post(configPostPath, configPost);
_controlPlane.Put(configPostPath, configPost);
_controlPlaneV6.Post(configPostPath, configPost);
_controlPlaneV6.Put(configPostPath, configPost);
auto healthGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
json out = json::object();
char tmp[256];
ZT_NodeStatus status;
_node->status(&status);
out["online"] = (bool)(status.online != 0);
out["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR;
out["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR;
out["versionRev"] = ZEROTIER_ONE_VERSION_REVISION;
out["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD;
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", ZEROTIER_ONE_VERSION_MAJOR, ZEROTIER_ONE_VERSION_MINOR, ZEROTIER_ONE_VERSION_REVISION);
out["version"] = tmp;
out["clock"] = OSUtils::now();
setContent(req, res, out.dump());
};
_controlPlane.Get(healthPath, healthGet);
_controlPlaneV6.Get(healthPath, healthGet);
auto moonListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
std::vector<World> moons(_node->moons());
auto out = json::array();
for (auto i = moons.begin(); i != moons.end(); ++i) {
json mj;
_moonToJson(mj, *i);
out.push_back(mj);
}
setContent(req, res, out.dump());
};
_controlPlane.Get(moonListPath, moonListGet);
_controlPlaneV6.Get(moonListPath, moonListGet);
auto moonGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
std::vector<World> moons(_node->moons());
auto input = req.matches[1];
auto out = json::object();
const uint64_t id = Utils::hexStrToU64(input.str().c_str());
for (auto i = moons.begin(); i != moons.end(); ++i) {
if (i->id() == id) {
_moonToJson(out, *i);
break;
}
}
setContent(req, res, out.dump());
};
_controlPlane.Get(moonPath, moonGet);
_controlPlaneV6.Get(moonPath, moonGet);
auto moonPost = [&, setContent](const httplib::Request& req, httplib::Response& res) {
auto input = req.matches[1];
uint64_t seed = 0;
try {
json j(OSUtils::jsonParse(req.body));
if (j.is_object()) {
seed = Utils::hexStrToU64(OSUtils::jsonString(j["seed"], "0").c_str());
}
}
catch (...) {
// discard invalid JSON
}
std::vector<World> moons(_node->moons());
const uint64_t id = Utils::hexStrToU64(input.str().c_str());
bool found = false;
auto out = json::object();
for (std::vector<World>::const_iterator m(moons.begin()); m != moons.end(); ++m) {
if (m->id() == id) {
_moonToJson(out, *m);
found = true;
break;
}
}
if (! found && seed != 0) {
char tmp[64];
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", id);
out["id"] = tmp;
out["roots"] = json::array();
out["timestamp"] = 0;
out["signature"] = json();
out["updatesMustBeSignedBy"] = json();
out["waiting"] = true;
_node->orbit((void*)0, id, seed);
}
setContent(req, res, out.dump());
};
_controlPlane.Post(moonPath, moonPost);
_controlPlane.Put(moonPath, moonPost);
_controlPlaneV6.Post(moonPath, moonPost);
_controlPlaneV6.Put(moonPath, moonPost);
auto moonDelete = [&, setContent](const httplib::Request& req, httplib::Response& res) {
auto input = req.matches[1];
uint64_t id = Utils::hexStrToU64(input.str().c_str());
auto out = json::object();
_node->deorbit((void*)0, id);
out["result"] = true;
setContent(req, res, out.dump());
};
_controlPlane.Delete(moonPath, moonDelete);
auto networkListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
Mutex::Lock _l(_nets_m);
auto out = json::array();
for (auto it = _nets.begin(); it != _nets.end(); ++it) {
NetworkState& ns = it->second;
json nj;
_networkToJson(nj, ns);
out.push_back(nj);
}
setContent(req, res, out.dump());
};
_controlPlane.Get(networkListPath, networkListGet);
_controlPlaneV6.Get(networkListPath, networkListGet);
auto networkGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
Mutex::Lock _l(_nets_m);
auto input = req.matches[1];
const uint64_t nwid = Utils::hexStrToU64(input.str().c_str());
if (_nets.find(nwid) != _nets.end()) {
auto out = json::object();
NetworkState& ns = _nets[nwid];
_networkToJson(out, ns);
setContent(req, res, out.dump());
return;
}
setContent(req, res, "");
res.status = 404;
};
_controlPlane.Get(networkPath, networkGet);
_controlPlaneV6.Get(networkPath, networkGet);
auto networkPost = [&, setContent](const httplib::Request& req, httplib::Response& res) {
auto input = req.matches[1];
uint64_t wantnw = Utils::hexStrToU64(input.str().c_str());
_node->join(wantnw, (void*)0, (void*)0);
auto out = json::object();
Mutex::Lock l(_nets_m);
bool allowDefault = false;
if (! _nets.empty()) {
NetworkState& ns = _nets[wantnw];
try {
json j(OSUtils::jsonParse(req.body));
json& allowManaged = j["allowManaged"];
if (allowManaged.is_boolean()) {
ns.setAllowManaged((bool)allowManaged);
}
json& allowGlobal = j["allowGlobal"];
if (allowGlobal.is_boolean()) {
ns.setAllowGlobal((bool)allowGlobal);
}
json& _allowDefault = j["allowDefault"];
if (_allowDefault.is_boolean()) {
allowDefault = _allowDefault;
ns.setAllowDefault((bool)allowDefault);
}
json& allowDNS = j["allowDNS"];
if (allowDNS.is_boolean()) {
ns.setAllowDNS((bool)allowDNS);
}
}
catch (...) {
// discard invalid JSON
}
setNetworkSettings(wantnw, ns.settings());
if (ns.tap()) {
syncManagedStuff(ns, true, true, true);
}
_networkToJson(out, ns);
}
#ifdef __FreeBSD__
if (! ! allowDefault) {
res.status = 400;
setContent(req, res, "Allow Default does not work properly on FreeBSD. See #580");
}
else {
setContent(req, res, out.dump());
}
#else
setContent(req, res, out.dump());
#endif
};
_controlPlane.Post(networkPath, networkPost);
_controlPlane.Put(networkPath, networkPost);
_controlPlaneV6.Post(networkPath, networkPost);
_controlPlaneV6.Put(networkPath, networkPost);
auto networkDelete = [&, setContent](const httplib::Request& req, httplib::Response& res) {
auto input = req.matches[1];
auto out = json::object();
ZT_VirtualNetworkList* nws = _node->networks();
uint64_t wantnw = Utils::hexStrToU64(input.str().c_str());
for (unsigned long i = 0; i < nws->networkCount; ++i) {
if (nws->networks[i].nwid == wantnw) {
_node->leave(wantnw, (void**)0, (void*)0);
out["result"] = true;
}
}
_node->freeQueryResult((void*)nws);
setContent(req, res, out.dump());
};
_controlPlane.Delete(networkPath, networkDelete);
_controlPlaneV6.Delete(networkPath, networkDelete);
auto peerListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
ZT_PeerList* pl = _node->peers();
auto out = nlohmann::json::array();
for (unsigned long i = 0; i < pl->peerCount; ++i) {
nlohmann::json pj;
SharedPtr<Bond> bond = SharedPtr<Bond>();
if (pl->peers[i].isBonded) {
const uint64_t id = pl->peers[i].address;
bond = _node->bondController()->getBondByPeerId(id);
}
_peerToJson(pj, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0));
out.push_back(pj);
}
_node->freeQueryResult((void*)pl);
setContent(req, res, out.dump());
};
_controlPlane.Get(peerListPath, peerListGet);
_controlPlaneV6.Get(peerListPath, peerListGet);
auto peerGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
ZT_PeerList* pl = _node->peers();
auto input = req.matches[1];
uint64_t wantp = Utils::hexStrToU64(input.str().c_str());
auto out = json::object();
for (unsigned long i = 0; i < pl->peerCount; ++i) {
if (pl->peers[i].address == wantp) {
SharedPtr<Bond> bond = SharedPtr<Bond>();
if (pl->peers[i].isBonded) {
bond = _node->bondController()->getBondByPeerId(wantp);
}
_peerToJson(out, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0));
break;
}
}
_node->freeQueryResult((void*)pl);
setContent(req, res, out.dump());
};
_controlPlane.Get(peerPath, peerGet);
_controlPlaneV6.Get(peerPath, peerGet);
auto statusGet = [&, setContent](const httplib::Request& req, httplib::Response& res) {
ZT_NodeStatus status;
_node->status(&status);
auto out = json::object();
char tmp[256] = {};
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.10llx", status.address);
out["address"] = tmp;
out["publicIdentity"] = status.publicIdentity;
out["online"] = (bool)(status.online != 0);
out["tcpFallbackActive"] = (_tcpFallbackTunnel != (TcpConnection*)0);
out["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR;
out["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR;
out["versionRev"] = ZEROTIER_ONE_VERSION_REVISION;
out["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD;
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", ZEROTIER_ONE_VERSION_MAJOR, ZEROTIER_ONE_VERSION_MINOR, ZEROTIER_ONE_VERSION_REVISION);
out["version"] = tmp;
out["clock"] = OSUtils::now();
{
Mutex::Lock _l(_localConfig_m);
out["config"] = _localConfig;
}
json& settings = out["config"]["settings"];
settings["allowTcpFallbackRelay"] = OSUtils::jsonBool(settings["allowTcpFallbackRelay"], _allowTcpFallbackRelay);
settings["forceTcpRelay"] = OSUtils::jsonBool(settings["forceTcpRelay"], _forceTcpRelay);
settings["primaryPort"] = OSUtils::jsonInt(settings["primaryPort"], (uint64_t)_primaryPort) & 0xffff;
settings["secondaryPort"] = OSUtils::jsonInt(settings["secondaryPort"], (uint64_t)_ports[1]) & 0xffff;
settings["tertiaryPort"] = OSUtils::jsonInt(settings["tertiaryPort"], (uint64_t)_tertiaryPort) & 0xffff;
settings["homeDir"] = _homePath;
// Enumerate all local address/port pairs that this node is listening on
std::vector<InetAddress> boundAddrs(_binder.allBoundLocalInterfaceAddresses());
auto boundAddrArray = json::array();
for (int i = 0; i < boundAddrs.size(); i++) {
char ipBuf[64] = { 0 };
boundAddrs[i].toString(ipBuf);
boundAddrArray.push_back(ipBuf);
}
settings["listeningOn"] = boundAddrArray;
// Enumerate all external address/port pairs that are reported for this node
std::vector<InetAddress> surfaceAddrs = _node->SurfaceAddresses();
auto surfaceAddrArray = json::array();
for (int i = 0; i < surfaceAddrs.size(); i++) {
char ipBuf[64] = { 0 };
surfaceAddrs[i].toString(ipBuf);
surfaceAddrArray.push_back(ipBuf);
}
settings["surfaceAddresses"] = surfaceAddrArray;
#ifdef ZT_USE_MINIUPNPC
settings["portMappingEnabled"] = OSUtils::jsonBool(settings["portMappingEnabled"], true);
#else
settings["portMappingEnabled"] = false; // not supported in build
#endif
#ifndef ZT_SDK
settings["softwareUpdate"] = OSUtils::jsonString(settings["softwareUpdate"], ZT_SOFTWARE_UPDATE_DEFAULT);
settings["softwareUpdateChannel"] = OSUtils::jsonString(settings["softwareUpdateChannel"], ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL);
#endif
const World planet(_node->planet());
out["planetWorldId"] = planet.id();
out["planetWorldTimestamp"] = planet.timestamp();
setContent(req, res, out.dump());
};
_controlPlane.Get(statusPath, statusGet);
_controlPlaneV6.Get(statusPath, statusGet);
#if ZT_SSO_ENABLED
std::string ssoPath = "/sso";
auto ssoGet = [this](const httplib::Request& req, httplib::Response& res) {
std::string htmlTemplatePath = _homePath + ZT_PATH_SEPARATOR + "sso-auth.template.html";
std::string htmlTemplate;
if (! OSUtils::readFile(htmlTemplatePath.c_str(), htmlTemplate)) {
htmlTemplate = ssoResponseTemplate;
}
std::string responseContentType = "text/html";
std::string responseBody = "";
json outData;
if (req.has_param("error")) {
std::string error = req.get_param_value("error");
std::string desc = req.get_param_value("error_description");
json data;
outData["isError"] = true;
outData["messageText"] = (std::string("ERROR ") + error + std::string(": ") + desc);
responseBody = inja::render(htmlTemplate, outData);
res.set_content(responseBody, responseContentType);
res.status = 500;
return;
}
// SSO redirect handling
std::string state = req.get_param_value("state");
char* nwid = zeroidc::zeroidc_network_id_from_state(state.c_str());
outData["networkId"] = std::string(nwid);
const uint64_t id = Utils::hexStrToU64(nwid);
zeroidc::free_cstr(nwid);
Mutex::Lock l(_nets_m);
if (_nets.find(id) != _nets.end()) {
NetworkState& ns = _nets[id];
std::string code = req.get_param_value("code");
char* ret = ns.doTokenExchange(code.c_str());
json ssoResult = json::parse(ret);
if (ssoResult.is_object()) {
if (ssoResult.contains("errorMessage")) {
outData["isError"] = true;
outData["messageText"] = ssoResult["errorMessage"];
responseBody = inja::render(htmlTemplate, outData);
res.set_content(responseBody, responseContentType);
res.status = 500;
}
else {
outData["isError"] = false;
outData["messageText"] = "Authentication Successful. You may now access the network.";
responseBody = inja::render(htmlTemplate, outData);
res.set_content(responseBody, responseContentType);
}
}
else {
// not an object? We got a problem
outData["isError"] = true;
outData["messageText"] = "ERROR: Unkown SSO response. Please contact your administrator.";
responseBody = inja::render(htmlTemplate, outData);
res.set_content(responseBody, responseContentType);
res.status = 500;
}
zeroidc::free_cstr(ret);
}
};
_controlPlane.Get(ssoPath, ssoGet);
_controlPlaneV6.Get(ssoPath, ssoGet);
#endif
auto metricsGet = [this](const httplib::Request& req, httplib::Response& res) {
std::string statspath = _homePath + ZT_PATH_SEPARATOR + "metrics.prom";
std::string metrics;
if (OSUtils::readFile(statspath.c_str(), metrics)) {
res.set_content(metrics, "text/plain");
}
else {
res.set_content("{}", "application/json");
res.status = 500;
}
};
_controlPlane.Get(metricsPath, metricsGet);
_controlPlaneV6.Get(metricsPath, metricsGet);
auto exceptionHandler = [&, setContent](const httplib::Request& req, httplib::Response& res, std::exception_ptr ep) {
char buf[1024];
auto fmt = "{\"error\": %d, \"description\": \"%s\"}";
try {
std::rethrow_exception(ep);
}
catch (std::exception& e) {
snprintf(buf, sizeof(buf), fmt, 500, e.what());
}
catch (...) {
snprintf(buf, sizeof(buf), fmt, 500, "Unknown Exception");
}
setContent(req, res, buf);
res.status = 500;
};
_controlPlane.set_exception_handler(exceptionHandler);
_controlPlaneV6.set_exception_handler(exceptionHandler);
if (_controller) {
_controller->configureHTTPControlPlane(_controlPlane, _controlPlaneV6, setContent);
}
_controlPlane.set_pre_routing_handler(authCheck);
_controlPlaneV6.set_pre_routing_handler(authCheck);
#if ZT_DEBUG == 1
_controlPlane.set_logger([](const httplib::Request& req, const httplib::Response& res) { fprintf(stderr, "%s", http_log(req, res).c_str()); });
_controlPlaneV6.set_logger([](const httplib::Request& req, const httplib::Response& res) { fprintf(stderr, "%s", http_log(req, res).c_str()); });
#endif
if (_primaryPort == 0) {
fprintf(stderr, "unable to determine local control port");
exit(-1);
}
bool v4controlPlaneBound = false;
_controlPlane.set_address_family(AF_INET);
if (_controlPlane.bind_to_port("0.0.0.0", _primaryPort)) {
_serverThread = std::thread([&] {
_serverThreadRunning = true;
fprintf(stderr, "Starting Control Plane...\n");
if (! _controlPlane.listen_after_bind()) {
fprintf(stderr, "Error on listen_after_bind()\n");
}
fprintf(stderr, "Control Plane Stopped\n");
_serverThreadRunning = false;
});
v4controlPlaneBound = true;
}
else {
fprintf(stderr, "Error binding control plane to 0.0.0.0:%d\n", _primaryPort);
v4controlPlaneBound = false;
}
bool v6controlPlaneBound = false;
_controlPlaneV6.set_address_family(AF_INET6);
if (_controlPlaneV6.bind_to_port("::", _primaryPort)) {
_serverThreadV6 = std::thread([&] {
_serverThreadRunningV6 = true;
fprintf(stderr, "Starting V6 Control Plane...\n");
if (! _controlPlaneV6.listen_after_bind()) {
fprintf(stderr, "Error on V6 listen_after_bind()\n");
}
fprintf(stderr, "V6 Control Plane Stopped\n");
_serverThreadRunningV6 = false;
});
v6controlPlaneBound = true;
}
else {
fprintf(stderr, "Error binding control plane to [::]:%d\n", _primaryPort);
v6controlPlaneBound = false;
}
if (! v4controlPlaneBound && ! v6controlPlaneBound) {
fprintf(stderr, "ERROR: Could not bind control plane. Exiting...\n");
exit(-1);
}
}
// Must be called after _localConfig is read or modified
void applyLocalConfig()
{
Mutex::Lock _l(_localConfig_m);
json lc(_localConfig);
_v4Hints.clear();
_v6Hints.clear();
_v4Blacklists.clear();
_v6Blacklists.clear();
json& virt = lc["virtual"];
if (virt.is_object()) {
for (json::iterator v(virt.begin()); v != virt.end(); ++v) {
const std::string nstr = v.key();
if ((nstr.length() == ZT_ADDRESS_LENGTH_HEX) && (v.value().is_object())) {
const Address ztaddr(Utils::hexStrToU64(nstr.c_str()));
if (ztaddr) {
const uint64_t ztaddr2 = ztaddr.toInt();
std::vector<InetAddress>& v4h = _v4Hints[ztaddr2];
std::vector<InetAddress>& v6h = _v6Hints[ztaddr2];
std::vector<InetAddress>& v4b = _v4Blacklists[ztaddr2];
std::vector<InetAddress>& v6b = _v6Blacklists[ztaddr2];
json& tryAddrs = v.value()["try"];
if (tryAddrs.is_array()) {
for (unsigned long i = 0; i < tryAddrs.size(); ++i) {
const InetAddress ip(OSUtils::jsonString(tryAddrs[i], "").c_str());
if (ip.ss_family == AF_INET)
v4h.push_back(ip);
else if (ip.ss_family == AF_INET6)
v6h.push_back(ip);
}
}
json& blAddrs = v.value()["blacklist"];
if (blAddrs.is_array()) {
for (unsigned long i = 0; i < blAddrs.size(); ++i) {
const InetAddress ip(OSUtils::jsonString(blAddrs[i], "").c_str());
if (ip.ss_family == AF_INET)
v4b.push_back(ip);
else if (ip.ss_family == AF_INET6)
v6b.push_back(ip);
}
}
if (v4h.empty())
_v4Hints.erase(ztaddr2);
if (v6h.empty())
_v6Hints.erase(ztaddr2);
if (v4b.empty())
_v4Blacklists.erase(ztaddr2);
if (v6b.empty())
_v6Blacklists.erase(ztaddr2);
}
}
}
}
_globalV4Blacklist.clear();
_globalV6Blacklist.clear();
json& physical = lc["physical"];
if (physical.is_object()) {
for (json::iterator phy(physical.begin()); phy != physical.end(); ++phy) {
const InetAddress net(OSUtils::jsonString(phy.key(), "").c_str());
if ((net) && (net.netmaskBits() > 0)) {
if (phy.value().is_object()) {
if (OSUtils::jsonBool(phy.value()["blacklist"], false)) {
if (net.ss_family == AF_INET)
_globalV4Blacklist.push_back(net);
else if (net.ss_family == AF_INET6)
_globalV6Blacklist.push_back(net);
}
}
}
}
}
_allowManagementFrom.clear();
_interfacePrefixBlacklist.clear();
json& settings = lc["settings"];
if (! _node->bondController()->inUse()) {
_node->bondController()->setBinder(&_binder);
// defaultBondingPolicy
std::string defaultBondingPolicyStr(OSUtils::jsonString(settings["defaultBondingPolicy"], ""));
int defaultBondingPolicy = _node->bondController()->getPolicyCodeByStr(defaultBondingPolicyStr);
_node->bondController()->setBondingLayerDefaultPolicy(defaultBondingPolicy);
_node->bondController()->setBondingLayerDefaultPolicyStr(defaultBondingPolicyStr); // Used if custom policy
// Custom Policies
json& customBondingPolicies = settings["policies"];
for (json::iterator policyItr = customBondingPolicies.begin(); policyItr != customBondingPolicies.end(); ++policyItr) {
// Custom Policy
std::string customPolicyStr(policyItr.key());
json& customPolicy = policyItr.value();
std::string basePolicyStr(OSUtils::jsonString(customPolicy["basePolicy"], ""));
if (basePolicyStr.empty()) {
fprintf(stderr, "error: no base policy was specified for custom policy (%s)\n", customPolicyStr.c_str());
}
int basePolicyCode = _node->bondController()->getPolicyCodeByStr(basePolicyStr);
if (basePolicyCode == ZT_BOND_POLICY_NONE) {
fprintf(stderr, "error: custom policy (%s) is invalid, unknown base policy (%s).\n", customPolicyStr.c_str(), basePolicyStr.c_str());
continue;
}
if (_node->bondController()->getPolicyCodeByStr(customPolicyStr) != ZT_BOND_POLICY_NONE) {
fprintf(stderr, "error: custom policy (%s) will be ignored, cannot use standard policy names for custom policies.\n", customPolicyStr.c_str());
continue;
}
// New bond, used as a copy template for new instances
SharedPtr<Bond> newTemplateBond = new Bond(NULL, basePolicyStr, customPolicyStr, SharedPtr<Peer>());
newTemplateBond->setPolicy(basePolicyCode);
// Custom link quality spec
json& linkQualitySpec = customPolicy["linkQuality"];
if (linkQualitySpec.size() == ZT_QOS_PARAMETER_SIZE) {
float weights[ZT_QOS_PARAMETER_SIZE] = {};
weights[ZT_QOS_LAT_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["lat_max"], 0.0);
weights[ZT_QOS_PDV_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["pdv_max"], 0.0);
weights[ZT_QOS_PLR_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["plr_max"], 0.0);
weights[ZT_QOS_PER_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["per_max"], 0.0);
weights[ZT_QOS_LAT_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["lat_weight"], 0.0);
weights[ZT_QOS_PDV_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["pdv_weight"], 0.0);
weights[ZT_QOS_PLR_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["plr_weight"], 0.0);
weights[ZT_QOS_PER_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["per_weight"], 0.0);
newTemplateBond->setUserLinkQualitySpec(weights, ZT_QOS_PARAMETER_SIZE);
}
// Bond-specific properties
newTemplateBond->setUpDelay(OSUtils::jsonInt(customPolicy["upDelay"], -1));
newTemplateBond->setDownDelay(OSUtils::jsonInt(customPolicy["downDelay"], -1));
newTemplateBond->setFailoverInterval(OSUtils::jsonInt(customPolicy["failoverInterval"], ZT_BOND_FAILOVER_DEFAULT_INTERVAL));
newTemplateBond->setPacketsPerLink(OSUtils::jsonInt(customPolicy["packetsPerLink"], -1));
// Policy-Specific link set
json& links = customPolicy["links"];
for (json::iterator linkItr = links.begin(); linkItr != links.end(); ++linkItr) {
std::string linkNameStr(linkItr.key());
json& link = linkItr.value();
bool enabled = OSUtils::jsonInt(link["enabled"], true);
uint32_t capacity = OSUtils::jsonInt(link["capacity"], 0);
uint8_t ipvPref = OSUtils::jsonInt(link["ipvPref"], 0);
uint16_t mtu = OSUtils::jsonInt(link["mtu"], 0);
std::string failoverToStr(OSUtils::jsonString(link["failoverTo"], ""));
// Mode
std::string linkModeStr(OSUtils::jsonString(link["mode"], "spare"));
uint8_t linkMode = ZT_BOND_SLAVE_MODE_SPARE;
if (linkModeStr == "primary") {
linkMode = ZT_BOND_SLAVE_MODE_PRIMARY;
}
if (linkModeStr == "spare") {
linkMode = ZT_BOND_SLAVE_MODE_SPARE;
}
// ipvPref
if ((ipvPref != 0) && (ipvPref != 4) && (ipvPref != 6) && (ipvPref != 46) && (ipvPref != 64)) {
fprintf(stderr, "error: invalid ipvPref value (%d), link disabled.\n", ipvPref);
enabled = false;
}
if (linkMode == ZT_BOND_SLAVE_MODE_SPARE && failoverToStr.length()) {
fprintf(stderr, "error: cannot specify failover links for spares, link disabled.\n");
failoverToStr = "";
enabled = false;
}
_node->bondController()->addCustomLink(customPolicyStr, new Link(linkNameStr, ipvPref, mtu, capacity, enabled, linkMode, failoverToStr));
}
std::string linkSelectMethodStr(OSUtils::jsonString(customPolicy["activeReselect"], "always"));
if (linkSelectMethodStr == "always") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_ALWAYS);
}
if (linkSelectMethodStr == "better") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_BETTER);
}
if (linkSelectMethodStr == "failure") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_FAILURE);
}
if (linkSelectMethodStr == "optimize") {
newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_OPTIMIZE);
}
if (newTemplateBond->getLinkSelectMethod() < 0 || newTemplateBond->getLinkSelectMethod() > 3) {
fprintf(stderr, "warning: invalid value (%s) for linkSelectMethod, assuming mode: always\n", linkSelectMethodStr.c_str());
}
if (! _node->bondController()->addCustomPolicy(newTemplateBond)) {
fprintf(stderr, "error: a custom policy of this name (%s) already exists.\n", customPolicyStr.c_str());
}
}
// Peer-specific bonding
json& peerSpecificBonds = settings["peerSpecificBonds"];
for (json::iterator peerItr = peerSpecificBonds.begin(); peerItr != peerSpecificBonds.end(); ++peerItr) {
_node->bondController()->assignBondingPolicyToPeer(std::stoull(peerItr.key(), 0, 16), peerItr.value());
}
// Check settings
if (defaultBondingPolicyStr.length() && ! defaultBondingPolicy && ! _node->bondController()->inUse()) {
fprintf(stderr, "error: unknown policy (%s) specified by defaultBondingPolicy, bond disabled.\n", defaultBondingPolicyStr.c_str());
}
}
// bondingPolicy cannot be used with allowTcpFallbackRelay
bool _forceTcpRelayTmp = (OSUtils::jsonBool(settings["forceTcpRelay"], false));
bool _bondInUse = _node->bondController()->inUse();
if (_forceTcpRelayTmp && _bondInUse) {
fprintf(stderr, "Warning: forceTcpRelay cannot be used with multipath. Disabling forceTcpRelay\n");
}
_allowTcpFallbackRelay = (OSUtils::jsonBool(settings["allowTcpFallbackRelay"], true) && ! _node->bondController()->inUse());
_forceTcpRelay = (_forceTcpRelayTmp && ! _node->bondController()->inUse());
_enableWebServer = (OSUtils::jsonBool(settings["enableWebServer"], false));
#ifdef ZT_TCP_FALLBACK_RELAY
_fallbackRelayAddress = InetAddress(OSUtils::jsonString(settings["tcpFallbackRelay"], ZT_TCP_FALLBACK_RELAY).c_str());
#endif
_primaryPort = (unsigned int)OSUtils::jsonInt(settings["primaryPort"], (uint64_t)_primaryPort) & 0xffff;
_allowSecondaryPort = OSUtils::jsonBool(settings["allowSecondaryPort"], true);
_secondaryPort = (unsigned int)OSUtils::jsonInt(settings["secondaryPort"], 0);
_tertiaryPort = (unsigned int)OSUtils::jsonInt(settings["tertiaryPort"], 0);
if (_secondaryPort != 0 || _tertiaryPort != 0) {
fprintf(stderr, "WARNING: using manually-specified secondary and/or tertiary ports. This can cause NAT issues." ZT_EOL_S);
}
_portMappingEnabled = OSUtils::jsonBool(settings["portMappingEnabled"], true);
_node->setLowBandwidthMode(OSUtils::jsonBool(settings["lowBandwidthMode"], false));
#if defined(__LINUX__) || defined(__FreeBSD__)
_multicoreEnabled = OSUtils::jsonBool(settings["multicoreEnabled"], false);
_concurrency = OSUtils::jsonInt(settings["concurrency"], 1);
_cpuPinningEnabled = OSUtils::jsonBool(settings["cpuPinningEnabled"], false);
if (_multicoreEnabled) {
unsigned int maxConcurrency = std::thread::hardware_concurrency();
if (_concurrency <= 1 || _concurrency >= maxConcurrency) {
unsigned int conservativeDefault = (std::thread::hardware_concurrency() >= 4 ? 2 : 1);
fprintf(stderr, "Concurrency level provided (%d) is invalid, assigning conservative default value of (%d)\n", _concurrency, conservativeDefault);
_concurrency = conservativeDefault;
}
setUpMultithreading();
}
else {
// Force values in case the user accidentally defined them with multicore disabled
_concurrency = 1;
_cpuPinningEnabled = false;
}
#else
_multicoreEnabled = false;
_concurrency = 1;
_cpuPinningEnabled = false;
#endif
#ifndef ZT_SDK
const std::string up(OSUtils::jsonString(settings["softwareUpdate"], ZT_SOFTWARE_UPDATE_DEFAULT));
const bool udist = OSUtils::jsonBool(settings["softwareUpdateDist"], false);
if (((up == "apply") || (up == "download")) || (udist)) {
if (! _updater)
_updater = new SoftwareUpdater(*_node, _homePath);
_updateAutoApply = (up == "apply");
_updater->setUpdateDistribution(udist);
_updater->setChannel(OSUtils::jsonString(settings["softwareUpdateChannel"], ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL));
}
else {
delete _updater;
_updater = (SoftwareUpdater*)0;
_updateAutoApply = false;
}
#endif
json& ignoreIfs = settings["interfacePrefixBlacklist"];
if (ignoreIfs.is_array()) {
for (unsigned long i = 0; i < ignoreIfs.size(); ++i) {
const std::string tmp(OSUtils::jsonString(ignoreIfs[i], ""));
if (tmp.length() > 0)
_interfacePrefixBlacklist.push_back(tmp);
}
}
json& amf = settings["allowManagementFrom"];
if (amf.is_array()) {
for (unsigned long i = 0; i < amf.size(); ++i) {
const InetAddress nw(OSUtils::jsonString(amf[i], "").c_str());
if (nw)
_allowManagementFrom.push_back(nw);
}
}
}
#if ZT_VAULT_SUPPORT
json& vault = settings["vault"];
if (vault.is_object()) {
const std::string url(OSUtils::jsonString(vault["vaultURL"], "").c_str());
if (! url.empty()) {
_vaultURL = url;
}
const std::string token(OSUtils::jsonString(vault["vaultToken"], "").c_str());
if (! token.empty()) {
_vaultToken = token;
}
const std::string path(OSUtils::jsonString(vault["vaultPath"], "").c_str());
if (! path.empty()) {
_vaultPath = path;
}
}
// also check environment variables for values. Environment variables
// will override local.conf variables
const std::string envURL(getenv("VAULT_ADDR"));
if (! envURL.empty()) {
_vaultURL = envURL;
}
const std::string envToken(getenv("VAULT_TOKEN"));
if (! envToken.empty()) {
_vaultToken = envToken;
}
const std::string envPath(getenv("VAULT_PATH"));
if (! envPath.empty()) {
_vaultPath = envPath;
}
if (! _vaultURL.empty() && ! _vaultToken.empty()) {
_vaultEnabled = true;
}
#endif
// Checks if a managed IP or route target is allowed
bool checkIfManagedIsAllowed(const NetworkState& n, const InetAddress& target)
{
if (! n.allowManaged())
return false;
if (! n.allowManagedWhitelist().empty()) {
bool allowed = false;
for (InetAddress addr : n.allowManagedWhitelist()) {
if (addr.containsAddress(target) && addr.netmaskBits() <= target.netmaskBits()) {
allowed = true;
break;
}
}
if (! allowed)
return false;
}
if (target.isDefaultRoute())
return n.allowDefault();
switch (target.ipScope()) {
case InetAddress::IP_SCOPE_NONE:
case InetAddress::IP_SCOPE_MULTICAST:
case InetAddress::IP_SCOPE_LOOPBACK:
case InetAddress::IP_SCOPE_LINK_LOCAL:
return false;
case InetAddress::IP_SCOPE_GLOBAL:
return n.allowGlobal();
default:
return true;
}
}
// Match only an IP from a vector of IPs -- used in syncManagedStuff()
inline bool matchIpOnly(const std::set<InetAddress>& ips, const InetAddress& ip) const
{
for (std::set<InetAddress>::const_iterator i(ips.begin()); i != ips.end(); ++i) {
if (i->ipsEqual(ip))
return true;
}
return false;
}
// Apply or update managed IPs for a configured network (be sure n.tap exists)
void syncManagedStuff(NetworkState& n, bool syncIps, bool syncRoutes, bool syncDns)
{
char ipbuf[64];
// assumes _nets_m is locked
if (syncIps) {
std::vector<InetAddress> newManagedIps;
newManagedIps.reserve(n.config().assignedAddressCount);
#ifdef __APPLE__
std::vector<InetAddress> newManagedIps2;
newManagedIps2.reserve(n.config().assignedAddressCount);
#endif
for (unsigned int i = 0; i < n.config().assignedAddressCount; ++i) {
const InetAddress* ii = reinterpret_cast<const InetAddress*>(&(n.config().assignedAddresses[i]));
if (checkIfManagedIsAllowed(n, *ii))
newManagedIps.push_back(*ii);
}
std::sort(newManagedIps.begin(), newManagedIps.end());
newManagedIps.erase(std::unique(newManagedIps.begin(), newManagedIps.end()), newManagedIps.end());
for (std::vector<InetAddress>::iterator ip(n.managedIps().begin()); ip != n.managedIps().end(); ++ip) {
if (std::find(newManagedIps.begin(), newManagedIps.end(), *ip) == newManagedIps.end()) {
if (! n.tap()->removeIp(*ip))
fprintf(stderr, "ERROR: unable to remove ip address %s" ZT_EOL_S, ip->toString(ipbuf));
#ifdef __WINDOWS__
WinFWHelper::removeICMPRule(*ip, n.config().nwid);
#endif
}
}
for (std::vector<InetAddress>::iterator ip(newManagedIps.begin()); ip != newManagedIps.end(); ++ip) {
#ifdef __APPLE__
// We can't add multiple addresses to an interface on macOs unless we futz with the netmask.
// see `man ifconfig`, alias section
// "If the address is on the same subnet as the first network address for this interface, a non-conflicting netmask must be given. Usually 0xffffffff is most appropriate."
auto same_subnet = [ip](InetAddress i) { return ip->network() == i.network(); };
#endif
if (std::find(n.managedIps().begin(), n.managedIps().end(), *ip) == n.managedIps().end()) {
#ifdef __APPLE__
// if same subnet as a previously added address
if (std::find_if(n.managedIps().begin(), n.managedIps().end(), same_subnet) != n.managedIps().end() || std::find_if(newManagedIps2.begin(), newManagedIps2.end(), same_subnet) != newManagedIps2.end()) {
if (ip->isV4()) {
ip->setPort(32);
}
else {
ip->setPort(128);
}
}
else {
newManagedIps2.push_back(*ip);
}
#endif
if (! n.tap()->addIp(*ip)) {
fprintf(stderr, "ERROR: unable to add ip address %s" ZT_EOL_S, ip->toString(ipbuf));
}
else {
#ifdef __WINDOWS__
WinFWHelper::newICMPRule(*ip, n.config().nwid);
#endif
}
}
}
#ifdef __APPLE__
if (! MacDNSHelper::addIps6(n.config().nwid, n.config().mac, n.tap()->deviceName().c_str(), newManagedIps)) {
fprintf(stderr, "ERROR: unable to add v6 addresses to system configuration" ZT_EOL_S);
}
if (! MacDNSHelper::addIps4(n.config().nwid, n.config().mac, n.tap()->deviceName().c_str(), newManagedIps)) {
fprintf(stderr, "ERROR: unable to add v4 addresses to system configuration" ZT_EOL_S);
}
#endif
n.setManagedIps(newManagedIps);
}
if (syncRoutes) {
// Get tap device name (use LUID in hex on Windows) and IP addresses.
#if defined(__WINDOWS__) && ! defined(ZT_SDK)
char tapdevbuf[64];
OSUtils::ztsnprintf(tapdevbuf, sizeof(tapdevbuf), "%.16llx", (unsigned long long)((WindowsEthernetTap*)(n.tap().get()))->luid().Value);
std::string tapdev(tapdevbuf);
#else
std::string tapdev(n.tap()->deviceName());
#endif
std::vector<InetAddress> tapIps(n.tap()->ips());
std::set<InetAddress> myIps(tapIps.begin(), tapIps.end());
for (unsigned int i = 0; i < n.config().assignedAddressCount; ++i)
myIps.insert(InetAddress(n.config().assignedAddresses[i]));
std::set<InetAddress> haveRouteTargets;
for (unsigned int i = 0; i < n.config().routeCount; ++i) {
const InetAddress* const target = reinterpret_cast<const InetAddress*>(&(n.config().routes[i].target));
const InetAddress* const via = reinterpret_cast<const InetAddress*>(&(n.config().routes[i].via));
// Make sure we are allowed to set this managed route, and that 'via' is not our IP. The latter
// avoids setting routes via the router on the router.
if ((! checkIfManagedIsAllowed(n, *target)) || ((via->ss_family == target->ss_family) && (matchIpOnly(myIps, *via))))
continue;
// Find an IP on the interface that can be a source IP, abort if no IPs assigned.
const InetAddress* src = nullptr;
unsigned int mostMatchingPrefixBits = 0;
for (std::set<InetAddress>::const_iterator i(myIps.begin()); i != myIps.end(); ++i) {
const unsigned int matchingPrefixBits = i->matchingPrefixBits(*target);
if (matchingPrefixBits >= mostMatchingPrefixBits && ((target->isV4() && i->isV4()) || (target->isV6() && i->isV6()))) {
mostMatchingPrefixBits = matchingPrefixBits;
src = &(*i);
}
}
if (! src)
continue;
// Ignore routes implied by local managed IPs since adding the IP adds the route.
// Apple on the other hand seems to need this at least on some versions.
#ifndef __APPLE__
bool haveRoute = false;
for (std::vector<InetAddress>::iterator ip(n.managedIps().begin()); ip != n.managedIps().end(); ++ip) {
if ((target->netmaskBits() == ip->netmaskBits()) && (target->containsAddress(*ip))) {
haveRoute = true;
break;
}
}
if (haveRoute)
continue;
#endif
haveRouteTargets.insert(*target);
#ifndef ZT_SDK
SharedPtr<ManagedRoute>& mr = n.managedRoutes()[*target];
if (! mr)
mr.set(new ManagedRoute(*target, *via, *src, tapdev.c_str()));
#endif
}
for (std::map<InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end();) {
if (haveRouteTargets.find(r->first) == haveRouteTargets.end())
n.managedRoutes().erase(r++);
else
++r;
}
// Sync device-local managed routes first, then indirect results. That way
// we don't get destination unreachable for routes that are via things
// that do not yet have routes in the system.
for (std::map<InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end(); ++r) {
if (! r->second->via())
r->second->sync();
}
for (std::map<InetAddress, SharedPtr<ManagedRoute> >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end(); ++r) {
if (r->second->via() && (! r->second->target().isDefaultRoute() || _node->online())) {
r->second->sync();
}
}
}
if (syncDns) {
if (n.allowDNS()) {
if (strlen(n.config().dns.domain) != 0) {
std::vector<InetAddress> servers;
for (int j = 0; j < ZT_MAX_DNS_SERVERS; ++j) {
InetAddress a(n.config().dns.server_addr[j]);
if (a.isV4() || a.isV6()) {
servers.push_back(a);
}
}
n.tap()->setDns(n.config().dns.domain, servers);
}
}
else {
#ifdef __APPLE__
MacDNSHelper::removeDNS(n.config().nwid);
#elif defined(__WINDOWS__)
WinDNSHelper::removeDNS(n.config().nwid);
#endif
}
}
}
// =========================================================================
// Handlers for Node and Phy<> callbacks
// =========================================================================
inline void phyOnDatagram(PhySocket* sock, void** uptr, const struct sockaddr* localAddr, const struct sockaddr* from, void* data, unsigned long len)
{
if (_forceTcpRelay) {
return;
}
Metrics::udp_recv += len;
const uint64_t now = OSUtils::now();
if ((len >= 16) && (reinterpret_cast<const InetAddress*>(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
_lastDirectReceiveFromGlobal = now;
}
const ZT_ResultCode rc = _node->processWirePacket(nullptr, now, reinterpret_cast<int64_t>(sock), reinterpret_cast<const struct sockaddr_storage*>(from), data, len, &_nextBackgroundTaskDeadline);
if (ZT_ResultCode_isFatal(rc)) {
char tmp[256];
OSUtils::ztsnprintf(tmp, sizeof(tmp), "fatal error code from processWirePacket: %d", (int)rc);
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = tmp;
this->terminate();
}
}
inline void phyOnTcpConnect(PhySocket* sock, void** uptr, bool success)
{
if (! success) {
phyOnTcpClose(sock, uptr);
return;
}
TcpConnection* const tc = reinterpret_cast<TcpConnection*>(*uptr);
if (! tc) { // sanity check
_phy.close(sock, true);
return;
}
tc->sock = sock;
if (tc->type == TcpConnection::TCP_TUNNEL_OUTGOING) {
if (_tcpFallbackTunnel)
_phy.close(_tcpFallbackTunnel->sock);
_tcpFallbackTunnel = tc;
_phy.streamSend(sock, ZT_TCP_TUNNEL_HELLO, sizeof(ZT_TCP_TUNNEL_HELLO));
}
else {
_phy.close(sock, true);
}
}
inline void phyOnTcpAccept(PhySocket* sockL, PhySocket* sockN, void** uptrL, void** uptrN, const struct sockaddr* from)
{
if (! from) {
_phy.close(sockN, false);
return;
}
else {
#ifdef ZT_SDK
// Immediately close new local connections. The intention is to prevent the backplane from being accessed when operating as libzt
if (! allowHttpBackplaneManagement && ((InetAddress*)from)->ipScope() == InetAddress::IP_SCOPE_LOOPBACK) {
_phy.close(sockN, false);
return;
}
#endif
TcpConnection* tc = new TcpConnection();
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc);
}
tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING;
tc->parent = this;
tc->sock = sockN;
tc->remoteAddr = from;
tc->lastReceive = OSUtils::now();
http_parser_init(&(tc->parser), HTTP_REQUEST);
tc->parser.data = (void*)tc;
tc->messageSize = 0;
*uptrN = (void*)tc;
}
}
void phyOnTcpClose(PhySocket* sock, void** uptr)
{
TcpConnection* tc = (TcpConnection*)*uptr;
if (tc) {
if (tc == _tcpFallbackTunnel) {
_tcpFallbackTunnel = (TcpConnection*)0;
}
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.erase(std::remove(_tcpConnections.begin(), _tcpConnections.end(), tc), _tcpConnections.end());
}
delete tc;
}
}
void phyOnTcpData(PhySocket* sock, void** uptr, void* data, unsigned long len)
{
try {
if (! len)
return; // sanity check, should never happen
Metrics::tcp_recv += len;
TcpConnection* tc = reinterpret_cast<TcpConnection*>(*uptr);
tc->lastReceive = OSUtils::now();
switch (tc->type) {
case TcpConnection::TCP_UNCATEGORIZED_INCOMING:
return;
case TcpConnection::TCP_HTTP_INCOMING:
case TcpConnection::TCP_HTTP_OUTGOING:
http_parser_execute(&(tc->parser), &HTTP_PARSER_SETTINGS, (const char*)data, len);
if ((tc->parser.upgrade) || (tc->parser.http_errno != HPE_OK))
_phy.close(sock);
return;
case TcpConnection::TCP_TUNNEL_OUTGOING:
tc->readq.append((const char*)data, len);
while (tc->readq.length() >= 5) {
const char* data = tc->readq.data();
const unsigned long mlen = (((((unsigned long)data[3]) & 0xff) << 8) | (((unsigned long)data[4]) & 0xff));
if (tc->readq.length() >= (mlen + 5)) {
InetAddress from;
unsigned long plen = mlen; // payload length, modified if there's an IP header
data += 5; // skip forward past pseudo-TLS junk and mlen
if (plen == 4) {
// Hello message, which isn't sent by proxy and would be ignored by client
}
else if (plen) {
// Messages should contain IPv4 or IPv6 source IP address data
switch (data[0]) {
case 4: // IPv4
if (plen >= 7) {
from.set((const void*)(data + 1), 4, ((((unsigned int)data[5]) & 0xff) << 8) | (((unsigned int)data[6]) & 0xff));
data += 7; // type + 4 byte IP + 2 byte port
plen -= 7;
}
else {
_phy.close(sock);
return;
}
break;
case 6: // IPv6
if (plen >= 19) {
from.set((const void*)(data + 1), 16, ((((unsigned int)data[17]) & 0xff) << 8) | (((unsigned int)data[18]) & 0xff));
data += 19; // type + 16 byte IP + 2 byte port
plen -= 19;
}
else {
_phy.close(sock);
return;
}
break;
case 0: // none/omitted
++data;
--plen;
break;
default: // invalid address type
_phy.close(sock);
return;
}
if (from) {
InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff, 0xffff);
const ZT_ResultCode rc = _node->processWirePacket((void*)0, OSUtils::now(), -1, reinterpret_cast<struct sockaddr_storage*>(&from), data, plen, &_nextBackgroundTaskDeadline);
if (ZT_ResultCode_isFatal(rc)) {
char tmp[256];
OSUtils::ztsnprintf(tmp, sizeof(tmp), "fatal error code from processWirePacket: %d", (int)rc);
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = tmp;
this->terminate();
_phy.close(sock);
return;
}
}
}
if (tc->readq.length() > (mlen + 5))
tc->readq.erase(tc->readq.begin(), tc->readq.begin() + (mlen + 5));
else
tc->readq.clear();
}
else
break;
}
return;
}
}
catch (...) {
_phy.close(sock);
}
}
inline void phyOnTcpWritable(PhySocket* sock, void** uptr)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(*uptr);
bool closeit = false;
{
Mutex::Lock _l(tc->writeq_m);
if (tc->writeq.length() > 0) {
long sent = (long)_phy.streamSend(sock, tc->writeq.data(), (unsigned long)tc->writeq.length(), true);
Metrics::tcp_send += sent;
if (sent > 0) {
if ((unsigned long)sent >= (unsigned long)tc->writeq.length()) {
tc->writeq.clear();
_phy.setNotifyWritable(sock, false);
if (tc->type == TcpConnection::TCP_HTTP_INCOMING)
closeit = true; // HTTP keep alive not supported
}
else {
tc->writeq.erase(tc->writeq.begin(), tc->writeq.begin() + sent);
}
}
}
else {
_phy.setNotifyWritable(sock, false);
}
}
if (closeit)
_phy.close(sock);
}
inline void phyOnFileDescriptorActivity(PhySocket* sock, void** uptr, bool readable, bool writable)
{
}
inline void phyOnUnixAccept(PhySocket* sockL, PhySocket* sockN, void** uptrL, void** uptrN)
{
}
inline void phyOnUnixClose(PhySocket* sock, void** uptr)
{
}
inline void phyOnUnixData(PhySocket* sock, void** uptr, void* data, unsigned long len)
{
}
inline void phyOnUnixWritable(PhySocket* sock, void** uptr)
{
}
inline int nodeVirtualNetworkConfigFunction(uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwc)
{
Mutex::Lock _l(_nets_m);
NetworkState& n = _nets[nwid];
n.setWebPort(_primaryPort);
switch (op) {
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP:
if (! n.tap()) {
try {
char friendlyName[128];
OSUtils::ztsnprintf(friendlyName, sizeof(friendlyName), "ZeroTier One [%.16llx]", nwid);
n.setTap(EthernetTap::newInstance(nullptr, _concurrency, _cpuPinningEnabled, _homePath.c_str(), MAC(nwc->mac), nwc->mtu, (unsigned int)ZT_IF_METRIC, nwid, friendlyName, StapFrameHandler, (void*)this));
*nuptr = (void*)&n;
char nlcpath[256];
OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _homePath.c_str(), nwid);
std::string nlcbuf;
if (OSUtils::readFile(nlcpath, nlcbuf)) {
Dictionary<4096> nc;
nc.load(nlcbuf.c_str());
Buffer<1024> allowManaged;
if (nc.get("allowManaged", allowManaged) && allowManaged.size() > 0) {
std::string addresses(allowManaged.begin(), allowManaged.size());
if (allowManaged.size() <= 5) { // untidy parsing for backward compatibility
if (allowManaged[0] == '1' || allowManaged[0] == 't' || allowManaged[0] == 'T') {
n.setAllowManaged(true);
}
else {
n.setAllowManaged(false);
}
}
else {
// this should be a list of IP addresses
n.setAllowManaged(true);
size_t pos = 0;
while (true) {
size_t nextPos = addresses.find(',', pos);
std::string address = addresses.substr(pos, (nextPos == std::string::npos ? addresses.size() : nextPos) - pos);
n.addToAllowManagedWhiteList(InetAddress(address.c_str()));
if (nextPos == std::string::npos)
break;
pos = nextPos + 1;
}
}
}
else {
n.setAllowManaged(true);
}
n.setAllowGlobal(nc.getB("allowGlobal", false));
n.setAllowDefault(nc.getB("allowDefault", false));
n.setAllowDNS(nc.getB("allowDNS", false));
}
}
catch (std::exception& exc) {
#ifdef __WINDOWS__
FILE* tapFailLog = fopen((_homePath + ZT_PATH_SEPARATOR_S "port_error_log.txt").c_str(), "a");
if (tapFailLog) {
fprintf(tapFailLog, "%.16llx: %s" ZT_EOL_S, (unsigned long long)nwid, exc.what());
fclose(tapFailLog);
}
#else
fprintf(stderr, "ERROR: unable to configure virtual network port: %s" ZT_EOL_S, exc.what());
#endif
_nets.erase(nwid);
return -999;
}
catch (...) {
return -999; // tap init failed
}
}
// After setting up tap, fall through to CONFIG_UPDATE since we also want to do this...
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE:
n.setConfig(nwc);
if (n.tap()) { // sanity check
#if defined(__WINDOWS__) && ! defined(ZT_SDK)
// wait for up to 5 seconds for the WindowsEthernetTap to actually be initialized
//
// without WindowsEthernetTap::isInitialized() returning true, the won't actually
// be online yet and setting managed routes on it will fail.
const int MAX_SLEEP_COUNT = 500;
for (int i = 0; ! ((WindowsEthernetTap*)(n.tap().get()))->isInitialized() && i < MAX_SLEEP_COUNT; i++) {
Sleep(10);
}
#endif
syncManagedStuff(n, true, true, true);
n.tap()->setMtu(nwc->mtu);
}
else {
_nets.erase(nwid);
return -999; // tap init failed
}
break;
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN:
case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY:
if (n.tap()) { // sanity check
#if defined(__WINDOWS__) && ! defined(ZT_SDK)
std::string winInstanceId(((WindowsEthernetTap*)(n.tap().get()))->instanceId());
#endif
*nuptr = (void*)0;
n.tap().reset();
_nets.erase(nwid);
#if defined(__WINDOWS__) && ! defined(ZT_SDK)
if ((op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) && (winInstanceId.length() > 0)) {
WindowsEthernetTap::deletePersistentTapDevice(winInstanceId.c_str());
WinFWHelper::removeICMPRules(nwid);
}
#endif
if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) {
char nlcpath[256];
OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _homePath.c_str(), nwid);
OSUtils::rm(nlcpath);
}
}
else {
_nets.erase(nwid);
}
break;
}
return 0;
}
inline void nodeEventCallback(enum ZT_Event event, const void* metaData)
{
switch (event) {
case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_IDENTITY_COLLISION;
_fatalErrorMessage = "identity/address collision";
this->terminate();
} break;
case ZT_EVENT_TRACE: {
if (metaData) {
::fprintf(stderr, "%s" ZT_EOL_S, (const char*)metaData);
::fflush(stderr);
}
} break;
case ZT_EVENT_USER_MESSAGE: {
const ZT_UserMessage* um = reinterpret_cast<const ZT_UserMessage*>(metaData);
if ((um->typeId == ZT_SOFTWARE_UPDATE_USER_MESSAGE_TYPE) && (_updater)) {
_updater->handleSoftwareUpdateUserMessage(um->origin, um->data, um->length);
}
} break;
case ZT_EVENT_REMOTE_TRACE: {
const ZT_RemoteTrace* rt = reinterpret_cast<const ZT_RemoteTrace*>(metaData);
if ((rt) && (rt->len > 0) && (rt->len <= ZT_MAX_REMOTE_TRACE_SIZE) && (rt->data))
_controller->handleRemoteTrace(*rt);
}
default:
break;
}
}
#if ZT_VAULT_SUPPORT
inline bool nodeVaultPutIdentity(enum ZT_StateObjectType type, const void* data, int len)
{
bool retval = false;
if (type != ZT_STATE_OBJECT_IDENTITY_PUBLIC && type != ZT_STATE_OBJECT_IDENTITY_SECRET) {
return retval;
}
CURL* curl = curl_easy_init();
if (curl) {
char token[512] = { 0 };
snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str());
struct curl_slist* chunk = NULL;
chunk = curl_slist_append(chunk, token);
char content_type[512] = { 0 };
snprintf(content_type, sizeof(content_type), "Content-Type: application/json");
chunk = curl_slist_append(chunk, content_type);
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
char url[2048] = { 0 };
snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str());
curl_easy_setopt(curl, CURLOPT_URL, url);
json d = json::object();
if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
std::string key((const char*)data, len);
d["public"] = key;
}
else if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) {
std::string key((const char*)data, len);
d["secret"] = key;
}
if (! d.empty()) {
std::string post = d.dump();
if (! post.empty()) {
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, post.c_str());
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, post.length());
#ifndef NDEBUG
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);
#endif
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
long response_code = 0;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code);
if (response_code == 200 || response_code == 204) {
retval = true;
}
}
}
}
curl_easy_cleanup(curl);
curl = NULL;
curl_slist_free_all(chunk);
chunk = NULL;
}
return retval;
}
#endif
inline void nodeStatePutFunction(enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len)
{
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) {
if (nodeVaultPutIdentity(type, data, len)) {
// value successfully written to Vault
return;
}
// else fallback to disk
}
#endif
char p[1024];
FILE* f;
bool secure = false;
char dirname[1024];
dirname[0] = 0;
switch (type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.public", _homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.secret", _homePath.c_str());
secure = true;
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "planet", _homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "moons.d", _homePath.c_str());
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.16llx.moon", dirname, (unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "networks.d", _homePath.c_str());
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.16llx.conf", dirname, (unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_PEER:
OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "peers.d", _homePath.c_str());
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.10llx.peer", dirname, (unsigned long long)id[0]);
break;
default:
return;
}
if ((len >= 0) && (data)) {
// Check to see if we've already written this first. This reduces
// redundant writes and I/O overhead on most platforms and has
// little effect on others.
f = fopen(p, "rb");
if (f) {
char* const buf = (char*)malloc(len * 4);
if (buf) {
long l = (long)fread(buf, 1, (size_t)(len * 4), f);
fclose(f);
if ((l == (long)len) && (memcmp(data, buf, l) == 0)) {
free(buf);
return;
}
free(buf);
}
}
f = fopen(p, "wb");
if ((! f) && (dirname[0])) { // create subdirectory if it does not exist
OSUtils::mkdir(dirname);
f = fopen(p, "wb");
}
if (f) {
if (fwrite(data, len, 1, f) != 1)
fprintf(stderr, "WARNING: unable to write to file: %s (I/O error)" ZT_EOL_S, p);
fclose(f);
if (secure)
OSUtils::lockDownFile(p, false);
}
else {
fprintf(stderr, "WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S, p);
}
}
else {
OSUtils::rm(p);
}
}
#if ZT_VAULT_SUPPORT
inline int nodeVaultGetIdentity(enum ZT_StateObjectType type, void* data, unsigned int maxlen)
{
if (type != ZT_STATE_OBJECT_IDENTITY_SECRET && type != ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
return -1;
}
int ret = -1;
CURL* curl = curl_easy_init();
if (curl) {
char token[512] = { 0 };
snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str());
struct curl_slist* chunk = NULL;
chunk = curl_slist_append(chunk, token);
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
char url[2048] = { 0 };
snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str());
curl_easy_setopt(curl, CURLOPT_URL, url);
std::string response;
std::string res_headers;
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &curlResponseWrite);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &response);
curl_easy_setopt(curl, CURLOPT_HEADERDATA, &res_headers);
#ifndef NDEBUG
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);
#endif
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
long response_code = 0;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code);
if (response_code == 200) {
try {
json payload = json::parse(response);
if (! payload["data"].is_null()) {
json& d = payload["data"];
if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) {
std::string secret = OSUtils::jsonString(d["secret"], "");
if (! secret.empty()) {
ret = (int)secret.length();
memcpy(data, secret.c_str(), ret);
}
}
else if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) {
std::string pub = OSUtils::jsonString(d["public"], "");
if (! pub.empty()) {
ret = (int)pub.length();
memcpy(data, pub.c_str(), ret);
}
}
}
}
catch (...) {
ret = -1;
}
}
}
curl_easy_cleanup(curl);
curl = NULL;
curl_slist_free_all(chunk);
chunk = NULL;
}
return ret;
}
#endif
inline int nodeStateGetFunction(enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen)
{
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) {
int retval = nodeVaultGetIdentity(type, data, maxlen);
if (retval >= 0)
return retval;
// else continue file based lookup
}
#endif
char p[4096];
switch (type) {
case ZT_STATE_OBJECT_IDENTITY_PUBLIC:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.public", _homePath.c_str());
break;
case ZT_STATE_OBJECT_IDENTITY_SECRET:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.secret", _homePath.c_str());
break;
case ZT_STATE_OBJECT_PLANET:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "planet", _homePath.c_str());
break;
case ZT_STATE_OBJECT_MOON:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "moons.d" ZT_PATH_SEPARATOR_S "%.16llx.moon", _homePath.c_str(), (unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_NETWORK_CONFIG:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf", _homePath.c_str(), (unsigned long long)id[0]);
break;
case ZT_STATE_OBJECT_PEER:
OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "peers.d" ZT_PATH_SEPARATOR_S "%.10llx.peer", _homePath.c_str(), (unsigned long long)id[0]);
break;
default:
return -1;
}
FILE* f = fopen(p, "rb");
if (f) {
int n = (int)fread(data, 1, maxlen, f);
fclose(f);
#if ZT_VAULT_SUPPORT
if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) {
// If we've gotten here while Vault is enabled, Vault does not know the key and it's been
// read from disk instead.
//
// We should put the value in Vault and remove the local file.
if (nodeVaultPutIdentity(type, data, n)) {
unlink(p);
}
}
#endif
if (n >= 0)
return n;
}
return -1;
}
inline int nodeWirePacketSendFunction(const int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl)
{
#ifdef ZT_TCP_FALLBACK_RELAY
if (_allowTcpFallbackRelay) {
if (addr->ss_family == AF_INET) {
// TCP fallback tunnel support, currently IPv4 only
if ((len >= 16) && (reinterpret_cast<const InetAddress*>(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
// Engage TCP tunnel fallback if we haven't received anything valid from a global
// IP address in ZT_TCP_FALLBACK_AFTER milliseconds. If we do start getting
// valid direct traffic we'll stop using it and close the socket after a while.
const int64_t now = OSUtils::now();
if (_forceTcpRelay || (((now - _lastDirectReceiveFromGlobal) > ZT_TCP_FALLBACK_AFTER) && ((now - _lastRestart) > ZT_TCP_FALLBACK_AFTER))) {
if (_tcpFallbackTunnel) {
bool flushNow = false;
{
Mutex::Lock _l(_tcpFallbackTunnel->writeq_m);
if (_tcpFallbackTunnel->writeq.size() < (1024 * 64)) {
if (_tcpFallbackTunnel->writeq.length() == 0) {
_phy.setNotifyWritable(_tcpFallbackTunnel->sock, true);
flushNow = true;
}
const unsigned long mlen = len + 7;
_tcpFallbackTunnel->writeq.push_back((char)0x17);
_tcpFallbackTunnel->writeq.push_back((char)0x03);
_tcpFallbackTunnel->writeq.push_back((char)0x03); // fake TLS 1.2 header
_tcpFallbackTunnel->writeq.push_back((char)((mlen >> 8) & 0xff));
_tcpFallbackTunnel->writeq.push_back((char)(mlen & 0xff));
_tcpFallbackTunnel->writeq.push_back((char)4); // IPv4
_tcpFallbackTunnel->writeq.append(reinterpret_cast<const char*>(reinterpret_cast<const void*>(&(reinterpret_cast<const struct sockaddr_in*>(addr)->sin_addr.s_addr))), 4);
_tcpFallbackTunnel->writeq.append(reinterpret_cast<const char*>(reinterpret_cast<const void*>(&(reinterpret_cast<const struct sockaddr_in*>(addr)->sin_port))), 2);
_tcpFallbackTunnel->writeq.append((const char*)data, len);
}
}
if (flushNow) {
void* tmpptr = (void*)_tcpFallbackTunnel;
phyOnTcpWritable(_tcpFallbackTunnel->sock, &tmpptr);
}
}
else if (_forceTcpRelay || (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER) && ((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INTERVAL / 2)))) {
const InetAddress addr(_fallbackRelayAddress);
TcpConnection* tc = new TcpConnection();
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc);
}
tc->type = TcpConnection::TCP_TUNNEL_OUTGOING;
tc->remoteAddr = addr;
tc->lastReceive = OSUtils::now();
tc->parent = this;
tc->sock = (PhySocket*)0; // set in connect handler
tc->messageSize = 0;
bool connected = false;
_phy.tcpConnect(reinterpret_cast<const struct sockaddr*>(&addr), connected, (void*)tc, true);
}
}
_lastSendToGlobalV4 = now;
}
}
}
if (_forceTcpRelay) {
// Shortcut here so that we don't emit any UDP packets
return 0;
}
#endif // ZT_TCP_FALLBACK_RELAY
// Even when relaying we still send via UDP. This way if UDP starts
// working we can instantly "fail forward" to it and stop using TCP
// proxy fallback, which is slow.
if ((localSocket != -1) && (localSocket != 0) && (_binder.isUdpSocketValid((PhySocket*)((uintptr_t)localSocket)))) {
if ((ttl) && (addr->ss_family == AF_INET)) {
_phy.setIp4UdpTtl((PhySocket*)((uintptr_t)localSocket), ttl);
}
const bool r = _phy.udpSend((PhySocket*)((uintptr_t)localSocket), (const struct sockaddr*)addr, data, len);
if ((ttl) && (addr->ss_family == AF_INET)) {
_phy.setIp4UdpTtl((PhySocket*)((uintptr_t)localSocket), 255);
}
return ((r) ? 0 : -1);
}
else {
return ((_binder.udpSendAll(_phy, addr, data, len, ttl)) ? 0 : -1);
}
}
inline void nodeVirtualNetworkFrameFunction(uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
{
NetworkState* n = reinterpret_cast<NetworkState*>(*nuptr);
if ((! n) || (! n->tap())) {
return;
}
n->tap()->put(MAC(sourceMac), MAC(destMac), etherType, data, len);
}
inline int nodePathCheckFunction(uint64_t ztaddr, const int64_t localSocket, const struct sockaddr_storage* remoteAddr)
{
// Make sure we're not trying to do ZeroTier-over-ZeroTier
{
Mutex::Lock _l(_nets_m);
for (std::map<uint64_t, NetworkState>::const_iterator n(_nets.begin()); n != _nets.end(); ++n) {
if (n->second.tap()) {
std::vector<InetAddress> ips(n->second.tap()->ips());
for (std::vector<InetAddress>::const_iterator i(ips.begin()); i != ips.end(); ++i) {
if (i->containsAddress(*(reinterpret_cast<const InetAddress*>(remoteAddr)))) {
return 0;
}
}
}
}
}
/* Note: I do not think we need to scan for overlap with managed routes
* because of the "route forking" and interface binding that we do. This
* ensures (we hope) that ZeroTier traffic will still take the physical
* path even if its managed routes override this for other traffic. Will
* revisit if we see recursion problems. */
// Check blacklists
const Hashtable<uint64_t, std::vector<InetAddress> >* blh = (const Hashtable<uint64_t, std::vector<InetAddress> >*)0;
const std::vector<InetAddress>* gbl = (const std::vector<InetAddress>*)0;
if (remoteAddr->ss_family == AF_INET) {
blh = &_v4Blacklists;
gbl = &_globalV4Blacklist;
}
else if (remoteAddr->ss_family == AF_INET6) {
blh = &_v6Blacklists;
gbl = &_globalV6Blacklist;
}
if (blh) {
Mutex::Lock _l(_localConfig_m);
const std::vector<InetAddress>* l = blh->get(ztaddr);
if (l) {
for (std::vector<InetAddress>::const_iterator a(l->begin()); a != l->end(); ++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress*>(remoteAddr)))
return 0;
}
}
}
if (gbl) {
for (std::vector<InetAddress>::const_iterator a(gbl->begin()); a != gbl->end(); ++a) {
if (a->containsAddress(*reinterpret_cast<const InetAddress*>(remoteAddr)))
return 0;
}
}
return 1;
}
inline int nodePathLookupFunction(uint64_t ztaddr, int family, struct sockaddr_storage* result)
{
const Hashtable<uint64_t, std::vector<InetAddress> >* lh = (const Hashtable<uint64_t, std::vector<InetAddress> >*)0;
if (family < 0)
lh = (_node->prng() & 1) ? &_v4Hints : &_v6Hints;
else if (family == AF_INET)
lh = &_v4Hints;
else if (family == AF_INET6)
lh = &_v6Hints;
else
return 0;
const std::vector<InetAddress>* l = lh->get(ztaddr);
if ((l) && (! l->empty())) {
memcpy(result, &((*l)[(unsigned long)_node->prng() % l->size()]), sizeof(struct sockaddr_storage));
return 1;
}
else
return 0;
}
inline void tapFrameHandler(uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
{
_node->processVirtualNetworkFrame((void*)0, OSUtils::now(), nwid, from.toInt(), to.toInt(), etherType, vlanId, data, len, &_nextBackgroundTaskDeadline);
}
inline void onHttpResponseFromClient(TcpConnection* tc)
{
_phy.close(tc->sock);
}
bool shouldBindInterface(const char* ifname, const InetAddress& ifaddr)
{
#if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux)
if ((ifname[0] == 'l') && (ifname[1] == 'o'))
return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't'))
return false; // sanity check: zt#
if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n'))
return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p'))
return false; // tap# is probably an OpenVPN tunnel or similar
#endif
#ifdef __APPLE__
if ((ifname[0] == 'f') && (ifname[1] == 'e') && (ifname[2] == 't') && (ifname[3] == 'h'))
return false; // ... as is feth#
if ((ifname[0] == 'l') && (ifname[1] == 'o'))
return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't'))
return false; // sanity check: zt#
if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n'))
return false; // tun# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p'))
return false; // tap# is probably an OpenVPN tunnel or similar
if ((ifname[0] == 'u') && (ifname[1] == 't') && (ifname[2] == 'u') && (ifname[3] == 'n'))
return false; // ... as is utun#
#endif
#ifdef __FreeBSD__
if ((ifname[0] == 'l') && (ifname[1] == 'o'))
return false; // loopback
if ((ifname[0] == 'z') && (ifname[1] == 't'))
return false; // sanity check: zt#
#endif
{
Mutex::Lock _l(_localConfig_m);
for (std::vector<std::string>::const_iterator p(_interfacePrefixBlacklist.begin()); p != _interfacePrefixBlacklist.end(); ++p) {
if (! strncmp(p->c_str(), ifname, p->length()))
return false;
}
}
{
// Check global blacklists
const std::vector<InetAddress>* gbl = (const std::vector<InetAddress>*)0;
if (ifaddr.ss_family == AF_INET) {
gbl = &_globalV4Blacklist;
}
else if (ifaddr.ss_family == AF_INET6) {
gbl = &_globalV6Blacklist;
}
if (gbl) {
Mutex::Lock _l(_localConfig_m);
for (std::vector<InetAddress>::const_iterator a(gbl->begin()); a != gbl->end(); ++a) {
if (a->containsAddress(ifaddr))
return false;
}
}
}
{
Mutex::Lock _l(_nets_m);
for (std::map<uint64_t, NetworkState>::const_iterator n(_nets.begin()); n != _nets.end(); ++n) {
if (n->second.tap()) {
std::vector<InetAddress> ips(n->second.tap()->ips());
for (std::vector<InetAddress>::const_iterator i(ips.begin()); i != ips.end(); ++i) {
if (i->ipsEqual(ifaddr))
return false;
}
#ifdef _WIN32
if (n->second.tap()->friendlyName() == ifname)
return false;
#endif
}
}
}
return true;
}
unsigned int _getRandomPort()
{
unsigned int randp = 0;
Utils::getSecureRandom(&randp, sizeof(randp));
randp = 20000 + (randp % 45500);
for (int i = 0;; ++i) {
if (i > 1000) {
return 0;
}
else if (++randp >= 65536) {
randp = 20000;
}
if (_trialBind(randp))
break;
}
return randp;
}
bool _trialBind(unsigned int port)
{
struct sockaddr_in in4;
struct sockaddr_in6 in6;
PhySocket* tb;
memset(&in4, 0, sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr*>(&in4), (void*)0, 0);
if (tb) {
_phy.close(tb, false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr*>(&in4), (void*)0);
if (tb) {
_phy.close(tb, false);
return true;
}
}
memset(&in6, 0, sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = Utils::hton((uint16_t)port);
tb = _phy.udpBind(reinterpret_cast<const struct sockaddr*>(&in6), (void*)0, 0);
if (tb) {
_phy.close(tb, false);
tb = _phy.tcpListen(reinterpret_cast<const struct sockaddr*>(&in6), (void*)0);
if (tb) {
_phy.close(tb, false);
return true;
}
}
return false;
}
};
static int SnodeVirtualNetworkConfigFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwconf)
{
return reinterpret_cast<OneServiceImpl*>(uptr)->nodeVirtualNetworkConfigFunction(nwid, nuptr, op, nwconf);
}
static void SnodeEventCallback(ZT_Node* node, void* uptr, void* tptr, enum ZT_Event event, const void* metaData)
{
reinterpret_cast<OneServiceImpl*>(uptr)->nodeEventCallback(event, metaData);
}
static void SnodeStatePutFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len)
{
reinterpret_cast<OneServiceImpl*>(uptr)->nodeStatePutFunction(type, id, data, len);
}
static int SnodeStateGetFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen)
{
return reinterpret_cast<OneServiceImpl*>(uptr)->nodeStateGetFunction(type, id, data, maxlen);
}
static int SnodeWirePacketSendFunction(ZT_Node* node, void* uptr, void* tptr, int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl)
{
return reinterpret_cast<OneServiceImpl*>(uptr)->nodeWirePacketSendFunction(localSocket, addr, data, len, ttl);
}
static void SnodeVirtualNetworkFrameFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
{
reinterpret_cast<OneServiceImpl*>(uptr)->nodeVirtualNetworkFrameFunction(nwid, nuptr, sourceMac, destMac, etherType, vlanId, data, len);
}
static int SnodePathCheckFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int64_t localSocket, const struct sockaddr_storage* remoteAddr)
{
return reinterpret_cast<OneServiceImpl*>(uptr)->nodePathCheckFunction(ztaddr, localSocket, remoteAddr);
}
static int SnodePathLookupFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int family, struct sockaddr_storage* result)
{
return reinterpret_cast<OneServiceImpl*>(uptr)->nodePathLookupFunction(ztaddr, family, result);
}
static void StapFrameHandler(void* uptr, void* tptr, uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len)
{
reinterpret_cast<OneServiceImpl*>(uptr)->tapFrameHandler(nwid, from, to, etherType, vlanId, data, len);
}
static int ShttpOnMessageBegin(http_parser* parser)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
tc->messageSize = 0;
tc->url.clear();
tc->status.clear();
tc->headers.clear();
tc->readq.clear();
return 0;
}
static int ShttpOnUrl(http_parser* parser, const char* ptr, size_t length)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->url.append(ptr, length);
return 0;
}
#if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2)
static int ShttpOnStatus(http_parser* parser, const char* ptr, size_t length)
#else
static int ShttpOnStatus(http_parser* parser)
#endif
{
return 0;
}
static int ShttpOnHeaderField(http_parser* parser, const char* ptr, size_t length)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
if ((tc->currentHeaderField.length()) && (tc->currentHeaderValue.length())) {
tc->headers[tc->currentHeaderField] = tc->currentHeaderValue;
tc->currentHeaderField = "";
tc->currentHeaderValue = "";
}
for (size_t i = 0; i < length; ++i)
tc->currentHeaderField.push_back(OSUtils::toLower(ptr[i]));
return 0;
}
static int ShttpOnValue(http_parser* parser, const char* ptr, size_t length)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->currentHeaderValue.append(ptr, length);
return 0;
}
static int ShttpOnHeadersComplete(http_parser* parser)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
if ((tc->currentHeaderField.length()) && (tc->currentHeaderValue.length()))
tc->headers[tc->currentHeaderField] = tc->currentHeaderValue;
return 0;
}
static int ShttpOnBody(http_parser* parser, const char* ptr, size_t length)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
tc->messageSize += (unsigned long)length;
if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE)
return -1;
tc->readq.append(ptr, length);
return 0;
}
static int ShttpOnMessageComplete(http_parser* parser)
{
TcpConnection* tc = reinterpret_cast<TcpConnection*>(parser->data);
if (tc->type == TcpConnection::TCP_HTTP_INCOMING) {}
else {
tc->parent->onHttpResponseFromClient(tc);
}
return 0;
}
} // anonymous namespace
std::string OneService::platformDefaultHomePath()
{
return OSUtils::platformDefaultHomePath();
}
OneService* OneService::newInstance(const char* hp, unsigned int port)
{
return new OneServiceImpl(hp, port);
}
OneService::~OneService()
{
}
} // namespace ZeroTier