ZeroTierOne/node/Utils.hpp
2024-09-26 08:52:29 -04:00

876 lines
25 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_UTILS_HPP
#define ZT_UTILS_HPP
#include <algorithm>
#include <map>
#include <stdexcept>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <time.h>
#include <vector>
#if defined(__FreeBSD__)
#include <sys/endian.h>
#endif
#include "Constants.hpp"
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U)))
#define ZT_CONST_TO_BE_UINT64(x) \
((((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | (((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | (((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) \
| (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | (((uint64_t)(x) & 0xff00000000000000ULL) >> 56U))
#else
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x))
#define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
#endif
#define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
#define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
#define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
namespace ZeroTier {
/**
* Miscellaneous utility functions and global constants
*/
class Utils {
public:
static const uint64_t ZERO256[4];
#ifdef ZT_ARCH_ARM_HAS_NEON
struct ARMCapabilities {
ARMCapabilities() noexcept;
bool aes;
bool crc32;
bool pmull;
bool sha1;
bool sha2;
};
static const ARMCapabilities ARMCAP;
#endif
#ifdef ZT_ARCH_X64
struct CPUIDRegisters {
CPUIDRegisters() noexcept;
bool rdrand;
bool aes;
bool avx;
bool vaes; // implies AVX
bool vpclmulqdq; // implies AVX
bool avx2;
bool avx512f;
bool sha;
bool fsrm;
};
static const CPUIDRegisters CPUID;
#endif
/**
* Compute the log2 (most significant bit set) of a 32-bit integer
*
* @param v Integer to compute
* @return log2 or 0 if v is 0
*/
static inline unsigned int log2(uint32_t v)
{
uint32_t r = (v > 0xffff) << 4;
v >>= r;
uint32_t shift = (v > 0xff) << 3;
v >>= shift;
r |= shift;
shift = (v > 0xf) << 2;
v >>= shift;
r |= shift;
shift = (v > 0x3) << 1;
v >>= shift;
r |= shift;
r |= (v >> 1);
return (unsigned int)r;
}
/**
* Perform a time-invariant binary comparison
*
* @param a First binary string
* @param b Second binary string
* @param len Length of strings
* @return True if strings are equal
*/
static inline bool secureEq(const void* a, const void* b, unsigned int len)
{
uint8_t diff = 0;
for (unsigned int i = 0; i < len; ++i) {
diff |= ((reinterpret_cast<const uint8_t*>(a))[i] ^ (reinterpret_cast<const uint8_t*>(b))[i]);
}
return (diff == 0);
}
/**
* Securely zero memory, avoiding compiler optimizations and such
*/
static void burn(void* ptr, unsigned int len);
/**
* @param n Number to convert
* @param s Buffer, at least 24 bytes in size
* @return String containing 'n' in base 10 form
*/
static char* decimal(unsigned long n, char s[24]);
static inline char* hex(uint64_t i, char s[17])
{
s[0] = HEXCHARS[(i >> 60) & 0xf];
s[1] = HEXCHARS[(i >> 56) & 0xf];
s[2] = HEXCHARS[(i >> 52) & 0xf];
s[3] = HEXCHARS[(i >> 48) & 0xf];
s[4] = HEXCHARS[(i >> 44) & 0xf];
s[5] = HEXCHARS[(i >> 40) & 0xf];
s[6] = HEXCHARS[(i >> 36) & 0xf];
s[7] = HEXCHARS[(i >> 32) & 0xf];
s[8] = HEXCHARS[(i >> 28) & 0xf];
s[9] = HEXCHARS[(i >> 24) & 0xf];
s[10] = HEXCHARS[(i >> 20) & 0xf];
s[11] = HEXCHARS[(i >> 16) & 0xf];
s[12] = HEXCHARS[(i >> 12) & 0xf];
s[13] = HEXCHARS[(i >> 8) & 0xf];
s[14] = HEXCHARS[(i >> 4) & 0xf];
s[15] = HEXCHARS[i & 0xf];
s[16] = (char)0;
return s;
}
static inline char* hex10(uint64_t i, char s[11])
{
s[0] = HEXCHARS[(i >> 36) & 0xf];
s[1] = HEXCHARS[(i >> 32) & 0xf];
s[2] = HEXCHARS[(i >> 28) & 0xf];
s[3] = HEXCHARS[(i >> 24) & 0xf];
s[4] = HEXCHARS[(i >> 20) & 0xf];
s[5] = HEXCHARS[(i >> 16) & 0xf];
s[6] = HEXCHARS[(i >> 12) & 0xf];
s[7] = HEXCHARS[(i >> 8) & 0xf];
s[8] = HEXCHARS[(i >> 4) & 0xf];
s[9] = HEXCHARS[i & 0xf];
s[10] = (char)0;
return s;
}
static inline char* hex(uint32_t i, char s[9])
{
s[0] = HEXCHARS[(i >> 28) & 0xf];
s[1] = HEXCHARS[(i >> 24) & 0xf];
s[2] = HEXCHARS[(i >> 20) & 0xf];
s[3] = HEXCHARS[(i >> 16) & 0xf];
s[4] = HEXCHARS[(i >> 12) & 0xf];
s[5] = HEXCHARS[(i >> 8) & 0xf];
s[6] = HEXCHARS[(i >> 4) & 0xf];
s[7] = HEXCHARS[i & 0xf];
s[8] = (char)0;
return s;
}
static inline char* hex(uint16_t i, char s[5])
{
s[0] = HEXCHARS[(i >> 12) & 0xf];
s[1] = HEXCHARS[(i >> 8) & 0xf];
s[2] = HEXCHARS[(i >> 4) & 0xf];
s[3] = HEXCHARS[i & 0xf];
s[4] = (char)0;
return s;
}
static inline char* hex(uint8_t i, char s[3])
{
s[0] = HEXCHARS[(i >> 4) & 0xf];
s[1] = HEXCHARS[i & 0xf];
s[2] = (char)0;
return s;
}
static inline char* hex(const void* d, unsigned int l, char* s)
{
char* const save = s;
for (unsigned int i = 0; i < l; ++i) {
const unsigned int b = reinterpret_cast<const uint8_t*>(d)[i];
*(s++) = HEXCHARS[b >> 4];
*(s++) = HEXCHARS[b & 0xf];
}
*s = (char)0;
return save;
}
static inline unsigned int unhex(const char* h, void* buf, unsigned int buflen)
{
unsigned int l = 0;
while (l < buflen) {
uint8_t hc = *(reinterpret_cast<const uint8_t*>(h++));
if (! hc) {
break;
}
uint8_t c = 0;
if ((hc >= 48) && (hc <= 57)) { // 0..9
c = hc - 48;
}
else if ((hc >= 97) && (hc <= 102)) { // a..f
c = hc - 87;
}
else if ((hc >= 65) && (hc <= 70)) { // A..F
c = hc - 55;
}
hc = *(reinterpret_cast<const uint8_t*>(h++));
if (! hc) {
break;
}
c <<= 4;
if ((hc >= 48) && (hc <= 57)) {
c |= hc - 48;
}
else if ((hc >= 97) && (hc <= 102)) {
c |= hc - 87;
}
else if ((hc >= 65) && (hc <= 70)) {
c |= hc - 55;
}
reinterpret_cast<uint8_t*>(buf)[l++] = c;
}
return l;
}
static inline unsigned int unhex(const char* h, unsigned int hlen, void* buf, unsigned int buflen)
{
unsigned int l = 0;
const char* hend = h + hlen;
while (l < buflen) {
if (h == hend) {
break;
}
uint8_t hc = *(reinterpret_cast<const uint8_t*>(h++));
if (! hc) {
break;
}
uint8_t c = 0;
if ((hc >= 48) && (hc <= 57)) {
c = hc - 48;
}
else if ((hc >= 97) && (hc <= 102)) {
c = hc - 87;
}
else if ((hc >= 65) && (hc <= 70)) {
c = hc - 55;
}
if (h == hend) {
break;
}
hc = *(reinterpret_cast<const uint8_t*>(h++));
if (! hc) {
break;
}
c <<= 4;
if ((hc >= 48) && (hc <= 57)) {
c |= hc - 48;
}
else if ((hc >= 97) && (hc <= 102)) {
c |= hc - 87;
}
else if ((hc >= 65) && (hc <= 70)) {
c |= hc - 55;
}
reinterpret_cast<uint8_t*>(buf)[l++] = c;
}
return l;
}
static inline float normalize(float value, float bigMin, float bigMax, float targetMin, float targetMax)
{
float bigSpan = bigMax - bigMin;
float smallSpan = targetMax - targetMin;
float valueScaled = (value - bigMin) / bigSpan;
return targetMin + valueScaled * smallSpan;
}
/**
* Generate secure random bytes
*
* This will try to use whatever OS sources of entropy are available. It's
* guarded by an internal mutex so it's thread-safe.
*
* @param buf Buffer to fill
* @param bytes Number of random bytes to generate
*/
static void getSecureRandom(void* buf, unsigned int bytes);
/**
* Tokenize a string (alias for strtok_r or strtok_s depending on platform)
*
* @param str String to split
* @param delim Delimiters
* @param saveptr Pointer to a char * for temporary reentrant storage
*/
static inline char* stok(char* str, const char* delim, char** saveptr)
{
#ifdef __WINDOWS__
return strtok_s(str, delim, saveptr);
#else
return strtok_r(str, delim, saveptr);
#endif
}
static inline unsigned int strToUInt(const char* s)
{
return (unsigned int)strtoul(s, (char**)0, 10);
}
static inline int strToInt(const char* s)
{
return (int)strtol(s, (char**)0, 10);
}
static inline unsigned long strToULong(const char* s)
{
return strtoul(s, (char**)0, 10);
}
static inline long strToLong(const char* s)
{
return strtol(s, (char**)0, 10);
}
static inline double strToDouble(const char* s)
{
return strtod(s, NULL);
}
static inline unsigned long long strToU64(const char* s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s, (char**)0, 10);
#else
return strtoull(s, (char**)0, 10);
#endif
}
static inline long long strTo64(const char* s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s, (char**)0, 10);
#else
return strtoll(s, (char**)0, 10);
#endif
}
static inline unsigned int hexStrToUInt(const char* s)
{
return (unsigned int)strtoul(s, (char**)0, 16);
}
static inline int hexStrToInt(const char* s)
{
return (int)strtol(s, (char**)0, 16);
}
static inline unsigned long hexStrToULong(const char* s)
{
return strtoul(s, (char**)0, 16);
}
static inline long hexStrToLong(const char* s)
{
return strtol(s, (char**)0, 16);
}
static inline unsigned long long hexStrToU64(const char* s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s, (char**)0, 16);
#else
return strtoull(s, (char**)0, 16);
#endif
}
static inline long long hexStrTo64(const char* s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s, (char**)0, 16);
#else
return strtoll(s, (char**)0, 16);
#endif
}
/**
* Perform a safe C string copy, ALWAYS null-terminating the result
*
* This will never ever EVER result in dest[] not being null-terminated
* regardless of any input parameter (other than len==0 which is invalid).
*
* @param dest Destination buffer (must not be NULL)
* @param len Length of dest[] (if zero, false is returned and nothing happens)
* @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
* @return True on success, false on overflow (buffer will still be 0-terminated)
*/
static inline bool scopy(char* dest, unsigned int len, const char* src)
{
if (! len) {
return false; // sanity check
}
if (! src) {
*dest = (char)0;
return true;
}
char* end = dest + len;
while ((*dest++ = *src++)) {
if (dest == end) {
*(--dest) = (char)0;
return false;
}
}
return true;
}
/**
* Count the number of bits set in an integer
*
* @param v 32-bit integer
* @return Number of bits set in this integer (0-32)
*/
static inline uint32_t countBits(uint32_t v)
{
v = v - ((v >> 1) & (uint32_t)0x55555555);
v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24);
}
/**
* Count the number of bits set in an integer
*
* @param v 64-bit integer
* @return Number of bits set in this integer (0-64)
*/
static inline uint64_t countBits(uint64_t v)
{
v = v - ((v >> 1) & (uint64_t)~(uint64_t)0 / 3);
v = (v & (uint64_t)~(uint64_t)0 / 15 * 3) + ((v >> 2) & (uint64_t)~(uint64_t)0 / 15 * 3);
v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0 / 255 * 15;
return (uint64_t)(v * ((uint64_t)~(uint64_t)0 / 255)) >> 56;
}
/**
* Check if a memory buffer is all-zero
*
* @param p Memory to scan
* @param len Length of memory
* @return True if memory is all zero
*/
static inline bool isZero(const void* p, unsigned int len)
{
for (unsigned int i = 0; i < len; ++i) {
if (((const unsigned char*)p)[i]) {
return false;
}
}
return true;
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint64_t swapBytes(const uint64_t n) noexcept
{
#ifdef __GNUC__
return __builtin_bswap64(n);
#else
#ifdef _MSC_VER
return (uint64_t)_byteswap_uint64((unsigned __int64)n);
#else
return (
((n & 0x00000000000000ffULL) << 56) | ((n & 0x000000000000ff00ULL) << 40) | ((n & 0x0000000000ff0000ULL) << 24) | ((n & 0x00000000ff000000ULL) << 8) | ((n & 0x000000ff00000000ULL) >> 8) | ((n & 0x0000ff0000000000ULL) >> 24)
| ((n & 0x00ff000000000000ULL) >> 40) | ((n & 0xff00000000000000ULL) >> 56));
#endif
#endif
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint32_t swapBytes(const uint32_t n) noexcept
{
#if defined(__GNUC__)
return __builtin_bswap32(n);
#else
#ifdef _MSC_VER
return (uint32_t)_byteswap_ulong((unsigned long)n);
#else
return htonl(n);
#endif
#endif
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept
{
#if defined(__GNUC__)
return __builtin_bswap16(n);
#else
#ifdef _MSC_VER
return (uint16_t)_byteswap_ushort((unsigned short)n);
#else
return htons(n);
#endif
#endif
}
// These are helper adapters to load and swap integer types special cased by size
// to work with all typedef'd variants, signed/unsigned, etc.
template <typename I, unsigned int S> class _swap_bytes_bysize;
template <typename I> class _swap_bytes_bysize<I, 1> {
public:
static ZT_INLINE I s(const I n) noexcept
{
return n;
}
};
template <typename I> class _swap_bytes_bysize<I, 2> {
public:
static ZT_INLINE I s(const I n) noexcept
{
return (I)swapBytes((uint16_t)n);
}
};
template <typename I> class _swap_bytes_bysize<I, 4> {
public:
static ZT_INLINE I s(const I n) noexcept
{
return (I)swapBytes((uint32_t)n);
}
};
template <typename I> class _swap_bytes_bysize<I, 8> {
public:
static ZT_INLINE I s(const I n) noexcept
{
return (I)swapBytes((uint64_t)n);
}
};
template <typename I, unsigned int S> class _load_be_bysize;
template <typename I> class _load_be_bysize<I, 1> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return p[0];
}
};
template <typename I> class _load_be_bysize<I, 2> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]);
}
};
template <typename I> class _load_be_bysize<I, 4> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]);
}
};
template <typename I> class _load_be_bysize<I, 8> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]);
}
};
template <typename I, unsigned int S> class _load_le_bysize;
template <typename I> class _load_le_bysize<I, 1> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return p[0];
}
};
template <typename I> class _load_le_bysize<I, 2> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U));
}
};
template <typename I> class _load_le_bysize<I, 4> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U));
}
};
template <typename I> class _load_le_bysize<I, 8> {
public:
static ZT_INLINE I l(const uint8_t* const p) noexcept
{
return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U);
}
};
/**
* Convert any signed or unsigned integer type to big-endian ("network") byte order
*
* @tparam I Integer type (usually inferred)
* @param n Value to convert
* @return Value in big-endian order
*/
template <typename I> static ZT_INLINE I hton(const I n) noexcept
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return _swap_bytes_bysize<I, sizeof(I)>::s(n);
#else
return n;
#endif
}
/**
* Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order
*
* @tparam I Integer type (usually inferred)
* @param n Value to convert
* @return Value in host byte order
*/
template <typename I> static ZT_INLINE I ntoh(const I n) noexcept
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return _swap_bytes_bysize<I, sizeof(I)>::s(n);
#else
return n;
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to load
* @param p Byte stream, must be at least sizeof(I) in size
* @return Loaded raw integer
*/
template <typename I> static ZT_INLINE I loadMachineEndian(const void* const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
I tmp;
for (int i = 0; i < (int)sizeof(I); ++i) {
reinterpret_cast<uint8_t*>(&tmp)[i] = reinterpret_cast<const uint8_t*>(p)[i];
}
return tmp;
#else
return *reinterpret_cast<const I*>(p);
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to store
* @param p Byte array (must be at least sizeof(I))
* @param i Integer to store
*/
template <typename I> static ZT_INLINE void storeMachineEndian(void* const p, const I i) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
for (unsigned int k = 0; k < sizeof(I); ++k) {
reinterpret_cast<uint8_t*>(p)[k] = reinterpret_cast<const uint8_t*>(&i)[k];
}
#else
*reinterpret_cast<I*>(p) = i;
#endif
}
/**
* Decode a big-endian value from a byte stream
*
* @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t)
* @param p Byte stream, must be at least sizeof(I) in size
* @return Decoded integer
*/
template <typename I> static ZT_INLINE I loadBigEndian(const void* const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
return _load_be_bysize<I, sizeof(I)>::l(reinterpret_cast<const uint8_t*>(p));
#else
return ntoh(*reinterpret_cast<const I*>(p));
#endif
}
/**
* Save an integer in big-endian format
*
* @tparam I Integer type to store (usually inferred)
* @param p Byte stream to write (must be at least sizeof(I))
* #param i Integer to write
*/
template <typename I> static ZT_INLINE void storeBigEndian(void* const p, I i) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
storeMachineEndian(p, hton(i));
#else
*reinterpret_cast<I*>(p) = hton(i);
#endif
}
/**
* Decode a little-endian value from a byte stream
*
* @tparam I Type to decode
* @param p Byte stream, must be at least sizeof(I) in size
* @return Decoded integer
*/
template <typename I> static ZT_INLINE I loadLittleEndian(const void* const p) noexcept
{
#if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
return _load_le_bysize<I, sizeof(I)>::l(reinterpret_cast<const uint8_t*>(p));
#else
return *reinterpret_cast<const I*>(p);
#endif
}
/**
* Save an integer in little-endian format
*
* @tparam I Integer type to store (usually inferred)
* @param p Byte stream to write (must be at least sizeof(I))
* #param i Integer to write
*/
template <typename I> static ZT_INLINE void storeLittleEndian(void* const p, const I i) noexcept
{
#if __BYTE_ORDER == __BIG_ENDIAN
storeMachineEndian(p, _swap_bytes_bysize<I, sizeof(I)>::s(i));
#else
#ifdef ZT_NO_UNALIGNED_ACCESS
storeMachineEndian(p, i);
#else
*reinterpret_cast<I*>(p) = i;
#endif
#endif
}
/**
* Copy memory block whose size is known at compile time.
*
* @tparam L Size of memory
* @param dest Destination memory
* @param src Source memory
*/
template <unsigned long L> static ZT_INLINE void copy(void* dest, const void* src) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
uintptr_t l = L;
__asm__ __volatile__("cld ; rep movsb" : "+c"(l), "+S"(src), "+D"(dest)::"memory");
#else
memcpy(dest, src, L);
#endif
}
/**
* Copy memory block whose size is known at run time
*
* @param dest Destination memory
* @param src Source memory
* @param len Bytes to copy
*/
static ZT_INLINE void copy(void* dest, const void* src, unsigned long len) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
__asm__ __volatile__("cld ; rep movsb" : "+c"(len), "+S"(src), "+D"(dest)::"memory");
#else
memcpy(dest, src, len);
#endif
}
/**
* Zero memory block whose size is known at compile time
*
* @tparam L Size in bytes
* @param dest Memory to zero
*/
template <unsigned long L> static ZT_INLINE void zero(void* dest) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
uintptr_t l = L;
__asm__ __volatile__("cld ; rep stosb" : "+c"(l), "+D"(dest) : "a"(0) : "memory");
#else
memset(dest, 0, L);
#endif
}
/**
* Zero memory block whose size is known at run time
*
* @param dest Memory to zero
* @param len Size in bytes
*/
static ZT_INLINE void zero(void* dest, unsigned long len) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
__asm__ __volatile__("cld ; rep stosb" : "+c"(len), "+D"(dest) : "a"(0) : "memory");
#else
memset(dest, 0, len);
#endif
}
/**
* Hexadecimal characters 0-f
*/
static const char HEXCHARS[16];
/*
* Remove `-` and `:` from a MAC address (in-place).
*
* @param mac The MAC address
*/
static inline void cleanMac(std::string& mac)
{
auto start = mac.begin();
auto end = mac.end();
auto new_end = std::remove_if(start, end, [](char c) { return c == 45 || c == 58; });
mac.erase(new_end, end);
}
};
} // namespace ZeroTier
#endif