ZeroTierOne/osdep/MacKextEthernetTap.cpp
2024-09-26 08:52:29 -04:00

705 lines
22 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "MacDNSHelper.hpp"
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/route.h>
#include <netinet/icmp6.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet6/in6_var.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <unistd.h>
// OSX compile fix... in6_var defines this in a struct which namespaces it for C++ ... why?!?
struct prf_ra {
u_char onlink : 1;
u_char autonomous : 1;
u_char reserved : 6;
} prf_ra;
#include <ifaddrs.h>
#include <netinet6/nd6.h>
// These are KERNEL_PRIVATE... why?
#ifndef SIOCAUTOCONF_START
#define SIOCAUTOCONF_START _IOWR('i', 132, struct in6_ifreq) /* accept rtadvd on this interface */
#endif
#ifndef SIOCAUTOCONF_STOP
#define SIOCAUTOCONF_STOP _IOWR('i', 133, struct in6_ifreq) /* stop accepting rtadv for this interface */
#endif
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
// This source is from:
// http://www.opensource.apple.com/source/Libinfo/Libinfo-406.17/gen.subproj/getifmaddrs.c?txt
// It's here because OSX 10.6 does not have this convenience function.
#define SALIGN (sizeof(uint32_t) - 1)
#define SA_RLEN(sa) ((sa)->sa_len ? (((sa)->sa_len + SALIGN) & ~SALIGN) : (SALIGN + 1))
#define MAX_SYSCTL_TRY 5
#define RTA_MASKS (RTA_GATEWAY | RTA_IFP | RTA_IFA)
/* FreeBSD uses NET_RT_IFMALIST and RTM_NEWMADDR from <sys/socket.h> */
/* We can use NET_RT_IFLIST2 and RTM_NEWMADDR2 on Darwin */
// #define DARWIN_COMPAT
// #ifdef DARWIN_COMPAT
#define GIM_SYSCTL_MIB NET_RT_IFLIST2
#define GIM_RTM_ADDR RTM_NEWMADDR2
// #else
// #define GIM_SYSCTL_MIB NET_RT_IFMALIST
// #define GIM_RTM_ADDR RTM_NEWMADDR
// #endif
// Not in 10.6 includes so use our own
struct _intl_ifmaddrs {
struct _intl_ifmaddrs* ifma_next;
struct sockaddr* ifma_name;
struct sockaddr* ifma_addr;
struct sockaddr* ifma_lladdr;
};
static inline int _intl_getifmaddrs(struct _intl_ifmaddrs** pif)
{
int icnt = 1;
int dcnt = 0;
int ntry = 0;
size_t len;
size_t needed;
int mib[6];
int i;
char* buf;
char* data;
char* next;
char* p;
struct ifma_msghdr2* ifmam;
struct _intl_ifmaddrs *ifa, *ift;
struct rt_msghdr* rtm;
struct sockaddr* sa;
mib[0] = CTL_NET;
mib[1] = PF_ROUTE;
mib[2] = 0; /* protocol */
mib[3] = 0; /* wildcard address family */
mib[4] = GIM_SYSCTL_MIB;
mib[5] = 0; /* no flags */
do {
if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0)
return (-1);
if ((buf = (char*)malloc(needed)) == NULL)
return (-1);
if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) {
if (errno != ENOMEM || ++ntry >= MAX_SYSCTL_TRY) {
free(buf);
return (-1);
}
free(buf);
buf = NULL;
}
} while (buf == NULL);
for (next = buf; next < buf + needed; next += rtm->rtm_msglen) {
rtm = (struct rt_msghdr*)(void*)next;
if (rtm->rtm_version != RTM_VERSION)
continue;
switch (rtm->rtm_type) {
case GIM_RTM_ADDR:
ifmam = (struct ifma_msghdr2*)(void*)rtm;
if ((ifmam->ifmam_addrs & RTA_IFA) == 0)
break;
icnt++;
p = (char*)(ifmam + 1);
for (i = 0; i < RTAX_MAX; i++) {
if ((RTA_MASKS & ifmam->ifmam_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr*)(void*)p;
len = SA_RLEN(sa);
dcnt += len;
p += len;
}
break;
}
}
data = (char*)malloc(sizeof(struct _intl_ifmaddrs) * icnt + dcnt);
if (data == NULL) {
free(buf);
return (-1);
}
ifa = (struct _intl_ifmaddrs*)(void*)data;
data += sizeof(struct _intl_ifmaddrs) * icnt;
memset(ifa, 0, sizeof(struct _intl_ifmaddrs) * icnt);
ift = ifa;
for (next = buf; next < buf + needed; next += rtm->rtm_msglen) {
rtm = (struct rt_msghdr*)(void*)next;
if (rtm->rtm_version != RTM_VERSION)
continue;
switch (rtm->rtm_type) {
case GIM_RTM_ADDR:
ifmam = (struct ifma_msghdr2*)(void*)rtm;
if ((ifmam->ifmam_addrs & RTA_IFA) == 0)
break;
p = (char*)(ifmam + 1);
for (i = 0; i < RTAX_MAX; i++) {
if ((RTA_MASKS & ifmam->ifmam_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr*)(void*)p;
len = SA_RLEN(sa);
switch (i) {
case RTAX_GATEWAY:
ift->ifma_lladdr = (struct sockaddr*)(void*)data;
memcpy(data, p, len);
data += len;
break;
case RTAX_IFP:
ift->ifma_name = (struct sockaddr*)(void*)data;
memcpy(data, p, len);
data += len;
break;
case RTAX_IFA:
ift->ifma_addr = (struct sockaddr*)(void*)data;
memcpy(data, p, len);
data += len;
break;
default:
data += len;
break;
}
p += len;
}
ift->ifma_next = ift + 1;
ift = ift->ifma_next;
break;
}
}
free(buf);
if (ift > ifa) {
ift--;
ift->ifma_next = NULL;
*pif = ifa;
}
else {
*pif = NULL;
free(ifa);
}
return (0);
}
static inline void _intl_freeifmaddrs(struct _intl_ifmaddrs* ifmp)
{
free(ifmp);
}
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
#include "../node/Constants.hpp"
#include "../node/Dictionary.hpp"
#include "../node/Mutex.hpp"
#include "../node/Utils.hpp"
#include "MacKextEthernetTap.hpp"
#include "OSUtils.hpp"
#include <algorithm>
#include <map>
#include <set>
#include <string>
// ff:ff:ff:ff:ff:ff with no ADI
static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff), 0);
static inline bool _setIpv6Stuff(const char* ifname, bool performNUD, bool acceptRouterAdverts)
{
struct in6_ndireq nd;
struct in6_ifreq ifr;
int s = socket(AF_INET6, SOCK_DGRAM, 0);
if (s <= 0)
return false;
memset(&nd, 0, sizeof(nd));
strncpy(nd.ifname, ifname, sizeof(nd.ifname));
if (ioctl(s, SIOCGIFINFO_IN6, &nd)) {
close(s);
return false;
}
unsigned long oldFlags = (unsigned long)nd.ndi.flags;
if (performNUD)
nd.ndi.flags |= ND6_IFF_PERFORMNUD;
else
nd.ndi.flags &= ~ND6_IFF_PERFORMNUD;
if (oldFlags != (unsigned long)nd.ndi.flags) {
if (ioctl(s, SIOCSIFINFO_FLAGS, &nd)) {
close(s);
return false;
}
}
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(s, acceptRouterAdverts ? SIOCAUTOCONF_START : SIOCAUTOCONF_STOP, &ifr)) {
close(s);
return false;
}
close(s);
return true;
}
namespace ZeroTier {
static long globalTapsRunning = 0;
static Mutex globalTapCreateLock;
MacKextEthernetTap::MacKextEthernetTap(
const char* homePath,
const MAC& mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char* friendlyName,
void (*handler)(void*, void*, uint64_t, const MAC&, const MAC&, unsigned int, unsigned int, const void* data, unsigned int len),
void* arg)
: _handler(handler)
, _arg(arg)
, _nwid(nwid)
, _homePath(homePath)
, _mtu(mtu)
, _metric(metric)
, _fd(0)
, _enabled(true)
{
char devpath[64], ethaddr[64], mtustr[32], metstr[32], nwids[32];
struct stat stattmp;
OSUtils::ztsnprintf(nwids, sizeof(nwids), "%.16llx", nwid);
Mutex::Lock _gl(globalTapCreateLock);
if (::stat("/dev/zt0", &stattmp)) {
long kextpid = (long)fork();
if (kextpid == 0) {
::chdir(homePath);
OSUtils::redirectUnixOutputs("/dev/null", (const char*)0);
::execl("/sbin/kextload", "/sbin/kextload", "-q", "-repository", homePath, "tap.kext", (const char*)0);
::_exit(-1);
}
else if (kextpid > 0) {
int exitcode = -1;
::waitpid(kextpid, &exitcode, 0);
}
::usleep(500); // give tap device driver time to start up and try again
if (::stat("/dev/zt0", &stattmp))
throw std::runtime_error("/dev/zt# tap devices do not exist and cannot load tap.kext");
}
// Try to reopen the last device we had, if we had one and it's still unused.
std::map<std::string, std::string> globalDeviceMap;
FILE* devmapf = fopen((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(), "r");
if (devmapf) {
char buf[256];
while (fgets(buf, sizeof(buf), devmapf)) {
char* x = (char*)0;
char* y = (char*)0;
char* saveptr = (char*)0;
for (char* f = Utils::stok(buf, "\r\n=", &saveptr); (f); f = Utils::stok((char*)0, "\r\n=", &saveptr)) {
if (! x)
x = f;
else if (! y)
y = f;
else
break;
}
if ((x) && (y) && (x[0]) && (y[0]))
globalDeviceMap[x] = y;
}
fclose(devmapf);
}
bool recalledDevice = false;
std::map<std::string, std::string>::const_iterator gdmEntry = globalDeviceMap.find(nwids);
if (gdmEntry != globalDeviceMap.end()) {
std::string devpath("/dev/");
devpath.append(gdmEntry->second);
if (stat(devpath.c_str(), &stattmp) == 0) {
_fd = ::open(devpath.c_str(), O_RDWR);
if (_fd > 0) {
_dev = gdmEntry->second;
recalledDevice = true;
}
}
}
// Open the first unused tap device if we didn't recall a previous one.
if (! recalledDevice) {
for (int i = 0; i < 64; ++i) {
OSUtils::ztsnprintf(devpath, sizeof(devpath), "/dev/zt%d", i);
if (stat(devpath, &stattmp))
throw std::runtime_error("no more TAP devices available");
_fd = ::open(devpath, O_RDWR);
if (_fd > 0) {
char foo[16];
OSUtils::ztsnprintf(foo, sizeof(foo), "zt%d", i);
_dev = foo;
break;
}
}
}
if (_fd <= 0)
throw std::runtime_error("unable to open TAP device or no more devices available");
if (fcntl(_fd, F_SETFL, fcntl(_fd, F_GETFL) & ~O_NONBLOCK) == -1) {
::close(_fd);
throw std::runtime_error("unable to set flags on file descriptor for TAP device");
}
// Configure MAC address and MTU, bring interface up
OSUtils::ztsnprintf(ethaddr, sizeof(ethaddr), "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", (int)mac[0], (int)mac[1], (int)mac[2], (int)mac[3], (int)mac[4], (int)mac[5]);
OSUtils::ztsnprintf(mtustr, sizeof(mtustr), "%u", _mtu);
OSUtils::ztsnprintf(metstr, sizeof(metstr), "%u", _metric);
long cpid = (long)fork();
if (cpid == 0) {
::execl("/sbin/ifconfig", "/sbin/ifconfig", _dev.c_str(), "lladdr", ethaddr, "mtu", mtustr, "metric", metstr, "up", (const char*)0);
::_exit(-1);
}
else if (cpid > 0) {
int exitcode = -1;
::waitpid(cpid, &exitcode, 0);
if (exitcode) {
::close(_fd);
throw std::runtime_error("ifconfig failure setting link-layer address and activating tap interface");
}
}
_setIpv6Stuff(_dev.c_str(), true, false);
// Set close-on-exec so that devices cannot persist if we fork/exec for update
fcntl(_fd, F_SETFD, fcntl(_fd, F_GETFD) | FD_CLOEXEC);
::pipe(_shutdownSignalPipe);
++globalTapsRunning;
globalDeviceMap[nwids] = _dev;
devmapf = fopen((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(), "w");
if (devmapf) {
gdmEntry = globalDeviceMap.begin();
while (gdmEntry != globalDeviceMap.end()) {
fprintf(devmapf, "%s=%s\n", gdmEntry->first.c_str(), gdmEntry->second.c_str());
++gdmEntry;
}
fclose(devmapf);
}
_thread = Thread::start(this);
}
MacKextEthernetTap::~MacKextEthernetTap()
{
MacDNSHelper::removeDNS(_nwid);
::write(_shutdownSignalPipe[1], "\0", 1); // causes thread to exit
Thread::join(_thread);
for (std::thread& t : _rxThreads) {
t.join();
}
::close(_fd);
::close(_shutdownSignalPipe[0]);
::close(_shutdownSignalPipe[1]);
{
Mutex::Lock _gl(globalTapCreateLock);
if (--globalTapsRunning <= 0) {
globalTapsRunning = 0; // sanity check -- should not be possible
char tmp[16384];
sprintf(tmp, "%s/%s", _homePath.c_str(), "tap.kext");
long kextpid = (long)fork();
if (kextpid == 0) {
OSUtils::redirectUnixOutputs("/dev/null", (const char*)0);
::execl("/sbin/kextunload", "/sbin/kextunload", tmp, (const char*)0);
::_exit(-1);
}
else if (kextpid > 0) {
int exitcode = -1;
::waitpid(kextpid, &exitcode, 0);
}
}
}
}
void MacKextEthernetTap::setEnabled(bool en)
{
_enabled = en;
// TODO: interface status change
}
bool MacKextEthernetTap::enabled() const
{
return _enabled;
}
bool MacKextEthernetTap::addIp(const InetAddress& ip)
{
if (! ip)
return false;
long cpid = (long)fork();
if (cpid == 0) {
char tmp[128];
::execl("/sbin/ifconfig", "/sbin/ifconfig", _dev.c_str(), (ip.ss_family == AF_INET6) ? "inet6" : "inet", ip.toString(tmp), "alias", (const char*)0);
::_exit(-1);
}
else if (cpid > 0) {
int exitcode = -1;
::waitpid(cpid, &exitcode, 0);
return (exitcode == 0);
} // else return false...
return false;
}
bool MacKextEthernetTap::removeIp(const InetAddress& ip)
{
if (! ip)
return true;
std::vector<InetAddress> allIps(ips());
for (std::vector<InetAddress>::iterator i(allIps.begin()); i != allIps.end(); ++i) {
if (*i == ip) {
long cpid = (long)fork();
if (cpid == 0) {
char tmp[128];
execl("/sbin/ifconfig", "/sbin/ifconfig", _dev.c_str(), (ip.ss_family == AF_INET6) ? "inet6" : "inet", ip.toIpString(tmp), "-alias", (const char*)0);
_exit(-1);
}
else if (cpid > 0) {
int exitcode = -1;
waitpid(cpid, &exitcode, 0);
return (exitcode == 0);
}
}
}
return false;
}
std::vector<InetAddress> MacKextEthernetTap::ips() const
{
struct ifaddrs* ifa = (struct ifaddrs*)0;
if (getifaddrs(&ifa))
return std::vector<InetAddress>();
std::vector<InetAddress> r;
struct ifaddrs* p = ifa;
while (p) {
if ((! strcmp(p->ifa_name, _dev.c_str())) && (p->ifa_addr) && (p->ifa_netmask) && (p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) {
switch (p->ifa_addr->sa_family) {
case AF_INET: {
struct sockaddr_in* sin = (struct sockaddr_in*)p->ifa_addr;
struct sockaddr_in* nm = (struct sockaddr_in*)p->ifa_netmask;
r.push_back(InetAddress(&(sin->sin_addr.s_addr), 4, Utils::countBits((uint32_t)nm->sin_addr.s_addr)));
} break;
case AF_INET6: {
struct sockaddr_in6* sin = (struct sockaddr_in6*)p->ifa_addr;
struct sockaddr_in6* nm = (struct sockaddr_in6*)p->ifa_netmask;
uint32_t b[4];
memcpy(b, nm->sin6_addr.s6_addr, sizeof(b));
r.push_back(InetAddress(sin->sin6_addr.s6_addr, 16, Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3])));
} break;
}
}
p = p->ifa_next;
}
if (ifa)
freeifaddrs(ifa);
std::sort(r.begin(), r.end());
r.erase(std::unique(r.begin(), r.end()), r.end());
return r;
}
void MacKextEthernetTap::put(const MAC& from, const MAC& to, unsigned int etherType, const void* data, unsigned int len)
{
char putBuf[ZT_MAX_MTU + 64];
if ((_fd > 0) && (len <= _mtu) && (_enabled)) {
to.copyTo(putBuf, 6);
from.copyTo(putBuf + 6, 6);
*((uint16_t*)(putBuf + 12)) = htons((uint16_t)etherType);
memcpy(putBuf + 14, data, len);
len += 14;
::write(_fd, putBuf, len);
}
}
std::string MacKextEthernetTap::deviceName() const
{
return _dev;
}
void MacKextEthernetTap::setFriendlyName(const char* friendlyName)
{
}
void MacKextEthernetTap::scanMulticastGroups(std::vector<MulticastGroup>& added, std::vector<MulticastGroup>& removed)
{
std::vector<MulticastGroup> newGroups;
struct _intl_ifmaddrs* ifmap = (struct _intl_ifmaddrs*)0;
if (! _intl_getifmaddrs(&ifmap)) {
struct _intl_ifmaddrs* p = ifmap;
while (p) {
if (p->ifma_addr->sa_family == AF_LINK) {
struct sockaddr_dl* in = (struct sockaddr_dl*)p->ifma_name;
struct sockaddr_dl* la = (struct sockaddr_dl*)p->ifma_addr;
if ((la->sdl_alen == 6) && (in->sdl_nlen <= _dev.length()) && (! memcmp(_dev.data(), in->sdl_data, in->sdl_nlen)))
newGroups.push_back(MulticastGroup(MAC(la->sdl_data + la->sdl_nlen, 6), 0));
}
p = p->ifma_next;
}
_intl_freeifmaddrs(ifmap);
}
std::vector<InetAddress> allIps(ips());
for (std::vector<InetAddress>::iterator ip(allIps.begin()); ip != allIps.end(); ++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(), newGroups.end());
std::unique(newGroups.begin(), newGroups.end());
for (std::vector<MulticastGroup>::iterator m(newGroups.begin()); m != newGroups.end(); ++m) {
if (! std::binary_search(_multicastGroups.begin(), _multicastGroups.end(), *m))
added.push_back(*m);
}
for (std::vector<MulticastGroup>::iterator m(_multicastGroups.begin()); m != _multicastGroups.end(); ++m) {
if (! std::binary_search(newGroups.begin(), newGroups.end(), *m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
void MacKextEthernetTap::setMtu(unsigned int mtu)
{
if (mtu != _mtu) {
_mtu = mtu;
long cpid = (long)fork();
if (cpid == 0) {
char tmp[64];
OSUtils::ztsnprintf(tmp, sizeof(tmp), "%u", mtu);
execl("/sbin/ifconfig", "/sbin/ifconfig", _dev.c_str(), "mtu", tmp, (const char*)0);
_exit(-1);
}
else if (cpid > 0) {
int exitcode = -1;
waitpid(cpid, &exitcode, 0);
}
}
}
void MacKextEthernetTap::threadMain() throw()
{
fd_set readfds, nullfds;
MAC to, from;
int n, nfds, r;
char getBuf[ZT_MAX_MTU + 64];
Thread::sleep(500);
FD_ZERO(&readfds);
FD_ZERO(&nullfds);
nfds = (int)std::max(_shutdownSignalPipe[0], _fd) + 1;
r = 0;
for (;;) {
FD_SET(_shutdownSignalPipe[0], &readfds);
FD_SET(_fd, &readfds);
select(nfds, &readfds, &nullfds, &nullfds, (struct timeval*)0);
if (FD_ISSET(_shutdownSignalPipe[0], &readfds)) // writes to shutdown pipe terminate thread
break;
if (FD_ISSET(_fd, &readfds)) {
n = (int)::read(_fd, getBuf + r, sizeof(getBuf) - r);
if (n < 0) {
if ((errno != EINTR) && (errno != ETIMEDOUT))
break;
}
else {
// Some tap drivers like to send the ethernet frame and the
// payload in two chunks, so handle that by accumulating
// data until we have at least a frame.
r += n;
if (r > 14) {
if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms
r = _mtu + 14;
if (_enabled) {
to.setTo(getBuf, 6);
from.setTo(getBuf + 6, 6);
unsigned int etherType = ntohs(((const uint16_t*)getBuf)[6]);
// TODO: VLAN support
_handler(_arg, (void*)0, _nwid, from, to, etherType, 0, (const void*)(getBuf + 14), r - 14);
}
r = 0;
}
}
}
}
}
void MacKextEthernetTap::setDns(const char* domain, const std::vector<InetAddress>& servers)
{
MacDNSHelper::setDNS(_nwid, domain, servers);
}
} // namespace ZeroTier